IN5240
Review: Mixers and Oscillators

Sumit Bagga* and Dag T. Wisland**
*Staff IC Design Engineer, Novelda AS
**CTO, Novelda AS
Frequency Conversion

- RF wanted signal is down-converted by a mixer i.e., multiplication with a local oscillator (LO), f_{LO} in time domain.
- Multiplication in time domain \rightarrow convolution in frequency domain (shift of RF signal)
Image is the unwanted signal that lies symmetrically to the RF signal of interest with respect to the f_{LO}.
Hartley Receiver

Spectrum of sine and cosine are asymmetrical → image
Noise Mixing

• Receive mixer down converts wanted and the image bands to IF frequency \rightarrow folding of noise at image frequency on top of wanted band at IF, and is:
 – Noise at desired and image RF bands down converted \rightarrow IF
 – Added noise from mixer circuit

• If the mixer is noiseless, SSB NF is 3 dB because of the image noise folding
SSB and DSB Noise

- SSB NF assumes no signal at the image frequency except source noise
- DSB NF assumes image band w/ noise and an image signal equal to the wanted signal
RF Mixers
Performance Metrics

• Noise
• Linearity: P1dB, input inferred intercept points (IIP3, IIP2)
 – OP1dB = IP1dB + (G − 1)
 – IP1dB + 10.6 dB = IIP3
• Voltage conversion gain/loss
• Port-to-port isolation (LO-RF, RF-LO and LO-IF)
 – Leakage from a port to another is undesirable
• Supply voltage
• Power dissipation
Passive and Active Mixers

• Current and voltage mixers \rightarrow transistors are switches
• What is the ideal LO waveform?
 – RF signal is multiplied by square wave not sinusoidal
Single and Double Balanced Mixers

- LO-RF Feedthrough
- RF-LO Feedthrough
- LO-IF Feedthrough
- All other combinations...

What is the ideal LO waveform? [Razavi, EE215C]
Passive Voltage Mixer

- Active devices (transistors) operate in triode
- Large signals at input/output → difficult to completely turn on/off transistors

\[V_{out}[\omega] = \frac{2}{\pi} V_{RF}[\omega - \omega_{LO}] \]
Passive Current Mixer

- Active devices (transistors) operate in triode
- Low input impedance of transimpedance amplifier input → small voltage swings at source/drain
Active Current Mixer

- Transconductor stage \rightarrow input voltage to current
- Switches (transistors) operate in saturation (i.e., cascades coupling/de-coupling RF to IF)

$$I_{RF} = g_m V_{RF}/2$$

$$V_{out}[\omega] = \frac{2}{\pi} (g_m R) V_{RF} [\omega - \omega_{LO}]$$
Mixer Comparison

<table>
<thead>
<tr>
<th>Type</th>
<th>Transistor Operation</th>
<th>Signal Swing</th>
<th>Conversion Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Passive</td>
<td>Triode</td>
<td>Limited by switch topology</td>
<td>$\frac{2}{\pi}$</td>
</tr>
<tr>
<td>Current Passive</td>
<td>Triode</td>
<td>Limited by TIA impedance</td>
<td>$(\frac{2}{\pi}) \times R$</td>
</tr>
<tr>
<td>Active</td>
<td>Saturation</td>
<td>Limited by bias current and load</td>
<td>$g_m (\frac{2}{\pi}) \times R$</td>
</tr>
</tbody>
</table>
What is an Oscillator?

- Converts dc power \to sinusoidal waveform
- High-Q LC tank or a resonator (crystal, cavity, …)
 - Lossy LC-tank \to amplitude of the oscillator decays
- Oscillation frequency, power, phase noise/jitter, stability, tuning range
Oscillator Design

• Amplitude and frequency stability
• Concept of negative resistance
• Oscillator topologies (Colpitts, Hartley, Clapp, Cross-coupled, …)
• Injection locked oscillators
 – Locking range, injection pulling,
Positive Feedback

- Oscillators \(\rightarrow\) feedback systems
- Fraction of the output signal is fed back to sustain oscillations \(\rightarrow\) ‘injected’ energy required to compensate for lossy tank
Barkhausen’s Criterion
Loop Gain ($|A\beta|$)

• Magnitude of the product of open loop gain and the magnitude of the feedback factor of the amplifier is unity
 - $|A\beta| = 1$

• System poles are on $j\omega$-axis \rightarrow constant amplitude oscillations
 - $|A\beta| < 1 \rightarrow$ decay
 - $|A\beta| > 1 \rightarrow$ amplitude increases exponential to steady-state

• Phase shift around the loop is 0 or integral multiples of 2π
Connect a test current source as before. Performing KCL,

\[i_x = g_m v_1 + (v_1 v_x) j\omega C_1 + (v_1 g_m + g_m v_1) = 0 \]

Where \(C'_2 = C_2 + C' \). Notice that \(C_\mu \) can be absorbed into the tank.

Using the above result we have

\[G_x = \frac{i_x}{v_x} = -\frac{g_m}{n} + j\omega \frac{C_1 C'_2}{C_1 + C'_2} \]
Clapp

\[g_m > R_s \omega^2 C_1 C_2 \]
Single-MOS Oscillators

A. M. Niknejad
University of California, Berkeley

IN5240: Design of CMOS RF-Integrated Circuits,
Dag T. Wisland and Sumit Bagga
Cross-Coupled Resistance

\[G_x = \frac{i_x}{v_x} = -\frac{g_m}{2} \]
Cross-Coupled Resistance

DC 1/f noise contributes to the 1/f³ region!
Varactor: ‘p’ of the diode is connected to virtual ground

\[TR = 2 \frac{f_{max} - f_{min}}{f_{max} + f_{min}} \]

Institutt for Informatikk
IN5240: Design of CMOS RF-Integrated Circuits,
Dag T. Wisland and Sumit Bagga
Injection Locking in LC Tanks

In order to determine the lock range (the range of

\[\begin{align*}
|H|_0 &= \frac{\omega_0}{\omega_1} \quad \omega_0 < \omega_1 \\
\angle H_0 &= \phi_0 \\
\omega_0 &= \frac{2Q I_{inj}}{\omega_{osc}} \\
\phi_0 &= \tan^{-1}\left(\frac{I_{inj}}{2Q I_{osc}}\right)
\end{align*} \]

Source: [Razavi]
Phase Noise

- Phase noise spectral density (PN) units \(\rightarrow\) dBc/Hz and measured at \(\Delta f\) from the \(f_c\)
- Low spectral purity \(\rightarrow\) convolution of blocker (\(\Delta f\)) & \(f_{LO}\) \(\rightarrow\) noise contribution in RF BW (reciprocal mixing)

\[
PN(\Delta f) = \frac{P_{\text{noise}}(f_{LO} \pm \Delta f)}{P_{\text{carrier}}}
\]

[Liscidini, ISSCC, 2015]
Harmonics \rightarrow Phase Noise
Key References

1. A. M. Niknejad, EECS 142, 242 and 105
3. E. Kim, EEE 194
4. B. Razavi, EE215C