
Introduction to Numerical
Methods for Variational

Problems

Hans Petter Langtangen1,2

Kent-Andre Mardal3,1

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

3Department of Mathematics, University of Oslo

This easy-to-read book introduces the basic ideas and technicalities
of least squares, Galerkin, and weighted residual methods for solving
partial differential equations. Special emphasis is put on finite element
methods.

Aug 8, 2019

Preface

The present book is essentially a book on the finite element method,
although we discuss many other choices of basis functions and other
applications than partial differential equations. The literature on finite
elements contains books of many different flavors, ranging from an ab-
stract view of the method [5, 6, 9, 13, 26] to a more practical, algorithmic
treatment of the subject [18, 33]. The present book has a very strong
algorithmic focus (“how to compute”), but formulate the method in
abstract form with variational forms and function spaces.

One highly valued feature of the finite element method is the prospect
of rigorous analysis provided by the functional analysis framework. In
particular, for elliptic problems (or, in general, symmetric problems)
the theory provides error control via sharp estimates and efficient com-
putations via multiscale algorithms. In fact, the development of this
mathematical theory of finite element methods is one of the highlights
of numerical analysis. However, within scientific computing the compu-
tational engine of the finite element method is being used far outside
what is theoretically understood. Obviously, this is a trend that will
continue in the future. Hence, it is not our aim to present the established
mathematical theory here, but rather provide the reader with the gory
details of the implementation in an explicit, user-friendly and simplistic
manner to lower the threshold of usage. At the same time, we want
to present tools for verification and debugging that are applicable in
general situations such that the method can be used safely beyond what
is theoretically proven.

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

vi

An important motivation for writing this book was to provide an
intuitive approach to the finite element method, using mathematical
language frameworks such as the FEniCS software [23]. FEniCS is a
modern, very powerful tool for solving partial differential equations by
the finite element method, and it was designed to make implementations
very compact, which is attractive for those who are used to the abstract
formulation of the method. Our aim here is different. Through explicit,
detailed and sometimes lengthy derivations, the reader will be able to
get direct exposition of all components in a finite element engine.

A standard reference for FEniCS users has been the excellent text
by Brenner and Scott [6], but for many students with weak formal
mathematical background the learning curve still becomes too steep. The
present book grew out of the need to explain variational formulations
in the most intuitive way so FEniCS users can transform their PDE
problem into the proper formulation for FEniCS programming. We then
added material such that also the details of the most fundamental finite
element algorithms could easily be understood.

The learning outcomes of this book are five-fold:

1. understanding various types of variational formulations of PDE prob-
lems,

2. understanding the machinery of finite element algorithms, with an
emphasis on one-dimensional problems,

3. understanding potential artifacts in simulation results,
4. understanding how variational formulations can be used in other

contexts (generalized boundary conditions, solving linear systems)
5. understanding how variational methods may be used for complicated

PDEs (systems of non-linear and time-dependent PDEs)

The exposition is recognized by very explicit mathematics, i.e., we have
tried to write out all details of the finite element “engine” such that a
reader can calculate a finite element problem by hand. Explaining all
details and carrying them out by hand are formidable tasks in two- and
three-dimensional PDE problems, so we restrict the attention to one
space dimension when it comes to detailed calculations. Although we
imagine that the reader will use FEniCS or other similar software to
actually solve finite element problems, we strongly believe that successful
application of such complex software requires a thorough understanding
of the underlying method, which is best gained by hand calculations of
the steps in the algorithms. Also, hand calculations are indispensable
for debugging finite element programs: one can run a one-dimensional

vii

problem, print out intermediate results, and compare with separate
hand calculations. When the program is fully verified in 1D, ideally the
program should be turned into a 2D/3D simulation simply by switching
from a 1D mesh to the relevant 2D/3D mesh.

When working with algorithms and hand calculations in the present
book, we emphasize the usefulness of symbolic computing. Our choice is
the free SymPy package, which is very easy to use for students and which
gives a seamless transition from symbolic to numerical computing. Most of
the numerical algorithms in this book are summarized as compact SymPy
programs. However, symbolic computing certainly has its limitations,
especially when it comes to speed, so their numerical counterparts are
usually also developed in the text. The reader should be able to write her
own finite element program for one-dimensional problems, but otherwise
we have no aim to educate the reader to write fast, state-of-the-art finite
element programs!

Another learning outcome (although not needed to be a successful
FEniCS user) is to understand how the finite element method is a special
case of more general variational approaches to solving equations. We
consider approximation in general, solution of PDEs, as well as solving
linear systems in a way that hopefully gives the reader an understanding
of how seemingly very different numerical methods actually are just
variants of a common way of reasoning.

Many common topics found in finite element books are not present
in this book. A striking feature is perhaps the presence of the abstract
formulation of the finite element method, but without any classical error
analysis. The reason is that we have taken a very practical approach
to the contents: what does a user need to know to safely apply finite
element software? A thorough understanding of the errors is obviously
essential, but the classical error analysis of elliptic problems is of limited
practical interest for the practitioner, except for the final results regarding
convergence rates of different types of finite elements.

In time-dependent problems, on the other hand, a lot of things can go
wrong with finite element solutions, but the extensions of the classical
finite element error analysis to time dependency quickly meets limitations
with respect to explaining typical numerical artifacts. We therefore follow
a completely different type of analysis, namely the one often used for
finite difference methods: insight through numerical dispersion relations
and similar results based on exact discrete solutions via Fourier wave
components. Actually, all the analysis of the quality of finite element
solutions are in this book done with the aid of techniques for analyzing

viii

finite difference methods, so a knowledge of finite differences is needed.
This approach also makes it very easy to compare the two methods,
which is frequently done throughout the text.

The mathematical notation in this text makes deviations from the
literature trends. Especially books on the abstract formulation of the
finite element method often denote the numerical solution by uh. Our
mathematical notation is dictated by the natural notation in a computer
code, so if u is the unknown in the code, we let u be the corresponding
quantity in the mathematical description as well. When also the exact
solution of the PDE problem is needed, it is usually denoted by ue. Espe-
cially in the chapter on nonlinear problems we introduce notations that
are handy in a program and use the same notation in the mathematics
such that we achieve as close correspondence as possible between the
mathematics and the code.

Contents. The very first chapter starts with a quick overview of how
PDE problems are solved by the finite element method. The next four
chapters go into deep detail of the algorithms. We employ a successful
idea, pursued by Larson and Bengzon [22] in particular, of first treating
finite element approximation before attacking PDE problems. Chapter 3
explains approximation of functions in function spaces from a general
point of view, where finite element basis functions constitute one example
to be explored in Chapter 4. The principles of variational formulations
constitute the subject of Chapter 5. A lot of details of the finite element
machinery are met already in the approximation problem in Chapter 4, so
when these topics are familiar together with the variational formulations
of Chapter 5, it is easier to put the entire finite element method together
in Chapter 6 with variational formulations of PDE problems, boundary
conditions, and the necessary finite element computing algorithms. Our
experience is that this pedagogical approach greatly simplifies the learning
process for students. Chapter 7 explains how time-dependent problems
are attacked, primarily by using finite difference discretizations in time.
Here we develop the corresponding finite difference schemes and analyze
them via Fourier components and numerical dispersion relations. How to
set up variational formulations of systems of PDEs, and in particular the
way systems are treated in FEniCS, is the topic of Chapter 8. Nonlinear
ODE and PDE problems are treated quite comprehensively in Chapter 10.
Finally, the applicability of variational thinking appears in a different
context in Chapter 11 where we construct iterative methods for linear
systems and derive methods in the Conjugate gradient family.

ix

Supplementary materials. All program and data files referred to in this
book are available from the book’s primary web site: http://folk.uio.
no/kent-and/hpl-fem-book/doc/web

Oslo, September 2016 Hans Petter Langtangen, Kent-Andre Mardal

http://folk.uio.no/kent-and/hpl-fem-book/doc/web
http://folk.uio.no/kent-and/hpl-fem-book/doc/web

Second Preface 1

It is now a little more than three years since Hans Petter asked me to
help him finalize this book. Obviously, I was honored, but also aware
that this would be a significant commitment. That said, it did not take
long for me to decide. A main reason was that the first book I read
about finite element methods, in the late nineties, was Hans Petter’s first
book about finite elements and the software library Diffpack. His book
was different from other finite element books and it was precious to me
for many years. In particular, it combined interesting mathematics and
skillful programming with detailed examples that one could play with
and learn from. The Diffpack library and the book have had widespread
influence and many of today’s finite element packages are organized
around the same principles, FEniCS being one example.

This book is in many ways similar to Hans Petter’s first book. It
is an introductory text focused on demonstrating the broad, versatile,
and rich approach of finite element methods rather than the examples
where a rigorous analysis is available. However, a lot has changed since
the nineties: There are now many powerful and successful open source
packages for finite elements in particular and scientific computing in
general that are available. Hence, students today are not expected to
develop their codes from scratch, but rather to use and combine the tools
out there. The programming environment is also different from what it
was in the 90s. Python was an obscure language then, but is now the
dominating language in scientific computing which almost all packages
provide an interface to. Hans Petter, with his many excellent books on
scientific programming in Python, has been important in this transition.

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

xii 1 Second Preface

That said, it is our opinion that it still is important to develop codes
from scratch in order to learn all the gory details. That is; "programming
is understanding" as Kristen Nygaard put it – a favorite quite of both
Hans Petter and me. As such, there is a need for teaching material that
exposes the internals of a finite element engine and allow for scrutinous
investigation in a clean environment. In particular, Hans Petter always
wanted to lower the bar for introducing finite elements both by avoiding
technical details of implementation as well as avoiding the theoretical
issues with Sobolev spaces and functional analysis. This is the purpose
of this book.

Acknowledgement Many people have helped with this book over the
years as it evolved. Unfortunately, I did not discuss this process with
Hans Petter and neither did we discuss the acknowledgement on his
behalf.

Johannes Ring and Kristian Hustad have helped with many technical
issues regarding DocOnce. I have received comments, advice and cor-
rections from Yapi Achou, Svein Linge, Matthew Moelter, and Murilo
Moreira.

Finally, I would like to thank Nancy, Natalie and Niklas for their
support and for providing excellent working conditions during the writing
of this book.
Oslo, March 2019 Kent-Andre Mardal

Contents

Preface . v

Second Preface . xi

2 Quick overview of the finite element method 1

3 Function approximation by global functions 9

3.1 Approximation of vectors . 10
3.1.1 Approximation of planar vectors 11
3.1.2 Approximation of general vectors 14

3.2 Approximation principles . 18
3.2.1 The least squares method . 18
3.2.2 The projection (or Galerkin) method 20
3.2.3 Example of linear approximation 20
3.2.4 Implementation of the least squares method 21
3.2.5 Perfect approximation . 25
3.2.6 The regression method . 26

3.3 Orthogonal basis functions . 31
3.3.1 Ill-conditioning . 31
3.3.2 Fourier series . 34
3.3.3 Orthogonal basis functions . 36
3.3.4 Numerical computations . 38

3.4 Interpolation . 39

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

xiv Contents

3.4.1 The interpolation (or collocation) principle 39
3.4.2 Lagrange polynomials . 42
3.4.3 Bernstein polynomials . 49

3.5 Approximation properties and convergence rates 52

3.6 Approximation of functions in higher dimensions 59
3.6.1 2D basis functions as tensor products of 1D functions 59
3.6.2 Example on polynomial basis in 2D 61
3.6.3 Implementation . 65
3.6.4 Extension to 3D . 66

3.7 Exercises . 67

4 Function approximation by finite elements 73

4.1 Finite element basis functions . 73
4.1.1 Elements and nodes . 75
4.1.2 The basis functions . 77
4.1.3 Example on quadratic finite element functions 79
4.1.4 Example on linear finite element functions 80
4.1.5 Example on cubic finite element functions 82
4.1.6 Calculating the linear system . 83
4.1.7 Assembly of elementwise computations 86
4.1.8 Mapping to a reference element 90
4.1.9 Example on integration over a reference element 92

4.2 Implementation . 94
4.2.1 Integration . 94
4.2.2 Linear system assembly and solution 97
4.2.3 Example on computing symbolic approximations 98
4.2.4 Using interpolation instead of least squares 98
4.2.5 Example on computing numerical approximations 99
4.2.6 The structure of the coefficient matrix 100
4.2.7 Applications . 102
4.2.8 Sparse matrix storage and solution 102

4.3 Comparison of finite elements and finite differences 105
4.3.1 Finite difference approximation of given functions 106
4.3.2 Interpretation of a finite element approximation in

terms of finite difference operators 106
4.3.3 Making finite elements behave as finite differences . . . 109

4.4 A generalized element concept . 110

Contents xv

4.4.1 Cells, vertices, and degrees of freedom 111
4.4.2 Extended finite element concept 111
4.4.3 Implementation . 113
4.4.4 Computing the error of the approximation 115
4.4.5 Example on cubic Hermite polynomials 116

4.5 Numerical integration . 117
4.5.1 Newton-Cotes rules . 118
4.5.2 Gauss-Legendre rules with optimized points 119

4.6 Finite elements in 2D and 3D . 119
4.6.1 Basis functions over triangles in the physical domain . 121
4.6.2 Basis functions over triangles in the reference cell 122
4.6.3 Affine mapping of the reference cell 125
4.6.4 Isoparametric mapping of the reference cell 125
4.6.5 Computing integrals . 127

4.7 Implementation . 127
4.7.1 Example of approximation in 2D using FEniCS 128
4.7.2 Refined code with curve plotting 130

4.8 Exercises . 133

5 Variational formulations with global basis functions . 139

5.1 Basic principles for approximating differential equations 139
5.1.1 Differential equation models . 140
5.1.2 Simple model problems and their solutions 141
5.1.3 Forming the residual . 144
5.1.4 The least squares method . 145
5.1.5 The Galerkin method . 145
5.1.6 The method of weighted residuals 146
5.1.7 The method of weighted residual and the truncation

error . 147
5.1.8 Test and trial functions . 148
5.1.9 The collocation method . 148
5.1.10 Examples on using the principles 150
5.1.11 Integration by parts . 154
5.1.12 Boundary function . 156

5.2 Computing with global polynomials . 157
5.2.1 Computing with Dirichlet and Neumann conditions . . 158
5.2.2 When the numerical method is exact 160

xvi Contents

5.2.3 Abstract notation for variational formulations 161
5.2.4 Variational problems and minimization of functionals . 162

5.3 Examples on variational formulations . 165
5.3.1 Variable coefficient . 165
5.3.2 First-order derivative in the equation and boundary

condition . 167
5.3.3 Nonlinear coefficient . 169

5.4 Implementation of the algorithms . 170
5.4.1 Extensions of the code for approximation 170
5.4.2 Fallback to numerical methods . 171
5.4.3 Example with constant right-hand side 172

5.5 Approximations may fail: convection-diffusion 174

5.6 Exercises . 180

6 Variational formulations with finite elements 183

6.1 Computing with finite elements . 183
6.1.1 Finite element mesh and basis functions 183
6.1.2 Computation in the global physical domain 185
6.1.3 Comparison with a finite difference discretization 187
6.1.4 Cellwise computations . 188

6.2 Boundary conditions: specified nonzero value 191
6.2.1 General construction of a boundary function 191
6.2.2 Example on computing with a finite element-based

boundary function . 193
6.2.3 Modification of the linear system 196
6.2.4 Symmetric modification of the linear system 199
6.2.5 Modification of the element matrix and vector 200

6.3 Boundary conditions: specified derivative 201
6.3.1 The variational formulation . 201
6.3.2 Boundary term vanishes because of the test functions 201
6.3.3 Boundary term vanishes because of linear system

modifications . 202
6.3.4 Direct computation of the global linear system 203
6.3.5 Cellwise computations . 204

6.4 Implementation of finite element algorithms 205
6.4.1 Extensions of the code for approximation 205

Contents xvii

6.4.2 Utilizing a sparse matrix . 209
6.4.3 Application to our model problem 210

6.5 Variational formulations in 2D and 3D 212
6.5.1 Integration by parts . 212
6.5.2 Example on a multi-dimensional variational problem . 213
6.5.3 Transformation to a reference cell in 2D and 3D 215
6.5.4 Numerical integration . 217
6.5.5 Convenient formulas for P1 elements in 2D 218
6.5.6 A glimpse of the mathematical theory of the finite

element method . 219

6.6 Implementation in 2D and 3D via FEniCS 224
6.6.1 Mathematical problem . 224
6.6.2 Variational formulation . 225
6.6.3 The FEniCS solver . 227
6.6.4 Making the mesh . 229
6.6.5 Solving a problem . 232

6.7 Convection-diffusion and Petrov-Galerkin methods 233

6.8 Summary . 239

6.9 Exercises . 240

7 Time-dependent variational forms 247

7.1 Discretization in time by a Forward Euler scheme 248
7.1.1 Time discretization . 249
7.1.2 Space discretization . 250
7.1.3 Variational forms . 250
7.1.4 Notation for the solution at recent time levels 251
7.1.5 Deriving the linear systems . 252
7.1.6 Computational algorithm . 253
7.1.7 Example using cosinusoidal basis functions 254
7.1.8 Comparing P1 elements with the finite difference

method . 256

7.2 Discretization in time by a Backward Euler scheme 257
7.2.1 Time discretization . 257
7.2.2 Variational forms . 258
7.2.3 Linear systems . 258

7.3 Dirichlet boundary conditions . 259

xviii Contents

7.3.1 Boundary function . 260
7.3.2 Finite element basis functions . 260
7.3.3 Modification of the linear system 261
7.3.4 Example: Oscillating Dirichlet boundary condition . . . 262

7.4 Accuracy of the finite element solution 264
7.4.1 Methods of analysis . 264
7.4.2 Fourier components and dispersion relations 266
7.4.3 Forward Euler discretization . 267
7.4.4 Backward Euler discretization . 268
7.4.5 Comparing amplification factors 269

7.5 Exercises . 275

8 Variational forms for systems of PDEs 277

8.1 Variational forms . 277
8.1.1 Sequence of scalar PDEs formulation 278
8.1.2 Vector PDE formulation . 278

8.2 A worked example . 279

8.3 Identical function spaces for the unknowns 280
8.3.1 Variational form of each individual PDE 280
8.3.2 Compound scalar variational form 281
8.3.3 Decoupled linear systems . 282
8.3.4 Coupled linear systems . 283

8.4 Different function spaces for the unknowns 285

8.5 Computations in 1D . 287
8.5.1 Another example in 1D . 291

8.6 Exercises . 300

9 Flexible implementations of boundary conditions 301

9.1 Optimization with constraint . 301
9.1.1 Elimination of variables . 302
9.1.2 Lagrange multiplier method. 302
9.1.3 Penalty method . 303

9.2 Optimization of functionals . 304
9.2.1 Classical calculus of variations . 305
9.2.2 Penalty and Nitsche’s methods for optimization with

constraints . 307

Contents xix

9.2.3 Lagrange multiplier method for optimization with
constraints . 310

9.2.4 Example: 1D problem . 312
9.2.5 Example: adding a constraint in a Neumann problem. 314

10 Nonlinear problems . 321

10.1 Introduction of basic concepts . 321
10.1.1 Linear versus nonlinear equations 321
10.1.2 A simple model problem . 323
10.1.3 Linearization by explicit time discretization 324
10.1.4 Exact solution of nonlinear algebraic equations 325
10.1.5 Linearization . 326
10.1.6 Picard iteration . 327
10.1.7 Linearization by a geometric mean 329
10.1.8 Newton’s method . 331
10.1.9 Relaxation . 332
10.1.10Implementation and experiments 333
10.1.11Generalization to a general nonlinear ODE. 335
10.1.12Systems of ODEs . 338

10.2 Systems of nonlinear algebraic equations 341
10.2.1 Picard iteration . 341
10.2.2 Newton’s method . 342
10.2.3 Stopping criteria . 344
10.2.4 Example: A nonlinear ODE model from epidemiology 345

10.3 Linearization at the differential equation level 347
10.3.1 Explicit time integration . 348
10.3.2 Backward Euler scheme and Picard iteration 348
10.3.3 Backward Euler scheme and Newton’s method 349
10.3.4 Crank-Nicolson discretization . 352

10.4 1D stationary nonlinear differential equations 353
10.4.1 Finite difference discretization . 354
10.4.2 Solution of algebraic equations . 356
10.4.3 Galerkin-type discretization . 361
10.4.4 Picard iteration defined from the variational form 362
10.4.5 Newton’s method defined from the variational form . . 363

10.5 Multi-dimensional PDE problems . 365
10.5.1 Finite element discretization . 366
10.5.2 Finite difference discretization . 369

xx Contents

10.5.3 Continuation methods . 372

10.6 Symbolic nonlinear finite element equations 373
10.6.1 Finite element basis functions . 373
10.6.2 The group finite element method 374
10.6.3 Numerical integration of nonlinear terms by hand 377
10.6.4 Discretization of a variable coefficient Laplace term . . 378

10.7 Exercises . 381

11 Variational methods for linear systems 395

11.1 Conjugate gradient-like iterative methods 396
11.1.1 The Galerkin method . 396
11.1.2 The least squares method . 397
11.1.3 Krylov subspaces . 397
11.1.4 Computation of the basis vectors 397
11.1.5 Computation of a new solution vector 399
11.1.6 Summary of the least squares method 400
11.1.7 Truncation and restart . 400
11.1.8 Summary of the Galerkin method 401
11.1.9 A framework based on the error 402

11.2 Preconditioning . 403
11.2.1 Motivation and Basic Principles 403
11.2.2 Use of the preconditioning matrix in the iterative

methods . 404
11.2.3 Classical iterative methods as preconditioners 405
11.2.4 Incomplete factorization preconditioners 406
11.2.5 Preconditioners developed for solving PDE problems . 407

A Useful formulas . 409

A.1 Finite difference operator notation . 409

A.2 Truncation errors of finite difference approximations 410

A.3 Finite differences of exponential functions 411

A.4 Finite differences of tn . 412
A.4.1 Software . 413

References . 415

Index . 419

List of Exercises and Problems

Problem 3.1: Linear algebra refresher . 67
Problem 3.2: Approximate a three-dimensional vector in a plane . 68
Problem 3.3: Approximate a parabola by a sine 68
Problem 3.4: Approximate the exponential function by power

functions . 69
Problem 3.5: Approximate the sine function by power functions . 69
Problem 3.6: Approximate a steep function by sines 70
Problem 3.7: Approximate a steep function by sines with boundary

adjustment . 70
Exercise 3.8: Fourier series as a least squares approximation 71
Problem 3.9: Approximate a steep function by Lagrange

polynomials . 72
Problem 3.10: Approximate a steep function by Lagrange

polynomials and regression . 72
Problem 4.1: Define nodes and elements . 133
Problem 4.2: Define vertices, cells, and dof maps 134
Problem 4.3: Construct matrix sparsity patterns 134
Problem 4.4: Perform symbolic finite element computations 134
Problem 4.5: Approximate a steep function by P1 and P2 elements 134
Problem 4.6: Approximate a steep function by P3 and P4 elements 135
Exercise 4.7: Investigate the approximation error in finite elements 135
Problem 4.8: Approximate a step function by finite elements 136
Exercise 4.9: 2D approximation with orthogonal functions 136
Exercise 4.10: Use the Trapezoidal rule and P1 elements 137
Exercise 4.11: Compare P1 elements and interpolation 137

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

xxii List of Exercises and Problems

Exercise 4.12: Implement 3D computations with global basis
functions . 138

Exercise 4.13: Use Simpson’s rule and P2 elements 138
Exercise 4.14: Make a 3D code for Lagrange elements of arbitrary

order . 138
Exercise 5.1: Refactor functions into a more general class 180
Exercise 5.2: Compute the deflection of a cable with sine functions 180
Exercise 5.3: Compute the deflection of a cable with power

functions . 182
Exercise 5.4: Check integration by parts . 182
Exercise 6.1: Compute the deflection of a cable with 2 P1 elements 240
Exercise 6.2: Compute the deflection of a cable with 1 P2 element 241
Exercise 6.3: Compute the deflection of a cable with a step load . 241
Exercise 6.4: Compute with a non-uniform mesh 242
Problem 6.5: Solve a 1D finite element problem by hand 242
Exercise 6.6: Investigate exact finite element solutions 243
Exercise 6.7: Compare finite elements and differences for a radially

symmetric Poisson equation 243
Exercise 6.8: Compute with variable coefficients and P1 elements

by hand . 244
Exercise 6.9: Solve a 2D Poisson equation using polynomials and

sines . 244
Exercise 6.10: Solve a 3D Laplace problem with FEniCS 245
Exercise 6.11: Solve a 1D Laplace problem with FEniCS 245
Exercise 7.1: Analyze a Crank-Nicolson scheme for the diffusion

equation . 275
Problem 8.1: Estimate order of convergence for the Cooling law . 300
Problem 8.2: Estimate order of convergence for the Cooling law . 300
Problem 10.1: Determine if equations are nonlinear or not 381
Exercise 10.2: Derive and investigate a generalized logistic model 382
Problem 10.3: Experience the behavior of Newton’s method 383
Problem 10.4: Compute the Jacobian of a 2× 2 system 384
Problem 10.5: Solve nonlinear equations arising from a vibration

ODE . 384
Exercise 10.6: Find the truncation error of arithmetic mean of

products . 385
Problem 10.7: Newton’s method for linear problems 386
Exercise 10.8: Discretize a 1D problem with a nonlinear coefficient 386
Exercise 10.9: Linearize a 1D problem with a nonlinear coefficient 387
Problem 10.10: Finite differences for the 1D Bratu problem 387

List of Exercises and Problems xxiii

Problem 10.11: Integrate functions of finite element expansions . . 388
Problem 10.12: Finite elements for the 1D Bratu problem 389
Exercise 10.13: Discretize a nonlinear 1D heat conduction PDE by

finite differences . 390
Exercise 10.14: Use different symbols for different approximations

of the solution . 390
Exercise 10.15: Derive Picard and Newton systems from a

variational form . 391
Exercise 10.16: Derive algebraic equations for nonlinear 1D heat

conduction . 391
Exercise 10.17: Differentiate a highly nonlinear term 392
Exercise 10.18: Crank-Nicolson for a nonlinear 3D diffusion

equation . 392
Exercise 10.19: Find the sparsity of the Jacobian 392
Problem 10.20: Investigate a 1D problem with a continuation

method . 393

Quick overview of the finite
element method 2

Fig. 2.1 Example on a complicated domain for solving PDEs.

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

2 2 Quick overview of the finite element method

The finite element method is a rich and versatile approach to construct
computational schemes to solve any partial differential equation on
any domain in any dimension. The method may at first glance appear
cumbersome and even unnatural as it relies on variational formulations
and polynomial spaces. However, the study of these somewhat abstract
concepts pays off as the finite element method provides a general recipe
for efficient and accurate simulations.

Let us start by outlining the concepts briefly. Consider the following
PDE in 2D:

−∇2u = −uxx − uyy = f,

equipped with suitable boundary conditions. A finite difference scheme
to solve the current PDE would in the simplest case be described by the
stencil

− ui−1,j − 2ui,j + ui+1,j

h2 − ui,j−1 − 2ui,j + ui,j+1

h2 = fi (2.1)

or reordered to the more recognizable

−ui−1,j − ui,j−1 + 4ui,j − ui+1,j − ui,j+1

h2 = fi . (2.2)

On a structured mesh, the stencil appears natural and is convenient
to implement. However, for a unstructured, “complicated” domain as
shown in Figure 2.1, we would need to be careful when placing points
and evaluating stencils and functions. In particular, it will be difficult to
evaluate the stencil near the dolphin in 2.1 because some points will be on
the inside and some outside on the outside of the dolphin. Both accuracy
and efficiency may easily be sacrificed by a reckless implementation.

In general, a domain like the one represented in Figure 2.1 will be
represented by a triangulation. The finite element method (and the finite
volume method which often is a special case of the finite element method)
is a methodology for creating stencils like (2.2) in a structured manner
that adapt to the underlying triangulation.

The triangulation in Figure 2.1 is a mesh that consists of cells that are
connected and defined in terms of vertices. The fundamental idea of the
finite element method is to construct a procedure to compute a stencil
on a general element and then apply this procedure to each element of
the mesh. Let us therefore denote the mesh as Ω while Ωe is the domain
of a generic element such that Ω = ∪eΩe.

2 Quick overview of the finite element method 3

This is exactly the point where the challenges of the finite element
method start and where we need some new concepts. The basic question
is: How should we create a stencil like (2.2) for a general element and a
general PDE that has the maximal accuracy and minimal computational
complexity at the current triangulation? The two basic building blocks
of the finite element method are

1. the solution is represented in terms of a polynomial expression on the
given general element, and

2. a variational formulation of the PDE where element-wise integration
enables the PDE to be transformed to a stencil.

Step 1 is, as will be explained later, conveniently represented both
implementation-wise and mathematically as a solution

u =
N∑
i=0

ciψi(x, y), (2.3)

where {ci} are the coefficients to be determined (often called the degrees
of freedom) and ψi(x, y) are prescribed polynomials. The basis functions
ψi(x, y) used to express the solution is often called the trial functions.
The next step is the variational formulation. This step may seem like
a magic trick or a cumbersome mathematical exercise at first glance.
We take the PDE and multiply by a function v (usually called the test
function) and integrate over an element Ωe and obtain the expression∫

Ωe

−∇2u v dx =
∫
Ωe

f v dx (2.4)

A perfectly natural question at this point is: Why multiply with a test
function v? The simple answer is that there are N + 1 unknowns that
need to be determined in u in (2.3) and for this we need N + 1 equations.
The equations are obtained by using N + 1 different test functions which
when used in (2.5) give rise to N + 1 linearly independent equations.

While (2.4) is a variational formulation of our PDE problem, it is not
the most common form. It is common to re-write∫

Ωe

−∇2u v dx (2.5)

to weaken the requirement of the polynomial space used for the trial
functions (that here needs to be twice differentiable) and write this term
in its corresponding weak form. That is, the term is rewritten in terms

4 2 Quick overview of the finite element method

of first-derivatives only (of both the trial and the test function) with the
aid of Gauss-Green’s lemma:∫

Ωe

−∇2u v dx =
∫
Ωe

∇u · ∇v dx−
∫
∂Ωe

∂u

∂n
v dS (2.6)

The reasons behind this alternative formulation are rather mathematical
and will not be a major subject of this book as they are well described
elsewhere. In fact, a precise explanation would need tools from functional
analysis.

With the above rewrite and assuming now that the boundary term
vanishes due to boundary conditions (why this is possible will be dealt
with in detail later in this book) the stencil, corresponding to (2.2), is
represented by ∫

Ωe

∇u · ∇v dx

where u is called the trial function, v is called a test function, and Ω
is an element of a triangulated mesh. The idea of software like FEniCS
is that this piece of mathematics can be directly expressed in terms of
Python code as

mesh = Mesh("some_file")
V = FunctionSpace(mesh, "some polynomial")
u = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(u), grad(v))*dx

The methodology and code in this example is not tied to a particular
equation, except the formula for a, holding the derivatives of our sample
PDE, but any other PDE terms could be expressed via u, v, grad, and
other symbolic operators in this line of code. In fact, finite element
packages like FEniCS are typically structured as general toolboxes that
can be adapted to any PDE as soon as the derivation of variational
formulations is mastered. The main obstacle here for a novice FEM user
is then to understand the concept of trial functions and test functions
realized in terms of polynomial spaces.

Hence, a finite element formulation (or a weak formulation) of the
Poisson problem that works on any mesh Ω can be written in terms of
solving the problem: ∫

Ω
∇u · ∇vd dx =

∫
Ω
fv dx .

2 Quick overview of the finite element method 5

By varying the trial and test spaces we obtain different stencils, some of
which will be identical to finite difference schemes on particular meshes.
We will now show a complete FEniCS program to illustrate how a typical
finite element code may be structured

mesh = Mesh("some_file")
V = FunctionSpace(mesh, "some polynomial")
u = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(u), grad(v))*dx
L = f*v*dx

bc = DirichletBC(V, "some_function", "some_domain")
solution = Function(V) # unknown FEM function
solve(a == L, solution, bc)
plot(solution)

While the finite element method is versatile and may be adapted
to any PDE on any domain in any dimension, the different methods
that are derived by using different trial and test functions may vary
significantly in terms of accuracy and efficiency. In fact, a bad choice of
polynomial space may in some cases lead to a completely wrong result.
This is particularly the case for complicated PDEs. For this reason, it
is dangerous to regard the method as a black box and not do proper
verification of the method for a particular application.

In this book we will put focus on verification in the sense that we
provide the reader with explicit calculations as well as demonstrations of
how such computations can be performed by using symbolic or numerical
calculations to control the various parts of the computational framework.
In our view, there are three important tests that should be frequently
employed during verification:

1. reducing the model problem to 1D and carefully check the calculations
involved in the variational formulation on a small 1D mesh

2. perform the calculation involved on one general or random element
3. test whether convergences is obtained and to what order the method

converge by refining the mesh

The two first tasks here should ideally be performed by independent
calculations outside the framework used for the simulations. In our view
sympy is a convenient tool that can be used to assist hand calculations.

So far, we have outlined how the finite element method handles deriva-
tives in a PDE, but we also had a right-hand side function f . This term

6 2 Quick overview of the finite element method

is multiplied by the test function v as well, such that the entire Poisson
equation is transformed to∫

Ω
∇u · ∇vd dx =

∫
Ω
fv dx .

This statement is assumed valid for all test functions v in some function
space V of polynomials. The right-hand side expression is coded in
FEniCS as

L = f*v*dx

and the problem is then solved by the statements

u = Function(V) # unknown FEM function
solve(a == L, u, bc)

where bc holds information about boundary conditions. This information
is connected to information about the triangulation, the mesh. Assuming
u = 0 on the boundary, we can in FEniCS generate a triangular mesh
over a rectangular domain [−1,−1]× [−1, 1] as follows:

mesh = RectangleMesh(Point(-1, -1), Point(1, 1), 10, 10)
bc = DirichletBC(V, 0, ’on_boundary’)

Mathematically, the finite element method transforms our PDE to a
sparse linear system. The solve step performs two tasks: construction of
the linear system based on the given information about the domain and
its elements, and then solution of the linear system by either an iterative
or direct method.

We are now in a position to summarize all the parts of a FEniCS
program that solves the Poisson equation by the finite element method:

from fenics import *
mesh = RectangleMesh(Point(-1, -1), Point(1, 1), 10, 10)
V = FunctionSpace(mesh, ’P’, 2) # quadratic polynomials
bc = DirichletBC(V, 0, ’on_boundary’)
u = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(u), grad(v))*dx
L = f*v*dx
u = Function(V) # unknown FEM function to be computed
solve(a == L, u, bc)
vtkfile = File(’poisson.pvd’); vtkfile << u # store solution

Solving a different PDE is a matter of changing a and L. We refer to the
FEniCS tutorial [20, 19] for lots of examples.

Although we assert here that the finite element method is a tool
that can solve any PDE problem on any domain of any complexity, the

2 Quick overview of the finite element method 7

fundamental ideas of the method are in fact even more general. We will
therefore start the book by variational methods for approximation in
general, then consider the finite element in a wide range of applications,
and finally we end up with a short description of how the solution of
linear systems also fit into this framework.

Function approximation by global
functions 3

Many successful numerical solution methods for differential equations,
including the finite element method, aim at approximating the unknown
function by a sum

u(x) ≈
N∑
i=0

ciψi(x), (3.1)

where ψi(x) are prescribed functions and c0, . . . , cN are unknown coef-
ficients to be determined. Solution methods for differential equations
utilizing (3.1) must have a principle for constructing N + 1 equations
to determine c0, . . . , cN . Then there is a machinery regarding the actual
construction of the equations for c0, . . . , cN , in a particular problem.
Finally, there is a solve phase for computing the solution c0, . . . , cN of
the N + 1 equations.

Especially in the finite element method, the machinery for construct-
ing the discrete equations to be implemented on a computer is quite
comprehensive, with many mathematical and implementational details
entering the scene at the same time. From an ease-of-learning perspective
it can therefore be wise to follow an idea of Larson and Bengzon [22]
and introduce the computational machinery for a trivial equation: u = f .
Solving this equation with f given and u of the form (3.1), means that
we seek an approximation u to f . This approximation problem has the
advantage of introducing most of the finite element toolbox, but with-
out involving demanding topics related to differential equations (e.g.,
integration by parts, boundary conditions, and coordinate mappings).

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

10 3 Function approximation by global functions

This is the reason why we shall first become familiar with finite element
approximation before addressing finite element methods for differential
equations.

First, we refresh some linear algebra concepts about approximating
vectors in vector spaces. Second, we extend these concepts to approximat-
ing functions in function spaces, using the same principles and the same
notation. We present examples on approximating functions by global
basis functions with support throughout the entire domain. That is,
the functions are in general nonzero on the entire domain. Third, we
introduce the finite element type of basis functions globally. These basis
functions will later, in 4, be used with local support (meaning that each
function is nonzero except in a small part of the domain) to enhance
stability and efficiency. We explain all the details of the computational
algorithms involving such functions. Four types of approximation prin-
ciples are covered: 1) the least squares method, 2) the L2 projection or
Galerkin method, 3) interpolation or collocation, and 4) the regression
method.

3.1 Approximation of vectors

We shall start by introducing two fundamental methods for determining
the coefficients ci in (3.1). These methods will be introduced for approxi-
mation of vectors. Using vectors in vector spaces to bring across the ideas
is believed to be more intuitive to the reader than starting directly with
functions in function spaces. The extension from vectors to functions will
be trivial as soon as the fundamental ideas are understood.

The first method of approximation is called the least squares method
and consists in finding ci such that the difference f − u, measured
in a certain norm, is minimized. That is, we aim at finding the best
approximation u to f , with the given norm as measure of “distance”. The
second method is not as intuitive: we find u such that the error f − u
is orthogonal to the space where u lies. This is known as projection, or
in the context of differential equations, the idea is also well known as
Galerkin’s method. When approximating vectors and functions, the two
methods are equivalent, but this is no longer the case when applying the
principles to differential equations.

3.1 Approximation of vectors 11

3.1.1 Approximation of planar vectors

Let f = (3, 5) be a vector in the xy plane and suppose we want to
approximate this vector by a vector aligned in the direction of another
vector that is restricted to be aligned with some vector (a, b). Figure 3.1
depicts the situation. This is the simplest approximation problem for
vectors. Nevertheless, for many readers it will be wise to refresh some
basic linear algebra by consulting a textbook. Exercise 3.1 suggests
specific tasks to regain familiarity with fundamental operations on inner
product vector spaces. Familiarity with such operations are assumed in
the forthcoming text.

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

(a,b)

(3,5)

c0(a,b)

Fig. 3.1 Approximation of a two-dimensional vector in a one-dimensional vector space.

We introduce the vector space V spanned by the vector ψ0 = (a, b):

V = span {ψ0} . (3.2)

12 3 Function approximation by global functions

We say that ψ0 is a basis vector in the space V . Our aim is to find the
vector

u = c0ψ0 ∈ V (3.3)

which best approximates the given vector f = (3, 5). A reasonable
criterion for a best approximation could be to minimize the length of the
difference between the approximate u and the given f . The difference,
or error e = f − u, has its length given by the norm

||e|| = (e, e) 1
2 ,

where (e, e) is the inner product of e and itself. The inner product, also
called scalar product or dot product, of two vectors u = (u0, u1) and
v = (v0, v1) is defined as

(u,v) = u0v0 + u1v1 . (3.4)

Remark. We should point out that we use the notation (·, ·) for two
different things: (a, b) for scalar quantities a and b means the vector
starting at the origin and ending in the point (a, b), while (u,v) with
vectors u and v means the inner product of these vectors. Since vectors
are here written in boldface font there should be no confusion. We
may add that the norm associated with this inner product is the usual
Euclidean length of a vector, i.e.,

‖u‖ =
√

(u,u) =
√
u2

0 + u2
1

The least squares method. We now want to determine the u that
minimizes ||e||, that is we want to compute the optimal c0 in (3.3). The
algebra is simplified if we minimize the square of the norm, ||e||2 = (e, e),
instead of the norm itself. Define the function

E(c0) = (e, e) = (f − c0ψ0,f − c0ψ0) . (3.5)

We can rewrite the expressions of the right-hand side in a more convenient
form for further use:

E(c0) = (f ,f)− 2c0(f ,ψ0) + c2
0(ψ0,ψ0) . (3.6)

This rewrite results from using the following fundamental rules for inner
product spaces:

3.1 Approximation of vectors 13

(αu,v) = α(u,v), α ∈ R, (3.7)

(u+ v,w) = (u,w) + (v,w), (3.8)

(u,v) = (v,u) . (3.9)

Minimizing E(c0) implies finding c0 such that

∂E

∂c0
= 0 .

It turns out that E has one unique minimum and no maximum point.
Now, when differentiating (3.6) with respect to c0, note that none of the
inner product expressions depend on c0, so we simply get

∂E

∂c0
= −2(f ,ψ0) + 2c0(ψ0,ψ0) . (3.10)

Setting the above expression equal to zero and solving for c0 gives

c0 = (f ,ψ0)
(ψ0,ψ0) , (3.11)

which in the present case, with ψ0 = (a, b), results in

c0 = 3a+ 5b
a2 + b2 . (3.12)

For later, it is worth mentioning that setting the key equation (3.10)
to zero and ordering the terms lead to

(f − c0ψ0,ψ0) = 0,

or

(e,ψ0) = 0 . (3.13)

This implication of minimizing E is an important result that we shall
make much use of.

The projection method. We shall now show that minimizing ||e||2
implies that e is orthogonal to any vector v in the space V . This result is
visually quite clear from Figure 3.1 (think of other vectors along the line
(a, b): all of them will lead to a larger distance between the approximation

14 3 Function approximation by global functions

and f). Then we see mathematically that e is orthogonal to any vector
v in the space V and we may express any v ∈ V as v = sψ0 for any
scalar parameter s (recall that two vectors are orthogonal when their
inner product vanishes). Then we calculate the inner product

(e, sψ0) = (f − c0ψ0, sψ0)
= (f , sψ0)− (c0ψ0, sψ0)
= s(f ,ψ0)− sc0(ψ0,ψ0)

= s(f ,ψ0)− s (f ,ψ0)
(ψ0,ψ0)(ψ0,ψ0)

= s ((f ,ψ0)− (f ,ψ0))
= 0 .

Therefore, instead of minimizing the square of the norm, we could demand
that e is orthogonal to any vector in V , which in our present simple case
amounts to a single vector only. This method is known as projection.
(The approach can also be referred to as a Galerkin method as explained
at the end of Section 3.1.2.)

Mathematically, the projection method is stated by the equation

(e,v) = 0, ∀v ∈ V . (3.14)

An arbitrary v ∈ V can be expressed as sψ0, s ∈ R, and therefore (3.14)
implies

(e, sψ0) = s(e,ψ0) = 0,

which means that the error must be orthogonal to the basis vector in the
space V :

(e,ψ0) = 0 or (f − c0ψ0,ψ0) = 0,

which is what we found in (3.13) from the least squares computations.

3.1.2 Approximation of general vectors

Let us generalize the vector approximation from the previous section
to vectors in spaces with arbitrary dimension. Given some vector f , we
want to find the best approximation to this vector in the space

3.1 Approximation of vectors 15

V = span {ψ0, . . . ,ψN} .

We assume that the space has dimension N + 1 and that basis vectors
ψ0, . . . ,ψN are linearly independent so that none of them are redundant.
Any vector u ∈ V can then be written as a linear combination of the
basis vectors, i.e.,

u =
N∑
j=0

cjψj ,

where cj ∈ R are scalar coefficients to be determined.

The least squares method. Now we want to find c0, . . . , cN , such that
u is the best approximation to f in the sense that the distance (error)
e = f − u is minimized. Again, we define the squared distance as a
function of the free parameters c0, . . . , cN ,

E(c0, . . . , cN) = (e, e) = (f −
∑
j

cjψj ,f −
∑
j

cjψj)

= (f ,f)− 2
N∑
j=0

cj(f ,ψj) +
N∑
p=0

N∑
q=0

cpcq(ψp,ψq) . (3.15)

Minimizing this E with respect to the independent variables c0, . . . , cN
is obtained by requiring

∂E

∂ci
= 0, i = 0, . . . , N .

The first term in (3.15) is independent of ci, so its derivative vanishes.
The second term in (3.15) is differentiated as follows:

∂

∂ci
2

N∑
j=0

cj(f ,ψj) = 2(f ,ψi), (3.16)

since the expression to be differentiated is a sum and only one term,
ci(f ,ψi), contains ci (this term is linear in ci). To understand this
differentiation in detail, write out the sum specifically for, e.g, N = 3
and i = 1.

The last term in (3.15) is more tedious to differentiate. It can be wise
to write out the double sum for N = 1 and perform differentiation with
respect to c0 and c1 to see the structure of the expression. Thereafter,
one can generalize to an arbitrary N and observe that

16 3 Function approximation by global functions

∂

∂ci
cpcq =


0, if p 6= i and q 6= i,
cq, if p = i and q 6= i,
cp, if p 6= i and q = i,
2ci, if p = q = i .

(3.17)

Then

∂

∂ci

N∑
p=0

N∑
q=0

cpcq(ψp,ψq) =
N∑

p=0,p 6=i
cp(ψp,ψi)+

N∑
q=0,q 6=i

cq(ψi,ψq)+2ci(ψi,ψi) .

Since each of the two sums is missing the term ci(ψi,ψi), we may split
the very last term in two, to get exactly that “missing” term for each
sum. This idea allows us to write

∂

∂ci

N∑
p=0

N∑
q=0

cpcq(ψp,ψq) = 2
N∑
j=0

ci(ψj ,ψi) . (3.18)

It then follows that setting

∂E

∂ci
= 0, i = 0, . . . , N,

implies

−2(f ,ψi) + 2
N∑
j=0

ci(ψj ,ψi) = 0, i = 0, . . . , N .

Moving the first term to the right-hand side shows that the equation is
actually a linear system for the unknown parameters c0, . . . , cN :

N∑
j=0

Ai,jcj = bi, i = 0, . . . , N, (3.19)

where

Ai,j = (ψi,ψj), (3.20)
bi = (ψi,f) . (3.21)

We have changed the order of the two vectors in the inner product
according to (3.9):

3.1 Approximation of vectors 17

Ai,j = (ψj ,ψi) = (ψi,ψj),

simply because the sequence i-j looks more aesthetic.

The Galerkin or projection method. In analogy with the “one-
dimensional” example in Section 3.1.1, it holds also here in the general
case that minimizing the distance (error) e is equivalent to demanding
that e is orthogonal to all v ∈ V :

(e,v) = 0, ∀v ∈ V . (3.22)

Since any v ∈ V can be written as v =
∑N
i=0 ciψi, the statement (3.22)

is equivalent to saying that

(e,
N∑
i=0

ciψi) = 0,

for any choice of coefficients c0, . . . , cN . The latter equation can be
rewritten as

N∑
i=0

ci(e,ψi) = 0 .

If this is to hold for arbitrary values of c0, . . . , cN , we must require that
each term in the sum vanishes, which means that

(e,ψi) = 0, i = 0, . . . , N . (3.23)

These N + 1 equations result in the same linear system as (3.19):

(f −
N∑
j=0

cjψj ,ψi) = (f ,ψi)−
N∑
j=0

(ψi,ψj)cj = 0,

and hence

N∑
j=0

(ψi,ψj)cj = (f ,ψi), i = 0, . . . , N .

So, instead of differentiating the E(c0, . . . , cN) function, we could simply
use (3.22) as the principle for determining c0, . . . , cN , resulting in the
N + 1 equations (3.23).

The names least squares method or least squares approximation are
natural since the calculations consists of minimizing ||e||2, and ||e||2 is a

18 3 Function approximation by global functions

sum of squares of differences between the components in f and u. We
find u such that this sum of squares is minimized.

The principle (3.22), or the equivalent form (3.23), is known as pro-
jection. Almost the same mathematical idea was used by the Russian
mathematician Boris Galerkin to solve differential equations, resulting in
what is widely known as Galerkin’s method.

3.2 Approximation principles

Let V be a function space spanned by a set of basis functions ψ0, . . . , ψN ,

V = span {ψ0, . . . , ψN},

such that any function u ∈ V can be written as a linear combination of
the basis functions:

u =
∑
j∈Is

cjψj . (3.24)

That is, we consider functions as vectors in a vector space – a so-called
function space – and we have a finite set of basis functions that span the
space just as basis vectors or unit vectors span a vector space.

The index set Is is defined as Is = {0, . . . , N} and is from now on
used both for compact notation and for flexibility in the numbering of
elements in sequences.

For now, in this introduction, we shall look at functions of a single
variable x: u = u(x), ψj = ψj(x), j ∈ Is. Later, we will almost trivially
extend the mathematical details to functions of two- or three-dimensional
physical spaces. The approximation (3.24) is typically used to discretize
a problem in space. Other methods, most notably finite differences, are
common for time discretization, although the form (3.24) can be used in
time as well.

3.2.1 The least squares method

Given a function f(x), how can we determine its best approximation
u(x) ∈ V ? A natural starting point is to apply the same reasoning as we
did for vectors in Section 3.1.2. That is, we minimize the distance between
u and f . However, this requires a norm for measuring distances, and a

http://en.wikipedia.org/wiki/Boris_Galerkin

3.2 Approximation principles 19

norm is most conveniently defined through an inner product. Viewing a
function as a vector of infinitely many point values, one for each value
of x, the inner product of two arbitrary functions f(x) and g(x) could
intuitively be defined as the usual summation of pairwise “components”
(values), with summation replaced by integration:

(f, g) =
∫
f(x)g(x) dx .

To fix the integration domain, we let f(x) and ψi(x) be defined for a
domain Ω ⊂ R. The inner product of two functions f(x) and g(x) is then

(f, g) =
∫
Ω
f(x)g(x) dx . (3.25)

The distance between f and any function u ∈ V is simply f − u, and
the squared norm of this distance is

E = (f(x)−
∑
j∈Is

cjψj(x), f(x)−
∑
j∈Is

cjψj(x)) . (3.26)

Note the analogy with (3.15): the given function f plays the role of the
given vector f , and the basis function ψi plays the role of the basis vector
ψi. We can rewrite (3.26), through similar steps as used for the result
(3.15), leading to

E(ci, . . . , cN) = (f, f)− 2
∑
j∈Is

cj(f, ψi) +
∑
p∈Is

∑
q∈Is

cpcq(ψp, ψq) . (3.27)

Minimizing this function of N + 1 scalar variables {ci}i∈Is , requires
differentiation with respect to ci, for all i ∈ Is. The resulting equations
are very similar to those we had in the vector case, and we hence end
up with a linear system of the form (3.19), with basically the same
expressions:

Ai,j = (ψi, ψj), (3.28)
bi = (f, ψi) . (3.29)

The only difference from (3.19) is that the inner product is defined in
terms of integration rather than summation.

20 3 Function approximation by global functions

3.2.2 The projection (or Galerkin) method

As in Section 3.1.2, the minimization of (e, e) is equivalent to

(e, v) = 0, ∀v ∈ V . (3.30)

This is known as a projection of a function f onto the subspace V . We
may also call it a Galerkin method for approximating functions. Using
the same reasoning as in (3.22)-(3.23), it follows that (3.30) is equivalent
to

(e, ψi) = 0, i ∈ Is . (3.31)

Inserting e = f − u in this equation and ordering terms, as in the multi-
dimensional vector case, we end up with a linear system with a coefficient
matrix (3.28) and right-hand side vector (3.29).

Whether we work with vectors in the plane, general vectors, or func-
tions in function spaces, the least squares principle and the projection or
Galerkin method are equivalent.

3.2.3 Example of linear approximation

Let us apply the theory in the previous section to a simple problem:
given a parabola f(x) = 10(x− 1)2 − 1 for x ∈ Ω = [1, 2], find the best
approximation u(x) in the space of all linear functions:

V = span {1, x} .

With our notation, ψ0(x) = 1, ψ1(x) = x, and N = 1. We seek

u = c0ψ0(x) + c1ψ1(x) = c0 + c1x,

where c0 and c1 are found by solving a 2×2 linear system. The coefficient
matrix has elements

3.2 Approximation principles 21

A0,0 = (ψ0, ψ0) =
∫ 2

1
1 · 1 dx = 1, (3.32)

A0,1 = (ψ0, ψ1) =
∫ 2

1
1 · x dx = 3/2, (3.33)

A1,0 = A0,1 = 3/2, (3.34)

A1,1 = (ψ1, ψ1) =
∫ 2

1
x · x dx = 7/3 . (3.35)

The corresponding right-hand side is

b1 = (f, ψ0) =
∫ 2

1
(10(x− 1)2 − 1) · 1 dx = 7/3, (3.36)

b2 = (f, ψ1) =
∫ 2

1
(10(x− 1)2 − 1) · x dx = 13/3 . (3.37)

Solving the linear system results in

c0 = −38/3, c1 = 10, (3.38)

and consequently

u(x) = 10x− 38
3 . (3.39)

Figure 3.2 displays the parabola and its best approximation in the space
of all linear functions.

3.2.4 Implementation of the least squares method

Symbolic integration. The linear system can be computed either sym-
bolically or numerically (a numerical integration rule is needed in the
latter case). Let us first compute the system and its solution symbolically,
i.e., using classical “pen and paper” mathematics with symbols. The
Python package sympy can greatly help with this type of mathematics,
and will therefore be frequently used in this text. Some basic familiarity
with sympy is assumed, typically symbols, integrate, diff, expand,
and simplify. Much can be learned by studying the many applications
of sympy that will be presented.

Below is a function for symbolic computation of the linear system,
where f(x) is given as a sympy expression f involving the symbol x, psi

22 3 Function approximation by global functions

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact

Fig. 3.2 Best approximation of a parabola by a straight line.

is a list of expressions for {ψi}i∈Is , and Omega is a 2-tuple/list holding
the limits of the domain Ω:

import sympy as sym

def least_squares(f, psi, Omega):
N = len(psi) - 1
A = sym.zeros(N+1, N+1)
b = sym.zeros(N+1, 1)
x = sym.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
A[i,j] = sym.integrate(psi[i]*psi[j],

(x, Omega[0], Omega[1]))
A[j,i] = A[i,j]

b[i,0] = sym.integrate(psi[i]*f, (x, Omega[0], Omega[1]))
c = A.LUsolve(b)
Note: c is a sympy Matrix object, solution is in c[:,0]
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i]
return u, c

Observe that we exploit the symmetry of the coefficient matrix: only
the upper triangular part is computed. Symbolic integration, also in

3.2 Approximation principles 23

sympy, is often time consuming, and (roughly) halving the work has
noticeable effect on the waiting time for the computations to finish.

Notice
We remark that the symbols in sympy are created and stored in
a symbol factory that is indexed by the expression used in the
construction and that repeated constructions from the same expres-
sion will not create new objects. The following code illustrates the
behavior of the symbol factory:

>>> from sympy import *
>>> x0 = Symbol("x")
>>> x1 = Symbol("x")
>>> id(x0) ==id(x1)
True
>>> a0 = 3.0
>>> a1 = 3.0
>>> id(a0) ==id(a1)
False

Fall back on numerical integration. Obviously, sympy may fail to
successfully integrate

∫
Ω ψiψj dx, and especially

∫
Ω fψi dx, symbolically.

Therefore, we should extend the least_squares function such that it falls
back on numerical integration if the symbolic integration is unsuccessful.
In the latter case, the returned value from sympy’s integrate function
is an object of type Integral. We can test on this type and utilize
the mpmath module to perform numerical integration of high precision.
Even when sympy manages to integrate symbolically, it can take an
undesirably long time. We therefore include an argument symbolic that
governs whether or not to try symbolic integration. Here is a complete
and improved version of the previous function least_squares:

def least_squares(f, psi, Omega, symbolic=True):
N = len(psi) - 1
A = sym.zeros(N+1, N+1)
b = sym.zeros(N+1, 1)
x = sym.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = psi[i]*psi[j]
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sym.Integral):

Could not integrate symbolically, use numerical int.

24 3 Function approximation by global functions

integrand = sym.lambdify([x], integrand, ’mpmath’)
I = mpmath.quad(integrand, [Omega[0], Omega[1]])

A[i,j] = A[j,i] = I

integrand = psi[i]*f
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sym.Integral):

Could not integrate symbolically, use numerical int.
integrand = sym.lambdify([x], integrand, ’mpmath’)
I = mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i,0] = I
if symbolic:

c = A.LUsolve(b) # symbolic solve
c is a sympy Matrix object, numbers are in c[i,0]
c = [sym.simplify(c[i,0]) for i in range(c.shape[0])]

else:
c = mpmath.lu_solve(A, b) # numerical solve
c = [c[i,0] for i in range(c.rows)]

u = sum(c[i]*psi[i] for i in range(len(psi)))
return u, c

The function is found in the file approx1D.py.

Plotting the approximation. Comparing the given f(x) and the approx-
imate u(x) visually is done with the following function, which utilizes
sympy’s lambdify tool to convert a sympy expression to a Python func-
tion for numerical computations:

def comparison_plot(f, u, Omega, filename=’tmp.pdf’):
x = sym.Symbol(’x’)
f = sym.lambdify([x], f, modules="numpy")
u = sym.lambdify([x], u, modules="numpy")
resolution = 401 # no of points in plot
xcoor = linspace(Omega[0], Omega[1], resolution)
exact = f(xcoor)
approx = u(xcoor)
plot(xcoor, approx)
hold(’on’)
plot(xcoor, exact)
legend([’approximation’, ’exact’])
savefig(filename)

The modules=’numpy’ argument to lambdify is important if there are
mathematical functions, such as sin or exp in the symbolic expressions
in f or u, and these mathematical functions are to be used with vector
arguments, like xcoor above.

Both the least_squares and comparison_plot functions are found
in the file approx1D.py. The comparison_plot function in this file is
more advanced and flexible than the simplistic version shown above. The

http://tinyurl.com/znpudbt/approx1D.py

3.2 Approximation principles 25

file ex_approx1D.py applies the approx1D module to accomplish the
forthcoming examples.

Notice
We remind the reader that the code examples can be found in
a tarball at http://hplgit.github.io/fem-book/doc/web/. The
following command shows a useful way to search for code

Terminal> find . -name ’*.py’ -exec grep least_squares {} \; -print

Here ’.’ specifies the directory for the search, -name ’*.py’ that
files with suffix *.py should be searched through while

-exec grep least_squares {} \; -print

means that all lines containing the text least_squares should be
printed to the screen.

3.2.5 Perfect approximation
Let us use the code above to recompute the problem from Section 3.2.3
where we want to approximate a parabola. What happens if we add
an element x2 to the set of basis functions and test what the best
approximation is if V is the space of all parabolic functions? The answer
is quickly found by running

>>> from approx1D import *
>>> x = sym.Symbol(’x’)
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x, x**2], Omega=[1, 2])
>>> print(u)
10*x**2 - 20*x + 9
>>> print(sym.expand(f))
10*x**2 - 20*x + 9

Now, what if we use ψi(x) = xi for i = 0, 1, . . . , N = 40? The output
from least_squares gives ci = 0 for i > 2, which means that the method
finds the perfect approximation.

In fact, we have a general result that if f ∈ V , the least squares and
projection/Galerkin methods compute the exact solution u = f . The
proof is straightforward: if f ∈ V , f can be expanded in terms of the
basis functions, f =

∑
j∈Is djψj , for some coefficients {dj}j∈Is , and the

right-hand side then has entries

http://hplgit.github.io/fem-book/doc/web/

26 3 Function approximation by global functions

bi = (f, ψi) =
∑
j∈Is

dj(ψj , ψi) =
∑
j∈Is

djAi,j .

The linear system
∑
j Ai,jcj = bi, i ∈ Is, is then∑

j∈Is
cjAi,j =

∑
j∈Is

djAi,j , i ∈ Is,

which implies that ci = di for i ∈ Is.

3.2.6 The regression method

So far, the function to be approximated has been known in terms of
a formula f(x). Very often in applications, no formula is known, but
the function value is known at a set of points. If we use N + 1 basis
functions and know exactly N + 1 function values, we can determine
the coefficients ci by interpolation as explained in Section 3.4.1. The
approximating function will then equal the f values at the points where
the f values are sampled.

However, one normally has f sampled at a lot of points, here denoted by
x0, x1, . . . , xm, and we assumem� N . What can we do then to determine
the coefficients? The answer is to find a least squares approximation. The
resulting method is called regression and is well known from statistics
when fitting a simple (usually polynomial) function to a set of data
points.

Overdetermined equation system. Intuitively, we would demand u to
equal f at all the data points xi, i0, 1, . . . ,m,

u(xi) =
∑
j∈Is

cjψj(xi) = f(xi), i = 0, 1, . . . ,m . (3.40)

The fundamental problem here is that we have more equations than
unknowns since there are N + 1 unknowns and m+ 1 > N + 1 equations.
Such a system of equations is called an overdetermined system. We can
write it in matrix form as∑

j∈Is
Ai,jcj = bi, i = 0, 1, . . . ,m, (3.41)

with the coefficient matrix and right-hand side vector given by

3.2 Approximation principles 27

Ai,j = ψj(xi), (3.42)
bi = f(xi) . (3.43)

Note that the matrix is a rectangular (m + 1) × (N + 1) matrix since
i = 0, . . . ,m and j = 0, . . . , N .
The normal equations derived from a least squares principle. The
least squares method is a common technique for solving overdetermined
equations systems. Let us write the overdetermined system

∑
j∈Is Ai,jcj =

bi more compactly in matrix form as Ac = b. Since we have more equations
than unknowns, it is (in general) impossible to find a vector c that fulfills
Ac = b. The best we can do is to make the residual r = b− Ac as small
as possible. That is, we can find c such that it minimizes the Euclidean
norm of r: ||r||. The algebra simplifies significantly by minimizing ||r||2
instead. This principle corresponds to a least squares method.

The i-th component of r reads ri = bi −
∑
j Ai,jcj , so ||r||2 =

∑
i r

2
i .

Minimizing ||r||2 with respect to the unknowns c0, . . . , cN implies that

∂

∂ck
||r||2 = 0, k = 0, . . . , N, (3.44)

which leads to

∂

∂ck

∑
i

r2
i =

∑
i

2ri
∂ri
∂ck

=
∑
i

2ri
∂

∂ck
(bi−

∑
j

Ai,jcj) = 2
∑
i

ri(−Ai,k) = 0 .

By inserting ri = bi −
∑
j Ai,jcj in the last expression we get

∑
i

bi −∑
j

Ai,jcj

 (−Ai,k) = −
∑
i

biAi,k +
∑
j

(
∑
i

Ai,jAi,k)cj = 0 .

Introducing the transpose of A, AT , we know that ATi,j = Aj,i. Therefore,
the expression

∑
iAi,jAi,k can be written as

∑
iA

T
k,iAi,j and be recognized

as the formula for the matrix-matrix product ATA. Also,
∑
i biAi,k can

be written
∑
iA

T
k,ibi and recognized as the matrix-vector product AT b.

These observations imply that (3.44) is equivalent to the linear system

∑
j

(
∑
i

ATk,iAi,j)cj =
∑
j

(ATA)k,jcj =
∑
i

ATk,ibi = (AT b)k, k = 0, . . . , N,

(3.45)

28 3 Function approximation by global functions

or in matrix form,

ATAc = AT b . (3.46)

The equation system (3.45) or (3.46) are known as the normal equations.
With A as an (m+1)×(N+1) matrix, ATA becomes an (N+1)×(N+1)
matrix, and AT b becomes a vector of length N + 1. Often, m� N , so
ATA is much smaller than A.

Many prefer to write the linear system (3.45) in the standard form∑
j Bi,jcj = di, i = 0, . . . , N . We can easily do so by exchanging

the i and k indices (i ↔ k),
∑
iA

T
k,iAi,j =

∑
k A

T
i,kAk,j , and setting

Bi,j =
∑
k A

T
i,kAk,j . Similarly, we exchange i and k in the right-hand side

expression and get
∑
k A

T
i,kbk = di. Expressing Bi,j and di in terms of

the ψi and xi, using (3.42) and (3.43), we end up with the formulas

Bi,j =
∑
k

ATi,kAk,j =
∑
k

Ak,iAk,j =
m∑
k=0

ψi(xk)ψj(xk), (3.47)

di =
∑
k

ATi,kbk =
∑
k

Ak,ibk =
m∑
k=0

ψi(xk)f(xk) (3.48)

Implementation. The following function defines the matrix entries Bi,j
according to (3.47) and the right-hand side entries di according (3.48).
Thereafter, it solves the linear system

∑
j Bi,jcj = di. The input data f

and psi hold f(x) and ψi, i = 0, . . . , N , as a symbolic expression, but
since m is thought to be much larger than N , and there are loops from 0
to m, we use numerical computing to speed up the computations.

def regression(f, psi, points):
N = len(psi) - 1
m = len(points)
Use numpy arrays and numerical computing
B = np.zeros((N+1, N+1))
d = np.zeros(N+1)
Wrap psi and f in Python functions rather than expressions
so that we can evaluate psi at points[i]
x = sym.Symbol(’x’)
psi_sym = psi # save symbolic expression
psi = [sym.lambdify([x], psi[i]) for i in range(N+1)]
f = sym.lambdify([x], f)
for i in range(N+1):

for j in range(N+1):
B[i,j] = 0
for k in range(m+1):

B[i,j] += psi[i](points[k])*psi[j](points[k])

3.2 Approximation principles 29

d[i] = 0
for k in range(m+1):

d[i] += psi[i](points[k])*f(points[k])
c = np.linalg.solve(B, d)
u = sum(c[i]*psi_sym[i] for i in range(N+1))
return u, c

Example. We repeat the computational example from Section 3.4.1, but
this time with many more points. The parabola f(x) = 10(x− 1)2 − 1 is
to be approximated by a linear function on Ω = [1, 2]. We divide Ω into
m+ 2 intervals and use the inner m+ 1 points:

import sympy as sym
x = sym.Symbol(’x’)
f = 10*(x-1)**2 - 1
psi = [1, x]
Omega = [1, 2]
m_values = [2-1, 8-1, 64-1]
Create m+3 points and use the inner m+1 points
for m in m_values:

points = np.linspace(Omega[0], Omega[1], m+3)[1:-1]
u, c = regression(f, psi, points)
comparison_plot(

f, u, Omega,
filename=’parabola_by_regression_%d’ % (m+1),
points=points,
points_legend=’%d interpolation points’ % (m+1),
legend_loc=’upper left’)

Figure 3.3 shows results for m+ 1 = 2 (left), m+ 1 = 8 (middle), and
m + 1 = 64 (right) data points. The approximating function is not so
sensitive to the number of points as long as they covers a significant part
of the domain (the first 2 point approximation puts too much weight
on the center, while the 8 point approximation cover almost the entire
domain and produces a good approximation which is barely improved
with 64 points):

u(x) = 10x− 13.2, 2 points
u(x) = 10x− 12.7, 8 points
u(x) = 10x− 12.7, 64 points

To explicitly make the link to classical regression in statistics, we
consider f = 10(x−1)2−1+ε, where ε is a random, normally distributed
variable. The goal in classical regression is to find the straight line that
best fits the data points (in a least squares sense). The only difference
from the previous setup, is that the f(xi) values are based on a function

30 3 Function approximation by global functions

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
2 interpolation points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
8 interpolation points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
32 interpolation points

Fig. 3.3 Approximation of a parabola by a regression method with varying number of
points.

formula, here 10(x− 1)2 − 1, plus normally distributed noise. Figure 3.4
shows three sets of data points, along with the original f(x) function
without noise, and the straight line that is a least squares approximation
to the data points.

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
4 data points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

6

4

2

0

2

4

6

8

10

approximation
exact
8 data points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact
32 data points

Fig. 3.4 Approximation of a parabola with noise by a straight line.

We can fit a parabola instead of a straight line, as done in Figure 3.5.
When m becomes large, the fitted parabola and the original parabola
without noise become very close.

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

2

0

2

4

6

8

10

12

14
approximation
exact
4 data points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

2

0

2

4

6

8

10

12
approximation
exact
8 data points

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

2

0

2

4

6

8

10
approximation
exact
32 data points

Fig. 3.5 Approximation of a parabola with noise by a parabola.

The regression method is not much used for approximating differential
equations or a given function, but is central in uncertainty quantification
methods such as polynomial chaos expansions.

3.3 Orthogonal basis functions 31

The residual: an indirect but computationally cheap mea-
sure of the error
When attempting to solve a system Ac = b, we may question how
far off a start vector or a current approximation c0 is. The error
is clearly the difference between c and c0, e = c− c0, but since we
do not know the true solution c we are unable to assess the error.
However, the vector c0 is the solution of the an alternative problem
Ac0 = b0. If the input, i.e., the right-hand sides b0 and b are close
to each other then we expect the output of a solution process c and
c0 to be close to each other. Furthermore, while b0 in principle is
unknown, it is easily computable as b0 = Ac0 and does not require
inversion of A. The vector b− b0 is the so-called residual r defined
by

r = b− b0 = b− Ac0 = Ac− Ac0.

Clearly, the error and the residual are related by

Ae = r.

While the computation of the error requires inversion of A, which
may be computationally expensive, the residual is easily computable
and do only require a matrix-vector product and vector additions.

3.3 Orthogonal basis functions

Approximation of a function via orthogonal functions, especially si-
nusoidal functions or orthogonal polynomials, is a very popular and
successful approach. The finite element method does not make use of
orthogonal functions, but functions that are “almost orthogonal”.

3.3.1 Ill-conditioning

For basis functions that are not orthogonal the condition number of
the matrix may create problems during the solution process due to,
for example, round-off errors as will be illustrated in the following.
The computational example in Section 3.2.5 applies the least_squares
function which invokes symbolic methods to calculate and solve the linear

32 3 Function approximation by global functions

system. The correct solution c0 = 9, c1 = −20, c2 = 10, ci = 0 for i ≥ 3 is
perfectly recovered.

Suppose we convert the matrix and right-hand side to floating-point
arrays and then solve the system using finite-precision arithmetics, which
is what one will (almost) always do in real life. This time we get aston-
ishing results! Up to about N = 7 we get a solution that is reasonably
close to the exact one. Increasing N shows that seriously wrong coeffi-
cients are computed. Below is a table showing the solution of the linear
system arising from approximating a parabola by functions of the form
u(x) = c0 + c1x+ c2x

2 + · · ·+ c10x
10. Analytically, we know that cj = 0

for j > 2, but numerically we may get cj 6= 0 for j > 2.

exact sympy numpy32 numpy64
9 9.62 5.57 8.98

-20 -23.39 -7.65 -19.93
10 17.74 -4.50 9.96
0 -9.19 4.13 -0.26
0 5.25 2.99 0.72
0 0.18 -1.21 -0.93
0 -2.48 -0.41 0.73
0 1.81 -0.013 -0.36
0 -0.66 0.08 0.11
0 0.12 0.04 -0.02
0 -0.001 -0.02 0.002

The exact value of cj , j = 0, 1, . . . , 10, appears in the first column while
the other columns correspond to results obtained by three different
methods:

• Column 2: The matrix and vector are converted to the data structure
mpmath.fp.matrix and the mpmath.fp.lu_solve function is used to
solve the system.

• Column 3: The matrix and vector are converted to numpy arrays with
data type numpy.float32 (single precision floating-point number)
and solved by the numpy.linalg.solve function.

• Column 4: As column 3, but the data type is numpy.float64 (double
precision floating-point number).

We see from the numbers in the table that double precision performs
much better than single precision. Nevertheless, when plotting all these
solutions the curves cannot be visually distinguished (!). This means that
the approximations look perfect, despite the very wrong values of the
coefficients.

3.3 Orthogonal basis functions 33

Increasing N to 12 makes the numerical solver in numpy abort with
the message: "matrix is numerically singular". A matrix has to be non-
singular to be invertible, which is a requirement when solving a linear
system. Already when the matrix is close to singular, it is ill-conditioned,
which here implies that the numerical solution algorithms are sensitive
to round-off errors and may produce (very) inaccurate results.

The reason why the coefficient matrix is nearly singular and ill-
conditioned is that our basis functions ψi(x) = xi are nearly linearly
dependent for large i. That is, xi and xi+1 are very close for i not very
small. This phenomenon is illustrated in Figure 3.6. There are 15 lines
in this figure, but only half of them are visually distinguishable. Almost
linearly dependent basis functions give rise to an ill-conditioned and
almost singular matrix. This fact can be illustrated by computing the
determinant, which is indeed very close to zero (recall that a zero deter-
minant implies a singular and non-invertible matrix): 10−65 for N = 10
and 10−92 for N = 12. Already for N = 28 the numerical determinant
computation returns a plain zero.

1.0 1.2 1.4 1.6 1.8 2.0 2.20

2000

4000

6000

8000

10000

12000

14000

16000

18000

Fig. 3.6 The 15 first basis functions xi, i = 0, . . . , 14.

On the other hand, the double precision numpy solver does run for
N = 100, resulting in answers that are not significantly worse than those
in the table above, and large powers are associated with small coefficients

34 3 Function approximation by global functions

(e.g., cj < 10−2 for 10 ≤ j ≤ 20 and cj < 10−5 for j > 20). Even for
N = 100 the approximation still lies on top of the exact curve in a plot
(!).

The conclusion is that visual inspection of the quality of the approx-
imation may not uncover fundamental numerical problems with the
computations. However, numerical analysts have studied approximations
and ill-conditioning for decades, and it is well known that the basis
{1, x, x2, x3, . . . , } is a bad basis. The best basis from a matrix condition-
ing point of view is to have orthogonal functions such that (ψi, ψj) = 0
for i 6= j. There are many known sets of orthogonal polynomials and
other functions. The functions used in the finite element method are
almost orthogonal, and this property helps to avoid problems when
solving matrix systems. Almost orthogonal is helpful, but not enough
when it comes to partial differential equations, and ill-conditioning of
the coefficient matrix is a theme when solving large-scale matrix systems
arising from finite element discretizations.

3.3.2 Fourier series

A set of sine functions is widely used for approximating functions (note
that the sines are orthogonal with respect to the L2 inner product as
can be easily verified using sympy). Let us take

V = span {sin πx, sin 2πx, . . . , sin(N + 1)πx} .

That is,

ψi(x) = sin((i+ 1)πx), i ∈ Is .

An approximation to the parabola f(x) = 10(x−1)2−1 for x ∈ Ω = [1, 2]
from Section 3.2.3 can then be computed by the least_squares function
from Section 3.2.4:

N = 3
import sympy as sym
x = sym.Symbol(’x’)
psi = [sym.sin(sym.pi*(i+1)*x) for i in range(N+1)]
f = 10*(x-1)**2 - 1
Omega = [0, 1]
u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)

3.3 Orthogonal basis functions 35

Figure 3.7 (left) shows the oscillatory approximation of
∑N
j=0 cj sin((j +

1)πx) when N = 3. Changing N to 11 improves the approximation
considerably, see Figure 3.7 (right).

0.0 0.2 0.4 0.6 0.8 1.0
x

2

0

2

4

6

8

10

approximation
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

2

0

2

4

6

8

10

approximation
exact

Fig. 3.7 Best approximation of a parabola by a sum of 3 (left) and 11 (right) sine
functions.

There is an error f(0)− u(0) = 9 at x = 0 in Figure 3.7 regardless of
how large N is, because all ψi(0) = 0 and hence u(0) = 0. We may help
the approximation to be correct at x = 0 by seeking

u(x) = f(0) +
∑
j∈Is

cjψj(x) . (3.49)

However, this adjustment introduces a new problem at x = 1 since we
now get an error f(1) − u(1) = f(1) − 0 = −1 at this point. A more
clever adjustment is to replace the f(0) term by a term that is f(0) at
x = 0 and f(1) at x = 1. A simple linear combination f(0)(1−x) +xf(1)
does the job:

u(x) = f(0)(1− x) + xf(1) +
∑
j∈Is

cjψj(x) . (3.50)

This adjustment of u alters the linear system slightly. In the general case,
we set

u(x) = B(x) +
∑
j∈Is

cjψj(x),

and the linear system becomes∑
j∈Is

(ψi, ψj)cj = (f −B,ψi), i ∈ Is .

36 3 Function approximation by global functions

The calculations can still utilize the least_squares or least_squares_orth
functions, but solve for u− b:

f0 = 0; f1 = -1
B = f0*(1-x) + x*f1
u_sum, c = least_squares_orth(f-b, psi, Omega)
u = B + u_sum

Figure 3.8 shows the result of the technique for ensuring the right
boundary values. Even 3 sines can now adjust the f(0)(1− x) + xf(1)
term such that u approximates the parabola really well, at least visually.

0.0 0.2 0.4 0.6 0.8 1.0
x

2

0

2

4

6

8

10

approximation
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

2

0

2

4

6

8

10

approximation
exact

Fig. 3.8 Best approximation of a parabola by a sum of 3 (left) and 11 (right) sine
functions with a boundary term.

3.3.3 Orthogonal basis functions

The choice of sine functions ψi(x) = sin((i+ 1)πx) has a great compu-
tational advantage: on Ω = [0, 1] these basis functions are orthogonal,
implying that Ai,j = 0 if i 6= j. This result is realized by trying

integrate(sin(j*pi*x)*sin(k*pi*x), x, 0, 1)

in WolframAlpha (avoid i in the integrand as this symbol means the
imaginary unit

√
−1). Asking WolframAlpha also about

∫ 1
0 sin2(jπx) dx,

we find that it equals 1/2. With a diagonal matrix we can easily solve
for the coefficients by hand:

ci = 2
∫ 1

0
f(x) sin((i+ 1)πx) dx, i ∈ Is, (3.51)

which is nothing but the classical formula for the coefficients of the
Fourier sine series of f(x) on [0, 1]. In fact, when V contains the basic
functions used in a Fourier series expansion, the approximation method

http://wolframalpha.com

3.3 Orthogonal basis functions 37

derived in Section 3.2 results in the classical Fourier series for f(x) (see
Exercise 3.8 for details).

With orthogonal basis functions we can make the least_squares
function (much) more efficient since we know that the matrix is diagonal
and only the diagonal elements need to be computed:

def least_squares_orth(f, psi, Omega):
N = len(psi) - 1
A = [0]*(N+1)
b = [0]*(N+1)
x = sym.Symbol(’x’)
for i in range(N+1):

A[i] = sym.integrate(psi[i]**2, (x, Omega[0], Omega[1]))
b[i] = sym.integrate(psi[i]*f, (x, Omega[0], Omega[1]))

c = [b[i]/A[i] for i in range(len(b))]
u = 0
for i in range(len(psi)):

u += c[i]*psi[i]
return u, c

As mentioned in Section 3.2.4, symbolic integration may fail or take a
very long time. It is therefore natural to extend the implementation above
with a version where we can choose between symbolic and numerical
integration and fall back on the latter if the former fails:

def least_squares_orth(f, psi, Omega, symbolic=True):
N = len(psi) - 1
A = [0]*(N+1) # plain list to hold symbolic expressions
b = [0]*(N+1)
x = sym.Symbol(’x’)
for i in range(N+1):

Diagonal matrix term
A[i] = sym.integrate(psi[i]**2, (x, Omega[0], Omega[1]))

Right-hand side term
integrand = psi[i]*f
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sym.Integral):

print(’numerical integration of’, integrand)
integrand = sym.lambdify([x], integrand, ’mpmath’)
I = mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i] = I
c = [b[i]/A[i] for i in range(len(b))]
u = 0
u = sum(c[i]*psi[i] for i in range(len(psi)))
return u, c

This function is found in the file approx1D.py. Observe that we here
assume that

∫
Ω ϕ

2
i dx can always be symbolically computed, which is not

an unreasonable assumption when the basis functions are orthogonal,

38 3 Function approximation by global functions

but there is no guarantee, so an improved version of the function above
would implement numerical integration also for the A[i,i] term.

3.3.4 Numerical computations

Sometimes the basis functions ψi and/or the function f have a nature
that makes symbolic integration CPU-time consuming or impossible.
Even though we implemented a fallback on numerical integration of∫
fϕi dx, considerable time might still be required by sympy just by

attempting to integrate symbolically. Therefore, it will be handy to have
a function for fast numerical integration and numerical solution of the
linear system. Below is such a method. It requires Python functions f(x)
and psi(x,i) for f(x) and ψi(x) as input. The output is a mesh function
with values u on the mesh with points in the array x. Three numerical
integration methods are offered: scipy.integrate.quad (precision set
to 10−8), mpmath.quad (about machine precision), and a Trapezoidal
rule based on the points in x (unknown accuracy, but increasing with
the number of mesh points in x).

def least_squares_numerical(f, psi, N, x,
integration_method=’scipy’,
orthogonal_basis=False):

import scipy.integrate
A = np.zeros((N+1, N+1))
b = np.zeros(N+1)
Omega = [x[0], x[-1]]
dx = x[1] - x[0] # assume uniform partition

for i in range(N+1):
j_limit = i+1 if orthogonal_basis else N+1
for j in range(i, j_limit):

print(’(%d,%d)’ % (i, j))
if integration_method == ’scipy’:

A_ij = scipy.integrate.quad(
lambda x: psi(x,i)*psi(x,j),
Omega[0], Omega[1], epsabs=1E-9, epsrel=1E-9)[0]

elif integration_method == ’sympy’:
A_ij = mpmath.quad(

lambda x: psi(x,i)*psi(x,j),
[Omega[0], Omega[1]])

else:
values = psi(x,i)*psi(x,j)
A_ij = trapezoidal(values, dx)

A[i,j] = A[j,i] = A_ij

if integration_method == ’scipy’:
b_i = scipy.integrate.quad(

3.4 Interpolation 39

lambda x: f(x)*psi(x,i), Omega[0], Omega[1],
epsabs=1E-9, epsrel=1E-9)[0]

elif integration_method == ’sympy’:
b_i = mpmath.quad(

lambda x: f(x)*psi(x,i), [Omega[0], Omega[1]])
else:

values = f(x)*psi(x,i)
b_i = trapezoidal(values, dx)

b[i] = b_i

c = b/np.diag(A) if orthogonal_basis else np.linalg.solve(A, b)
u = sum(c[i]*psi(x, i) for i in range(N+1))
return u, c

def trapezoidal(values, dx):
"""Integrate values by the Trapezoidal rule (mesh size dx)."""
return dx*(np.sum(values) - 0.5*values[0] - 0.5*values[-1])

Here is an example on calling the function:

from numpy import linspace, tanh, pi

def psi(x, i):
return sin((i+1)*x)

x = linspace(0, 2*pi, 501)
N = 20
u, c = least_squares_numerical(lambda x: tanh(x-pi), psi, N, x,

orthogonal_basis=True)

Remark. The scipy.integrate.quad integrator is usually much faster
than mpmath.quad.

3.4 Interpolation

3.4.1 The interpolation (or collocation) principle

The principle of minimizing the distance between u and f is an intuitive
way of computing a best approximation u ∈ V to f . However, there are
other approaches as well. One is to demand that u(xi) = f(xi) at some
selected points xi, i ∈ Is:

u(xi) =
∑
j∈Is

cjψj(xi) = f(xi), i ∈ Is . (3.52)

We recognize that the equation
∑
j cjψj(xi) = f(xi) is actually a linear

system with N + 1 unknown coefficients {cj}j∈Is :

40 3 Function approximation by global functions

∑
j∈Is

Ai,jcj = bi, i ∈ Is, (3.53)

with coefficient matrix and right-hand side vector given by

Ai,j = ψj(xi), (3.54)
bi = f(xi) . (3.55)

This time the coefficient matrix is not symmetric because ψj(xi) 6=
ψi(xj) in general. The method is often referred to as an interpolation
method since some point values of f are given (f(xi)) and we fit a
continuous function u that goes through the f(xi) points. In this case
the xi points are called interpolation points. When the same approach is
used to approximate differential equations, one usually applies the name
collocation method and xi are known as collocation points.

Given f as a sympy symbolic expression f, {ψi}i∈Is as a list psi, and
a set of points {xi}i∈Is as a list or array points, the following Python
function sets up and solves the matrix system for the coefficients {ci}i∈Is :

def interpolation(f, psi, points):
N = len(psi) - 1
A = sym.zeros(N+1, N+1)
b = sym.zeros(N+1, 1)
psi_sym = psi # save symbolic expression
x = sym.Symbol(’x’)
psi = [sym.lambdify([x], psi[i], ’mpmath’) for i in range(N+1)]
f = sym.lambdify([x], f, ’mpmath’)
for i in range(N+1):

for j in range(N+1):
A[i,j] = psi[j](points[i])

b[i,0] = f(points[i])
c = A.LUsolve(b)
c is a sympy Matrix object, turn to list
c = [sym.simplify(c[i,0]) for i in range(c.shape[0])]
u = sym.simplify(sum(c[i]*psi_sym[i] for i in range(N+1)))
return u, c

The interpolation function is a part of the approx1D module.
We found it convenient in the above function to turn the expressions

f and psi into ordinary Python functions of x, which can be called
with float values in the list points when building the matrix and the
right-hand side. The alternative is to use the subs method to substitute
the x variable in an expression by an element from the points list. The
following session illustrates both approaches in a simple setting:

3.4 Interpolation 41

>>> import sympy as sym
>>> x = sym.Symbol(’x’)
>>> e = x**2 # symbolic expression involving x
>>> p = 0.5 # a value of x
>>> v = e.subs(x, p) # evaluate e for x=p
>>> v
0.250000000000000
>>> type(v)
sympy.core.numbers.Float
>>> e = lambdify([x], e) # make Python function of e
>>> type(e)
>>> function
>>> v = e(p) # evaluate e(x) for x=p
>>> v
0.25
>>> type(v)
float

A nice feature of the interpolation or collocation method is that it
avoids computing integrals. However, one has to decide on the location
of the xi points. A simple, yet common choice, is to distribute them
uniformly throughout the unit interval.

Example. Let us illustrate the interpolation method by approximating
our parabola f(x) = 10(x − 1)2 − 1 by a linear function on Ω = [1, 2],
using two collocation points x0 = 1 + 1/3 and x1 = 1 + 2/3:

import sympy as sym
x = sym.Symbol(’x’)
f = 10*(x-1)**2 - 1
psi = [1, x]
Omega = [1, 2]
points = [1 + sym.Rational(1,3), 1 + sym.Rational(2,3)]
u, c = interpolation(f, psi, points)
comparison_plot(f, u, Omega)

The resulting linear system becomes(
1 4/3
1 5/3

)(
c0
c1

)
=
(

1/9
31/9

)
with solution c0 = −119/9 and c1 = 10. Figure 3.9 (left) shows the
resulting approximation u = −119/9 + 10x. We can easily test other
interpolation points, say x0 = 1 and x1 = 2. This changes the line quite
significantly, see Figure 3.9 (right).

42 3 Function approximation by global functions

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

4

2

0

2

4

6

8

10

approximation
exact

1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

2

0

2

4

6

8

10

approximation
exact

Fig. 3.9 Approximation of a parabola by linear functions computed by two interpolation
points: 4/3 and 5/3 (left) versus 1 and 2 (right).

3.4.2 Lagrange polynomials
In Section 3.3.2 we explained the advantage of having a diagonal matrix:
formulas for the coefficients {ci}i∈Is can then be derived by hand. For
an interpolation (or collocation) method a diagonal matrix implies that
ψj(xi) = 0 if i 6= j. One set of basis functions ψi(x) with this property
is the Lagrange interpolating polynomials, or just Lagrange polynomials.
(Although the functions are named after Lagrange, they were first dis-
covered by Waring in 1779, rediscovered by Euler in 1783, and published
by Lagrange in 1795.) Lagrange polynomials are key building blocks in
the finite element method, so familiarity with these polynomials will be
required anyway.

A Lagrange polynomial can be written as

ψi(x) =
N∏

j=0,j 6=i

x− xj
xi − xj

= x− x0

xi − x0
· · · x− xi−1

xi − xi−1

x− xi+1

xi − xi+1
· · · x− xN

xi − xN
,

(3.56)
for i ∈ Is. We see from (3.56) that all the ψi functions are polynomials
of degree N which have the property

ψi(xs) = δis, δis =
{

1, i = s,
0, i 6= s,

(3.57)

when xs is an interpolation (collocation) point. Here we have used the
Kronecker delta symbol δis. This property implies that A is a diagonal
matrix, i.e., Ai,j = 0 for i 6= j and Ai,j = 1 when i = j. The solution of
the linear system is then simply

ci = f(xi), i ∈ Is, (3.58)

3.4 Interpolation 43

and

u(x) =
∑
j∈Is

ciψi(x) =
∑
j∈Is

f(xi)ψi(x) . (3.59)

We remark however that (3.57) does not necessarily imply that the matrix
obtained by the least squares or projection methods is diagonal.

The following function computes the Lagrange interpolating poly-
nomial ψi(x) on the unit interval (0,1), given the interpolation points
x0, . . . , xN in the list or array points:

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

The next function computes a complete basis, ψ0, . . . , ψN , using equidis-
tant points throughout Ω:

def Lagrange_polynomials_01(x, N):
if isinstance(x, sym.Symbol):

h = sym.Rational(1, N-1)
else:

h = 1.0/(N-1)
points = [i*h for i in range(N)]
psi = [Lagrange_polynomial(x, i, points) for i in range(N)]
return psi, points

When x is a sym.Symbol object, we let the spacing between the inter-
polation points, h, be a sympy rational number, so that we get nice
end results in the formulas for ψi. The other case, when x is a plain
Python float, signifies numerical computing, and then we let h be a
floating-point number. Observe that the Lagrange_polynomial function
works equally well in the symbolic and numerical case - just think of x
being a sym.Symbol object or a Python float. A little interactive session
illustrates the difference between symbolic and numerical computing of
the basis functions and points:

>>> import sympy as sym
>>> x = sym.Symbol(’x’)
>>> psi, points = Lagrange_polynomials_01(x, N=2)
>>> points
[0, 1/2, 1]
>>> psi
[(1 - x)*(1 - 2*x), 2*x*(2 - 2*x), -x*(1 - 2*x)]

>>> x = 0.5 # numerical computing

44 3 Function approximation by global functions

>>> psi, points = Lagrange_polynomials_01(x, N=2)
>>> points
[0.0, 0.5, 1.0]
>>> psi
[-0.0, 1.0, 0.0]

That is, when used symbolically, the Lagrange_polynomials_01 func-
tion returns the symbolic expression for the Lagrange functions while
when x is a numerical value the function returns the value of the basis
function evaluate in x. In the present example only the second basis
function should be 1 in the mid-point while the others are zero according
to (3.57).

Approximation of a polynomial. The Galerkin or least squares methods
lead to an exact approximation if f lies in the space spanned by the basis
functions. It could be of interest to see how the interpolation method with
Lagrange polynomials as the basis is able to approximate a polynomial,
e.g., a parabola. Running

for N in 2, 4, 5, 6, 8, 10, 12:
f = x**2
psi, points = Lagrange_polynomials_01(x, N)
u = interpolation(f, psi, points)

shows the result that up to N=4 we achieve an exact approximation, and
then round-off errors start to grow, such that N=15 leads to a 15-degree
polynomial for u where the coefficients in front of xr for r > 2 are
of size 10−5 and smaller. As the matrix is ill-conditioned and we use
floating-point arithmetic, we do not obtain the exact solution. Still, we
get a solution that is visually identical to the exact solution. The reason
is that the ill-conditioning causes the system to have many solutions
very close to the true solution. While we are lucky for N=15 and obtain
a solution that is visually identical to the true solution, ill-conditioning
may also result in completely wrong results. As we continue with higher
values, N=20 reveals that the procedure is starting to fall apart as the
approximate solution is around 0.9 at x = 1.0, where it should have been
1.0. At N=30 the approximate solution is around 5 · 108 at x = 1.

Successful example. Trying out the Lagrange polynomial basis for
approximating f(x) = sin 2πx on Ω = [0, 1] with the least squares and
the interpolation techniques can be done by

x = sym.Symbol(’x’)
f = sym.sin(2*sym.pi*x)
psi, points = Lagrange_polynomials_01(x, N)
Omega=[0, 1]

3.4 Interpolation 45

u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)
u, c = interpolation(f, psi, points)
comparison_plot(f, u, Omega)

Figure 3.10 shows the results. There is a difference between the least
squares and the interpolation technique but the difference decreases
rapidly with increasing N .

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

Least squares approximation by Lagrange polynomials of degree 3

approximation
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

Interpolation by Lagrange polynomials of degree 3

approximation
exact

Fig. 3.10 Approximation via least squares (left) and interpolation (right) of a sine
function by Lagrange interpolating polynomials of degree 3.

Less successful example. The next example concerns interpolating
f(x) = |1− 2x| on Ω = [0, 1] using Lagrange polynomials. Figure 3.11
shows a peculiar effect: the approximation starts to oscillate more and
more as N grows. This numerical artifact is not surprising when looking
at the individual Lagrange polynomials. Figure 3.12 shows two such
polynomials, ψ2(x) and ψ7(x), both of degree 11 and computed from
uniformly spaced points xi = i/11, i = 0, . . . , 11, marked with circles.
We clearly see the property of Lagrange polynomials: ψ2(xi) = 0 and
ψ7(xi) = 0 for all i, except ψ2(x2) = 1 and ψ7(x7) = 1. The most striking
feature, however, is the dominating oscillation near the boundary where
ψ2 > 5 and ψ7 = −10 in some points. The reason is easy to understand:
since we force the functions to be zero at so many points, a polynomial
of high degree is forced to oscillate between the points. This is called
Runge’s phenomenon and you can read a more detailed explanation on
Wikipedia.
Remedy for strong oscillations. The oscillations can be reduced by a
more clever choice of interpolation points, called the Chebyshev nodes:

xi = 1
2(a+ b) + 1

2(b− a) cos
(2i+ 1

2(N + 1)pi
)
, i = 0 . . . , N, (3.60)

http://en.wikipedia.org/wiki/Runge%27s_phenomenon

46 3 Function approximation by global functions

on the interval Ω = [a, b]. Here is a flexible version of the
Lagrange_polynomials_01 function above, valid for any interval
Ω = [a, b] and with the possibility to generate both uniformly distributed
points and Chebyshev nodes:

def Lagrange_polynomials(x, N, Omega, point_distribution=’uniform’):
if point_distribution == ’uniform’:

if isinstance(x, sym.Symbol):
h = sym.Rational(Omega[1] - Omega[0], N)

else:
h = (Omega[1] - Omega[0])/float(N)

points = [Omega[0] + i*h for i in range(N+1)]
elif point_distribution == ’Chebyshev’:

points = Chebyshev_nodes(Omega[0], Omega[1], N)
psi = [Lagrange_polynomial(x, i, points) for i in range(N+1)]
return psi, points

def Chebyshev_nodes(a, b, N):
from math import cos, pi
return [0.5*(a+b) + 0.5*(b-a)*cos(float(2*i+1)/(2*N+1))*pi) \

for i in range(N+1)]

All the functions computing Lagrange polynomials listed above are found
in the module file Lagrange.py.

Figure 3.13 shows the improvement of using Chebyshev nodes, com-
pared with the equidistant points in Figure 3.11. The reason for this
improvement is that the corresponding Lagrange polynomials have much
smaller oscillations, which can be seen by comparing Figure 3.14 (Cheby-
shev points) with Figure 3.12 (equidistant points). Note the different
scale on the vertical axes in the two figures and also that the Chebyshev
points tend to cluster more around the element boundaries.

Another cure for undesired oscillations of higher-degree interpolating
polynomials is to use lower-degree Lagrange polynomials on many small
patches of the domain. This is actually the idea pursued in the finite
element method. For instance, linear Lagrange polynomials on [0, 1/2]
and [1/2, 1] would yield a perfect approximation to f(x) = |1− 2x| on
Ω = [0, 1] since f is piecewise linear.

How does the least squares or projection methods work with Lagrange
polynomials? We can just call the least_squares function, but sympy
has problems integrating the f(x) = |1−2x| function times a polynomial,
so we need to fall back on numerical integration.

def least_squares(f, psi, Omega):
N = len(psi) - 1
A = sym.zeros(N+1, N+1)
b = sym.zeros(N+1, 1)
x = sym.Symbol(’x’)

3.4 Interpolation 47

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
Interpolation by Lagrange polynomials of degree 7

approximation
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

4

3

2

1

0

1

2
Interpolation by Lagrange polynomials of degree 14

approximation
exact

Fig. 3.11 Interpolation of an absolute value function by Lagrange polynomials and
uniformly distributed interpolation points: degree 7 (left) and 14 (right).

0.0 0.2 0.4 0.6 0.8 1.0
10

8

6

4

2

0

2

4

6

ψ2

ψ7

Fig. 3.12 Illustration of the oscillatory behavior of two Lagrange polynomials based on
12 uniformly spaced points (marked by circles).

for i in range(N+1):
for j in range(i, N+1):

integrand = psi[i]*psi[j]
I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sym.Integral):

Could not integrate symbolically, fall back
on numerical integration with mpmath.quad
integrand = sym.lambdify([x], integrand, ’mpmath’)
I = mpmath.quad(integrand, [Omega[0], Omega[1]])

A[i,j] = A[j,i] = I
integrand = psi[i]*f
I = sym.integrate(integrand, (x, Omega[0], Omega[1]))

48 3 Function approximation by global functions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Interpolation by Lagrange polynomials of degree 7

approximation
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Interpolation by Lagrange polynomials of degree 14

approximation
exact

Fig. 3.13 Interpolation of an absolute value function by Lagrange polynomials and
Chebyshev nodes as interpolation points: degree 7 (left) and 14 (right).

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ψ2

ψ7

Fig. 3.14 Illustration of the less oscillatory behavior of two Lagrange polynomials based
on 12 Chebyshev points (marked by circles). Note that the y-axis is different from
Figure 3.12.

if isinstance(I, sym.Integral):
integrand = sym.lambdify([x], integrand, ’mpmath’)
I = mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i,0] = I
c = A.LUsolve(b)
c = [sym.simplify(c[i,0]) for i in range(c.shape[0])]
u = sum(c[i]*psi[i] for i in range(len(psi)))
return u, c

3.4 Interpolation 49

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2Least squares approximation by Lagrange polynomials of degree 11

approximation
exact

Fig. 3.15 Illustration of an approximation of the absolute value function using the least
square method .

3.4.3 Bernstein polynomials

An alternative to the Taylor and Lagrange families of polynomials are the
Bernstein polynomials. These polynomials are popular in visualization
and we include a presentation of them for completeness. Furthermore,
as we will demonstrate, the choice of basis functions may matter in
terms of accuracy and efficiency. In fact, in finite element methods, a
main challenge, from a numerical analysis point of view, is to determine
appropriate basis functions for a particular purpose or equation.

On the unit interval, the Bernstein polynomials are defined in terms
of powers of x and 1−x (the barycentric coordinates of the unit interval)
as

Bi,n =
(
n

i

)
xi(1− x)n−i, i = 0, . . . , n. (3.61)

The Figure 3.16 shows the basis functions of a Bernstein basis of order
8. This figure should be compared against Figure 3.17, which shows the
corresponding Lagrange basis of order 8. The Lagrange basis is convenient
because it is a nodal basis, that is; the basis functions are 1 in their
nodal points and zero at all other nodal points as described by (3.57).
However, looking at Figure 3.17 we also notice that the basis function

50 3 Function approximation by global functions

Fig. 3.16 The nine functions of a Bernstein basis of order 8.

Fig. 3.17 The nine functions of a Lagrange basis of order 8.

are oscillatory and have absolute values that are significantly larger than
1 between the nodal points. Consider for instance the basis function

3.4 Interpolation 51

represented by the purple color. It is 1 at x = 0.5 and 0 at all other
nodal points and hence this basis function represents the value at the
mid-point. However, this function also has strong negative contributions
close to the element boundaries where it takes negative values lower than
−2. For the Bernstein basis, all functions are positive and all functions
output values in [0, 1]. Therefore there is no oscillatory behavior. The
main disadvantage of the Bernstein basis is that the basis is not a nodal
basis. In fact, all functions contribute everywhere except x = 0 and
x = 1.

Both Lagrange and Bernstein polynomials take larger values towards
the element boundaries than in the middle of the element, but the
Bernstein polynomials always remain less than or equal to 1.

We remark that the Bernstein basis is easily extended to polygons in
2D and 3D in terms of the barycentric coordinates. For example, consider
the reference triangle in 2D consisting of the faces x = 0, y = 0, and
x + y = 1. The barycentric coordinates are b1(x, y) = x, b2(x, y) = y,
and b3(x, y) = 1− x− y and the Bernstein basis functions of order n is
of the form

Bi,j,k = n!
i!j!k!x

iyj(1− x− y)k, for i+ j + k = n .

Notice
We have considered approximation with a sinusoidal basis and with
Lagrange or Bernstein polynomials, all of which are frequently used
for scientific computing. The Lagrange polynomials (of various order)
are extensively used in finite element methods, while the Bernstein
polynomials are more used in computational geometry. However,
we mention a few recent efforts in finite element computations that
explore the combination of symbolic and numerical evaluation for
finite element methods and have demonstrated that the Bernstein
basis enables fast computations through their explicit representa-
tion (of both the basis functions and their derivatives) [1, 15]. The
Lagrange and the Bernstein families are, however, but a few in the
jungle of polynomial spaces used for finite element computations
and their efficiency and accuracy can vary quite substantially. Fur-
thermore, while a method may be efficient and accurate for one type
of PDE it might not even converge for another type of PDE. The

52 3 Function approximation by global functions

development and analysis of finite element methods for different
purposes is currently an intense research field and has been so for
several decades. Some structure in this vast jungle of methods can
be found in [2]. FEniCS has implemented a wide range of poly-
nomial spaces [16] and has a general framework for implementing
new elements [17]. While finite element methods explore different
families of polynomials, the so-called spectral methods explore the
use of sinusoidal functions or polynomials with high order. From an
abstract point of view, the different methods can all be obtained
simply by changing the basis for the trial and test functions. How-
ever, their efficiency and accuracy may vary substantially, as we
will also see in the following.

3.5 Approximation properties and convergence rates

We will now compare the different approximation methods in terms of
accuracy and efficiency. We consider four different series for generating
approximations: Taylor, Lagrange, sinusoidal, and Bernstein. For all
families we expect that the approximations improve as we increase the
number of basis functions in our representations. We also expect that the
computational complexity increases. Let us therefore try to quantify the
accuracy and efficiency of the different methods in terms of the number
of basis functions N . In the present example we consider the least squares
method.

Let us consider the approximation of a Gaussian bell function, i.e.,
that the exact solution is

ue = exp(−(x− 0.5)2)− exp(−0.52)

We remark that ue is zero at x = 0 and x = 1 and that we have chosen
the bell function because it cannot be expressed as a finite sum of either
polynomials or sines. We may therefore study the behavior as N →∞.

To quantify the behavior of the error as well as the complexity of the
computations we compute the approximation with an increasing number
of basis functions and time the computations by using time.clock
(returning the CPU time so far in the program). A code example goes as
follows:

def convergence_rate_analysis(series_type, func):

3.5 Approximation properties and convergence rates 53

N_values = [2, 4, 8, 16]
norms = []
cpu_times = []
for N in N_values:

psi = series(series_type, N)
t0 = time.clock()
u, c = least_squares_non_verbose(

gauss_bell, psi, Omega, False)
t1 = time.clock()

error2 = sym.lambdify([x], (func - u)**2)
L2_norm = scipy.integrate.quad(error2, Omega[0], Omega[1])
L2_norm = scipy.sqrt(L2_norm)
norms.append(L2_norm[0])
cpu_times.append(t1-t0)

return N_values, norms, cpu_times

We run the analysis as follows

Omega = [0, 1]
x = sym.Symbol("x")
gaussian_bell = sym.exp(-(x-0.5)**2) - sym.exp(-0.5**2)
step = sym.Piecewise((1, 0.25 < x), (0, True)) - \

sym.Piecewise((1, 0.75 < x), (0, True))
func = gaussian_bell

import pylab as plt
series_types = ["Taylor", "Sinusoidal", "Bernstein", "Lagrange"]
for series_type in series_types:

N_values, norms, cpu_times = \
convergence_rate_analysis(series_type, func)

plt.loglog(N_values, norms)
plt.show()

and the different families of basis functions are:

def Lagrange_series(N):
psi = []
h = 1.0/N
points = [i*h for i in range(N+1)]
for i in range(len(points)):

p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

psi.append(p)
return psi

def Bernstein_series(N):
psi = []
for k in range(0,N+1):

psi_k = sym.binomial(N, k)*x**k*(1-x)**(N-k)

54 3 Function approximation by global functions

psi.append(psi_k)
return psi

def Sinusoidal_series(N):
psi = []
for k in range(1,N):

psi_k = sym.sin(sym.pi*k*x)
psi.append(psi_k)

return psi

def Taylor_series(N):
psi = []
for k in range(1,N):

psi_k = x**k
psi.append(psi_k)

return psi

def series(series_type, N):
if series_type== "Taylor" : return Taylor_series(N)
elif series_type== "Sinusoidal" : return Sinusoidal_series(N)
elif series_type== "Bernstein" : return Bernstein_series(N)
elif series_type== "Lagrange" : return Lagrange_series(N)
else: print("series type unknown ")

Below we list the numerical error for different N when approximating
the Gaussian bell function.

N 2 4 8 16
Taylor 9.83e-02 2.63e-03 7.83e-07 3.57e-10
sine 2.70e-03 6.10e-04 1.20e-04 2.17e-05

Bernstein 2.10e-03 4.45e-05 8.73e-09 4.49e-15
Lagrange 2.10e-03 4.45e-05 8.73e-09 2.45e-12

It is quite clear that the different methods have different properties. For
example, the Lagrange basis for N = 16 is 145 times more accurate than
the Taylor basis. However, Bernstein is actually more than 500 times
more accurate than the Lagrange basis! The approximations obtained by
sines are far behind the polynomial approximations for N > 4.

The corresponding CPU times for the required computations also vary
quite a bit:

N 2 4 8 16
Taylor 0.0123 0.0325 0.108 0.441
sine 0.0113 0.0383 0.229 1.107

Bernstein 0.0384 0.1100 0.3368 1.187
Lagrange 0.0807 0.3820 2.5233 26.52

Here, the timings are in seconds. The Taylor basis is the most efficient
and is in fact more than 60 times faster than the Lagrange basis for
N = 16 (with our naive implementation of basic formulas).

3.5 Approximation properties and convergence rates 55

In order to get a more precise idea of how the error of our different
approximation methods behave as N increases, we investigate two simple
data models which may be used in a regression analysis. The error is
modeled in terms of either a polynomial or an exponential function
defined as follows

E1(N) = α1N
β1 , (3.62)

E2(N) = α2 exp(β2N). (3.63)

Taking the logarithm of (3.62) we obtain

log(E1(N)) = β1 log(N) + log(α1).

Hence, letting x = log(N) be the independent variable and y =
log(E1(N)) the dependent one, we simply have the straight line y = ax+b
with a = β1 and b = log(α1). Then, we may perform a regression analysis
as earlier with respect to the basis functions (1, x) and obtain an estimate
of the order of convergence in terms of β1 . For the second model (3.63),
we take the natural logarithm and obtain

ln(E2(N)) = β2N + ln(α2).

Again, regression analysis provides the means to estimate the convergence,
but here we let x = N be the independent variable, y = ln(E2(N)), a = β2
and b = ln(α2). To summarize, the polynomial model should have the
data around a straight line in a log-log plot, while the exponential model
has its data around a straight line in a log plot with the logarithmic scale
on the y axis.

Before we perform the regression analysis, a good rule is to inspect
the behavior visually in log and log-log plots. Figure 3.18 shows a log-log
plot of the error with respect to N for the various methods. Clearly,
the sinusoidal basis seems to have a polynomial convergence rate as
the log-log plot is linear. The Bernstein, Lagrange, and Taylor methods
appear to have convergence that is faster than polynomial. It is then
interesting to consider a log plot and see if the behavior is exponential.
Figure 3.19 is a log plot. Here, the Bernstein approximation appears to
be linear which suggests that the convergence is exponential.

The following program computes the order of convergence for the sines
using the polynomial model (3.62) while the Bernstein approximation is
estimated in terms of model (3.63). We avoid computing estimates for

56 3 Function approximation by global functions

100 101 10210-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Taylor
Sinusoidal
Bernstein
Lagrange

Fig. 3.18 Convergence of least square approximation using basis function in terms of
the Taylor, sinusoidal, Bernstein and Lagrange basis in a log-log plot.

Fig. 3.19 Convergence of least square approximation using basis function in terms of
the Taylor, sinusoidal, Bernstein and Lagrange basis in a log plot.

3.5 Approximation properties and convergence rates 57

the Taylor and Lagrange approximations as neither the log-log plot nor
the log plot demonstrated linear behavior.

N_values = [2, 4, 8, 16, 32]
Taylor = [0.0983, 0.00263, 7.83e-07, 3.57e-10]
Sinusoidal = [0.0027, 0.00061, 0.00012, 2.17e-05]
Bernstein = [0.0021, 4.45e-05, 8.73e-09, 4.49e-15]
Lagrange = [0.0021, 4.45e-05, 8.73e-09, 2.45e-12]

x = sym.Symbol(’x’)
psi = [1, x]

u, c = regression_with_noise(log2(Sinusoidal), psi, log2(N_values))
print("estimated model for sine: %3.2e*N**(%3.2e)" % \

(2**(c[0]), c[1]))

Check the numbers estimated by the model by manual inspection
for N in N_values:

print(2**c[0] * N**c[1])

u, c = regression_with_noise(log(Bernstein), psi, N_values)
print("estimated model for Bernstein: %3.2e*exp(%3.2e*N)" % \

(exp(c[0]), c[1]))

Check the numbers estimated by the model by manual inspection
for N in N_values:

print(exp(c[0]) * exp(N * c[1]))

The program estimates the sinusoidal approximation convergences
as 1.410−2N−2.3, which means that the convergence is slightly above
second order. The Bernstein approximation on the other hand is
8.0110−2 exp(−1.9N). Considering now that we have N = 100 then
we can estimate that the sinusoidal approximation would give us an error
of ≈ 3.610−7 while the estimate for the Bernstein polynomials amounts
to ≈ 3.310−85 and is hence vastly superior. We remark here that floating
point errors likely will be an issue, but libraries with arbitrary precision
are available in Python.

The CPU time in the example here would be significantly faster if
the algorithms were implemented in a compiled language like C/C++
or Fortran and we should be careful in drawing conclusions about the
efficiency of the different methods based on this example alone. However,
for completeness we include a log-log plot in Figure 3.20 to illustrate
the polynomial increase in CPU time with respect to N. It seems that
the efficiency of both the Taylor and Bernstein approximations can be
estimated to be of the order of N2, but the sinusoidal and Lagrange
approximations seem to grow faster.

The complete code can be found in convergence_rate_local.py.

http://tinyurl.com/znpudbt/convergence_rate_local.py

58 3 Function approximation by global functions

100 101 10210-3

10-2

10-1

100

101

102

Taylor
Sinusoidal
Bernstein
Lagrange

Fig. 3.20 CPU timings of the approximation with the difference basis in a log-log plot.

The code for the regression algorithm is as follows:

def regression_with_noise(f, psi, points):
"""
Given a data points in the array f, return the approximation
to the data in the space V, spanned by psi, using a regression
method based on f and the corresponding coordinates in points.
Must have len(points) = len(f) > len(psi).
"""
N = len(psi) - 1
m = len(points) - 1
Use numpy arrays and numerical computing
B = np.zeros((N+1, N+1))
d = np.zeros(N+1)
Wrap psi and f in Python functions rather than expressions
so that we can evaluate psi at points[i]
x = sym.Symbol(’x’)
psi_sym = psi # save symbolic expression for u
psi = [sym.lambdify([x], psi[i]) for i in range(N+1)]
if not isinstance(f, np.ndarray):

raise TypeError(’f is %s, must be ndarray’ % type(f))
print(’...evaluating matrix...’)
for i in range(N+1):

for j in range(N+1):
B[i,j] = 0
for k in range(m+1):

B[i,j] += psi[i](points[k])*psi[j](points[k])

3.6 Approximation of functions in higher dimensions 59

d[i] = 0
for k in range(m+1):

d[i] += psi[i](points[k])*f[k]
print(’B:\n’, B, ’\nd:\n’, d)
c = np.linalg.solve(B, d)
print(’coeff:’, c)
u = sum(c[i]*psi_sym[i] for i in range(N+1))
print(’approximation:’, sym.simplify(u))

3.6 Approximation of functions in higher dimensions

All the concepts and algorithms developed for approximation of 1D
functions f(x) can readily be extended to 2D functions f(x, y) and 3D
functions f(x, y, z). Basically, the extensions consist of defining basis
functions ψi(x, y) or ψi(x, y, z) over some domain Ω, and for the least
squares and Galerkin methods, the integration is done over Ω.

As in 1D, the least squares and projection/Galerkin methods lead to
linear systems

∑
j∈Is

Ai,jcj = bi, i ∈ Is,

Ai,j = (ψi, ψj),
bi = (f, ψi),

where the inner product of two functions f(x, y) and g(x, y) is defined
completely analogously to the 1D case (3.25):

(f, g) =
∫
Ω
f(x, y)g(x, y)dxdy. (3.64)

3.6.1 2D basis functions as tensor products of 1D functions

One straightforward way to construct a basis in 2D is to combine 1D
basis functions. Say we have the 1D vector space

Vx = span{ψ̂0(x), . . . , ψ̂Nx(x)} . (3.65)

A similar space for a function’s variation in y can be defined,

Vy = span{ψ̂0(y), . . . , ψ̂Ny(y)} . (3.66)

60 3 Function approximation by global functions

We can then form 2D basis functions as tensor products of 1D basis
functions.

Tensor products

Given two vectors a = (a0, . . . , aM) and b = (b0, . . . , bN), their outer
tensor product, also called the dyadic product, is p = a⊗ b, defined
through

pi,j = aibj , i = 0, . . . ,M, j = 0, . . . , N .

In the tensor terminology, a and b are first-order tensors (vectors
with one index, also termed rank-1 tensors), and then their outer
tensor product is a second-order tensor (matrix with two indices, also
termed rank-2 tensor). The corresponding inner tensor product is the
well-known scalar or dot product of two vectors: p = a·b =

∑N
j=0 ajbj .

Now, p is a rank-0 tensor.
Tensors are typically represented by arrays in computer code.

In the above example, a and b are represented by one-dimensional
arrays of length M and N , respectively, while p = a ⊗ b must be
represented by a two-dimensional array of size M ×N .

Tensor products can be used in a variety of contexts.

Given the vector spaces Vx and Vy as defined in (3.65) and (3.66),
the tensor product space V = Vx ⊗ Vy has a basis formed as the tensor
product of the basis for Vx and Vy. That is, if {ψi(x)}i∈Ix and {ψi(y)}i∈Iy
are basis for Vx and Vy, respectively, the elements in the basis for V
arise from the tensor product: {ψi(x)ψj(y)}i∈Ix,j∈Iy . The index sets are
Ix = {0, . . . , Nx} and Iy = {0, . . . , Ny}.

The notation for a basis function in 2D can employ a double index as
in

ψp,q(x, y) = ψ̂p(x)ψ̂q(y), p ∈ Ix, q ∈ Iy .

The expansion for u is then written as a double sum

u =
∑
p∈Ix

∑
q∈Iy

cp,qψp,q(x, y) .

Alternatively, we may employ a single index,

http://en.wikipedia.org/wiki/Tensor_product

3.6 Approximation of functions in higher dimensions 61

ψi(x, y) = ψ̂p(x)ψ̂q(y),

and use the standard form for u,

u =
∑
j∈Is

cjψj(x, y) .

The single index can be expressed in terms of the double index through
i = p(Ny + 1) + q or i = q(Nx + 1) + p.

3.6.2 Example on polynomial basis in 2D

Let us again consider an approximation with the least squares method,
but now with basis functions in 2D. Suppose we choose ψ̂p(x) = xp, and
try an approximation with Nx = Ny = 1:

ψ0,0 = 1, ψ1,0 = x, ψ0,1 = y, ψ1,1 = xy .

Using a mapping to one index like i = q(Nx + 1) + p, we get

ψ0 = 1, ψ1 = x, ψ2 = y, ψ3 = xy .

With the specific choice f(x, y) = (1 + x2)(1 + 2y2) on Ω = [0, Lx]×
[0, Ly], we can perform actual calculations:

62 3 Function approximation by global functions

A0,0 = (ψ0, ψ0) =
∫ Ly

0

∫ Lx

0
1dxdy = LxLy,

A0,1 = (ψ0, ψ1) =
∫ Ly

0

∫ Lx

0
xdxdy = L2

xLy
2 ,

A0,2 = (ψ0, ψ2) =
∫ Ly

0

∫ Lx

0
ydxdy =

LxL
2
y

2 ,

A0,3 = (ψ0, ψ3) =
∫ Ly

0

∫ Lx

0
xydxdy =

L2
xL

2
y

4 ,

A1,0 = (ψ1, ψ0) =
∫ Ly

0

∫ Lx

0
xdxdy = L2

xLy
2 ,

A1,1 = (ψ1, ψ1) =
∫ Ly

0

∫ Lx

0
x2dxdy = L3

xLy
3 ,

A1,2 = (ψ1, ψ2) =
∫ Ly

0

∫ Lx

0
xydxdy =

L2
xL

2
y

4 ,

A1,3 = (ψ1, ψ3) =
∫ Ly

0

∫ Lx

0
x2ydxdy =

L3
xL

2
y

6 ,

A2,0 = (ψ2, ψ0) =
∫ Ly

0

∫ Lx

0
ydxdy =

LxL
2
y

2 ,

A2,1 = (ψ2, ψ1) =
∫ Ly

0

∫ Lx

0
xydxdy =

L2
xL

2
y

4 ,

A2,2 = (ψ2, ψ2) =
∫ Ly

0

∫ Lx

0
y2dxdy =

LxL
3
y

3 ,

A2,3 = (ψ2, ψ3) =
∫ Ly

0

∫ Lx

0
xy2dxdy =

L2
xL

3
y

6 ,

A3,0 = (ψ3, ψ0) =
∫ Ly

0

∫ Lx

0
xydxdy =

L2
xL

2
y

4 ,

A3,1 = (ψ3, ψ1) =
∫ Ly

0

∫ Lx

0
x2ydxdy =

L3
xL

2
y

6 ,

A3,2 = (ψ3, ψ2) =
∫ Ly

0

∫ Lx

0
xy2dxdy =

L2
xL

3
y

6 ,

A3,3 = (ψ3, ψ3) =
∫ Ly

0

∫ Lx

0
x2y2dxdy =

L3
xL

3
y

9 .

The right-hand side vector has the entries

3.6 Approximation of functions in higher dimensions 63

b0 = (ψ0, f) =
∫ Ly

0

∫ Lx

0
1 · (1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
(1 + 2y2)dy

∫ Lx

0
(1 + x2)dx = (Ly + 2

3L
3
y)(Lx + 1

3L
3
x)

b1 = (ψ1, f) =
∫ Ly

0

∫ Lx

0
x(1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
(1 + 2y2)dy

∫ Lx

0
x(1 + x2)dx = (Ly + 2

3L
3
y)(

1
2L

2
x + 1

4L
4
x)

b2 = (ψ2, f) =
∫ Ly

0

∫ Lx

0
y(1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
y(1 + 2y2)dy

∫ Lx

0
(1 + x2)dx = (1

2L
2
y + 1

2L
4
y)(Lx + 1

3L
3
x)

b3 = (ψ3, f) =
∫ Ly

0

∫ Lx

0
xy(1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
y(1 + 2y2)dy

∫ Lx

0
x(1 + x2)dx = (1

2L
2
y + 1

2L
4
y)(

1
2L

2
x + 1

4L
4
x) .

There is a general pattern in these calculations that we can explore.
An arbitrary matrix entry has the formula

Ai,j = (ψi, ψj) =
∫ Ly

0

∫ Lx

0
ψiψjdxdy

=
∫ Ly

0

∫ Lx

0
ψp,qψr,sdxdy =

∫ Ly

0

∫ Lx

0
ψ̂p(x)ψ̂q(y)ψ̂r(x)ψ̂s(y)dxdy

=
∫ Ly

0
ψ̂q(y)ψ̂s(y)dy

∫ Lx

0
ψ̂p(x)ψ̂r(x)dx

= Â(x)
p,r Â

(y)
q,s ,

where

Â(x)
p,r =

∫ Lx

0
ψ̂p(x)ψ̂r(x)dx, Â(y)

q,s =
∫ Ly

0
ψ̂q(y)ψ̂s(y)dy,

are matrix entries for one-dimensional approximations. Moreover, i =
pNx + q and j = sNy + r.

With ψ̂p(x) = xp we have

Â(x)
p,r = 1

p+ r + 1L
p+r+1
x , Â(y)

q,s = 1
q + s+ 1L

q+s+1
y ,

and

64 3 Function approximation by global functions

Ai,j = Â(x)
p,r Â

(y)
q,s = 1

p+ r + 1L
p+r+1
x

1
q + s+ 1L

q+s+1
y ,

for p, r ∈ Ix and q, s ∈ Iy.
Corresponding reasoning for the right-hand side leads to

bi = (ψi, f) =
∫ Ly

0

∫ Lx

0
ψif dxdx

=
∫ Ly

0

∫ Lx

0
ψ̂p(x)ψ̂q(y)f dxdx

=
∫ Ly

0
ψ̂q(y)(1 + 2y2)dy

∫ Ly

0
ψ̂p(x)(1 + x2)dx

=
∫ Ly

0
yq(1 + 2y2)dy

∫ Ly

0
xp(1 + x2)dx

= (1
q + 1L

q+1
y + 2

q + 3L
q+3
y)(1

p+ 1L
p+1
x + 1

p+ 3L
p+3
x)

Choosing Lx = Ly = 2, we have

A =


4 4 4 4
4 16

3 4 16
3

4 4 16
3

16
3

4 16
3

16
3

64
9

 , b =


308
9

140
3

44
60

 , c =

 −1
9

−2
3

4
3
8

 .
Figure 3.21 illustrates the result.

f(x,y)

 0
 0.5

 1
 1.5

 2

 0
 0.5

 1
 1.5

 2

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

f(x,y)

 0
 0.5

 1
 1.5

 2

 0
 0.5

 1
 1.5

 2

-5
 0
 5

 10
 15
 20
 25
 30
 35

-5

 0

 5

 10

 15

 20

 25

 30

 35

Fig. 3.21 Approximation of a 2D quadratic function (left) by a 2D bilinear function
(right) using the Galerkin or least squares method.

The calculations can also be done using sympy. The following code
computes the matrix of our example

import sympy as sym

3.6 Approximation of functions in higher dimensions 65

x, y, Lx, Ly = sym.symbols("x y L_x L_y")

def integral(integrand):
Ix = sym.integrate(integrand, (x, 0, Lx))
I = sym.integrate(Ix, (y, 0, Ly))
return I

basis = [1, x, y, x*y]
A = sym.Matrix(sym.zeros(4,4))

for i in range(len(basis)):
psi_i = basis[i]
for j in range(len(basis)):

psi_j = basis[j]
A[i,j] = integral(psi_i*psi_j)

We remark that sympy may even write the output in LATEX or C++
format using the functions latex and ccode.

3.6.3 Implementation

The least_squares function from Section 3.3.3 and/or the file approx1D.
py can with very small modifications solve 2D approximation prob-
lems. First, let Omega now be a list of the intervals in x and y di-
rection. For example, Ω = [0, Lx] × [0, Ly] can be represented by
Omega = [[0, L_x], [0, L_y]].

Second, the symbolic integration must be extended to 2D:

import sympy as sym

integrand = psi[i]*psi[j]
I = sym.integrate(integrand,

(x, Omega[0][0], Omega[0][1]),
(y, Omega[1][0], Omega[1][1]))

provided integrand is an expression involving the sympy symbols x and
y. The 2D version of numerical integration becomes

if isinstance(I, sym.Integral):
integrand = sym.lambdify([x,y], integrand, ’mpmath’)
I = mpmath.quad(integrand,

[Omega[0][0], Omega[0][1]],
[Omega[1][0], Omega[1][1]])

The right-hand side integrals are modified in a similar way. (We
should add that mpmath.quad is sufficiently fast even in 2D, but
scipy.integrate.nquad is much faster.)

http://tinyurl.com/znpudbt/fe_approx1D.py
http://tinyurl.com/znpudbt/fe_approx1D.py

66 3 Function approximation by global functions

Third, we must construct a list of 2D basis functions. Here are two
examples based on tensor products of 1D "Taylor-style" polynomials xi
and 1D sine functions sin((i+ 1)πx):

def taylor(x, y, Nx, Ny):
return [x**i*y**j for i in range(Nx+1) for j in range(Ny+1)]

def sines(x, y, Nx, Ny):
return [sym.sin(sym.pi*(i+1)*x)*sym.sin(sym.pi*(j+1)*y)

for i in range(Nx+1) for j in range(Ny+1)]

The complete code appears in approx2D.py.
The previous hand calculation where a quadratic f was approximated

by a bilinear function can be computed symbolically by

>>> from approx2D import *
>>> f = (1+x**2)*(1+2*y**2)
>>> psi = taylor(x, y, 1, 1)
>>> Omega = [[0, 2], [0, 2]]
>>> u, c = least_squares(f, psi, Omega)
>>> print(u)
8*x*y - 2*x/3 + 4*y/3 - 1/9
>>> print(sym.expand(f))
2*x**2*y**2 + x**2 + 2*y**2 + 1

We may continue with adding higher powers to the basis:

>>> psi = taylor(x, y, 2, 2)
>>> u, c = least_squares(f, psi, Omega)
>>> print(u)
2*x**2*y**2 + x**2 + 2*y**2 + 1
>>> print(u-f)
0

For Nx ≥ 2 and Ny ≥ 2 we recover the exact function f , as expected,
since in that case f ∈ V , see Section 3.2.5.

3.6.4 Extension to 3D
Extension to 3D is in principle straightforward once the 2D extension
is understood. The only major difference is that we need the repeated
outer tensor product,

V = Vx ⊗ Vy ⊗ Vz .

In general, given vectors (first-order tensors) a(q) = (a(q)
0 , . . . , a

(q)
Nq

), q =
0, . . . ,m, the tensor product p = a(0) ⊗ · · · ⊗ am has elements

http://tinyurl.com/znpudbt/fe_approx2D.py

3.7 Exercises 67

pi0,i1,...,im = a
(0)
i1
a

(1)
i1
· · · a(m)

im
.

The basis functions in 3D are then

ψp,q,r(x, y, z) = ψ̂p(x)ψ̂q(y)ψ̂r(z),

with p ∈ Ix, q ∈ Iy, r ∈ Iz. The expansion of u becomes

u(x, y, z) =
∑
p∈Ix

∑
q∈Iy

∑
r∈Iz

cp,q,rψp,q,r(x, y, z) .

A single index can be introduced also here, e.g., i = rNxNy + qNx + p,
u =

∑
i ciψi(x, y, z).

Use of tensor product spaces

Constructing a multi-dimensional space and basis from tensor prod-
ucts of 1D spaces is a standard technique when working with global
basis functions. In the world of finite elements, constructing basis
functions by tensor products is much used on quadrilateral and
hexahedra cell shapes, but not on triangles and tetrahedra. Also, the
global finite element basis functions are almost exclusively denoted
by a single index and not by the natural tuple of indices that arises
from tensor products.

3.7 Exercises

Problem 3.1: Linear algebra refresher

Look up the topic of vector space in your favorite linear algebra book or
search for the term at Wikipedia.

a) Prove that vectors in the plane spanned by the vector (a, b) form a
vector space by showing that all the axioms of a vector space are satisfied.

b) Prove that all linear functions of the form ax+ b constitute a vector
space, a, b ∈ R.

c) Show that all quadratic functions of the form 1 + ax2 + bx do not
constitute a vector space.

68 3 Function approximation by global functions

d) Check out the topic of inner product spaces. Suggest a possible inner
product for the space of all linear functions of the form ax+ b, a, b ∈ R,
defined on some interval Ω = [A,B]. Show that this particular inner
product satisfies the general requirements of an inner product in a vector
space.
Filename: linalg1.

Problem 3.2: Approximate a three-dimensional vector in a
plane

Given f = (1, 1, 1) in R3, find the best approximation vector u in the
plane spanned by the unit vectors (1, 0) and (0, 1). Repeat the calculations
using the vectors (2, 1) and (1, 2).
Filename: vec111_approx.

Problem 3.3: Approximate a parabola by a sine

Given the function f(x) = 1 + 2x(1− x) on Ω = [0, 1], we want to find
an approximation in the function space

V = span{1, sin(πx)} .

a) Sketch or plot f(x). Think intuitively how an expansion in terms of
the basis functions of V , ψ0(x) = 1, ψ1(x) = sin(πx), can be constructed
to yield a best approximation to f . Or phrased differently, see if you can
guess the coefficients c0 and c1 in the expansion

u(x) = c0ψ0 + c1ψ1 = c0 + c1 sin(πx) .

Compute the L2 error ||f − u||L2 = (
∫ 1

0 (f − u)2 dx)1/2.

Hint. If you make a mesh function e of the error on some mesh with
uniformly spaced coordinates in the array xc, the integral can be approx-
imated as np.sqrt(dx*np.sum(e**2)), where dx=xc[0]-xc[1] is the
mesh spacing and np is an alias for the numpy module in Python.

b) Perform the hand calculations for a least squares approximation.
Filename: parabola_sin.

3.7 Exercises 69

Problem 3.4: Approximate the exponential function by power
functions

Let V be a function space with basis functions xi, i = 0, 1, . . . , N . Find
the best approximation to f(x) = exp(−x) on Ω = [0, 8] among all
functions in V for N = 2, 4, 6. Illustrate the three approximations in
three separate plots.

Hint. Apply the lest_squares and comparison_plot functions in the
approx1D.py module as these make the exercise easier to solve.
Filename: exp_powers.

Problem 3.5: Approximate the sine function by power
functions

In this exercise we want to approximate the sine function by polynomials
of order N + 1. Consider two bases:

V1 = {x, x3, x5, . . . , xN−2, xN},
V2 = {1, x, x2, x3, . . . , xN} .

The basis V1 is motivated by the fact that the Taylor polynomial approx-
imation to the sine function has only odd powers, while V2 is motivated
by the assumption that including the even powers could improve the
approximation in a least-squares setting.

Compute the best approximation to f(x) = sin(x) among all functions
in V1 and V2 on two domains of increasing sizes: Ω1,k = [0, kπ], k =
2, 3 . . . , 6 and Ω2,k = [−kπ/2, kπ/2], k = 2, 3, 4, 5. Make plots for all
combinations of V1, V2, Ω1, Ω2, k = 2, 3, . . . , 6.

Add a plot of the N -th degree Taylor polynomial approximation of
sin(x) around x = 0.

Hint. You can make a loop over V1 and V2, a loop over Ω1 and Ω2,
and a loop over k. Inside the loops, call the functions least_squares
and comparison_plot from the approx1D module. N = 7 is a suggested
value.
Filename: sin_powers.

70 3 Function approximation by global functions

Problem 3.6: Approximate a steep function by sines

Find the best approximation of f(x) = tanh(s(x− π)) on [0, 2π] in the
space V with basis ψi(x) = sin((2i+ 1)x), i ∈ Is = {0, . . . , N}. Make a
movie showing how u =

∑
j∈Is cjψj(x) approximates f(x) as N grows.

Choose s such that f is steep (s = 20 is appropriate).

Hint 1. One may naively call the least_squares_orth and
comparison_plot from the approx1D module in a loop and extend the
basis with one new element in each pass. This approach implies a lot of
recomputations. A more efficient strategy is to let least_squares_orth
compute with only one basis function at a time and accumulate the
corresponding u in the total solution.

Hint 2. ffmpeg or avconv may skip frames when plot files are combined
to a movie. Since there are few files and we want to see each of them,
use convert to make an animated GIF file (-delay 200 is suitable).
Filename: tanh_sines.

Remarks. Approximation of a discontinuous (or steep) f(x) by sines,
results in slow convergence and oscillatory behavior of the approximation
close to the abrupt changes in f . This is known as the Gibb’s phenomenon.

Problem 3.7: Approximate a steep function by sines with
boundary adjustment

We study the same approximation problem as in Problem 3.6. Since
ψi(0) = ψi(2π) = 0 for all i, u = 0 at the boundary points x = 0
and x = 2π, while f(0) = −1 and f(2π) = 1. This discrepancy at the
boundary can be removed by adding a boundary function B(x):

u(x) = B(x) +
∑
j∈Is

cjψj(x),

where B(x) has the right boundary values: B(xL) = f(xL) and B(xR) =
f(xR), with xL = 0 and xR = 2π as the boundary points. A linear choice
of B(x) is

B(x) = (xR − x)f(xL) + (x− xL)f(xR)
xR − xL

.

a) Use the basis ψi(x) = sin((i+ 1)x), i ∈ Is = {0, . . . , N} and plot u
and f for N = 16. (It suffices to make plots for even i.)

http://en.wikipedia.org/wiki/Gibbs_phenomenon

3.7 Exercises 71

b) Use the basis from Exercise 3.6, ψi(x) = sin((2i + 1)x), i ∈ Is =
{0, . . . , N}. (It suffices to make plots for even i.) Observe that the
approximation converges to a piecewise linear function!

c) Use the basis ψi(x) = sin(2(i+1)x), i ∈ Is = {0, . . . , N}, and observe
that the approximation converges to a piecewise constant function.
Filename: tanh_sines_boundary_term.

Remarks. The strange results in b) and c) are due to the choice of
basis. In b), ϕi(x) is an odd function around x = π/2 and x = 3π/2. No
combination of basis functions is able to approximate the flat regions
of f . All basis functions in c) are even around x = π/2 and x = 3π/2,
but odd at x = 0, π, 2π. With all the sines represented, as in a), the
approximation is not constrained with a particular symmetry behavior.

Exercise 3.8: Fourier series as a least squares approximation

a) Given a function f(x) on an interval [0, L], look up the formula for
the coefficients aj and bj in the Fourier series of f :

f(x) = 1
2a0 +

∞∑
j=1

aj cos
(
j

2πx
L

)
+
∞∑
j=1

bj sin
(
j

2πx
L

)
.

b) Let an infinite-dimensional vector space V have the basis functions
cos j 2πx

L for j = 0, 1, . . . ,∞ and sin j 2πx
L for j = 1, . . . ,∞. Show that

the least squares approximation method from Section 3.2 leads to a
linear system whose solution coincides with the standard formulas for
the coefficients in a Fourier series of f(x) (see also Section 3.3.2).

Hint. You may choose

ψ2i = cos
(
i
2π
L
x

)
, ψ2i+1 = sin

(
i
2π
L
x

)
, (3.67)

for i = 0, 1, . . . , N →∞.

c) Choose f(x) = H(x − 1
2) on Ω = [0, 1], where H is the Heaviside

function: H(x) = 0 for x < 0, H(x) = 1 for x > 0 and H(0) = 1
2 . Find

the coefficients aj and bj in the Fourier series for f(x). Plot the sum for
j = 2N + 1, where N = 5 and N = 100.
Filename: Fourier_ls.

72 3 Function approximation by global functions

Problem 3.9: Approximate a steep function by Lagrange
polynomials

Use interpolation with uniformly distributed points and Chebychev nodes
to approximate

f(x) = − tanh(s(x− 1
2)), x ∈ [0, 1],

by Lagrange polynomials for s = 5 and s = 20, and N = 3, 7, 11, 15.
Combine 2 × 2 plots of the approximation for the four N values, and
create such figures for the four combinations of s values and point types.
Filename: tanh_Lagrange.

Problem 3.10: Approximate a steep function by Lagrange
polynomials and regression

Redo Problem 3.9, but apply a regression method withN -degree Lagrange
polynomials and 2N + 1 data points. Recall that Problem 3.9 applies
N + 1 points and the resulting approximation interpolates f at these
points, while a regression method with more points does not interpolate
f at the data points. Do more points and a regression method help reduce
the oscillatory behavior of Lagrange polynomial approximations?
Filename: tanh_Lagrange_regression.

Function approximation by finite
elements 4

The purpose of this chapter is to use the ideas from the previous chapter
on how to approximate functions, but the basis functions are now of
finite element type.

4.1 Finite element basis functions

The specific basis functions exemplified in Section 3.2 are in general
nonzero on the entire domain Ω, as can be seen in Figure 4.1, where we
plot two sinusoidal basis functions ψ0(x) = sin 1

2πx and ψ1(x) = sin 2πx
together with the sum u(x) = 4ψ0(x)− 1

2ψ1(x). We shall now turn our
attention to basis functions that have compact support, meaning that they
are nonzero on a small portion of Ω only. Moreover, we shall restrict the
functions to be piecewise polynomials. This means that the domain is split
into subdomains and each basis function is a polynomial on one or more
of these subdomains, see Figure 4.2 for a sketch involving locally defined
hat functions that make u =

∑
j cjψj piecewise linear. At the boundaries

between subdomains, one normally just forces continuity of u, so that
when connecting two polynomials from two subdomains, the derivative
becomes discontinuous. This type of basis functions is fundamental in the
finite element method. (One may wonder why continuity of derivatives is
not desired, and it is, but it turns out to be mathematically challenging
in 2D and 3D, and it is not strictly needed.)

We first introduce the concepts of elements and nodes in a simplistic
fashion. Later, we shall generalize the concept of an element, which is a

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

74 4 Function approximation by finite elements

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4

2

0

2

4
ψ0

ψ1

u=4ψ0−1
2
ψ1

Fig. 4.1 A function resulting from a weighted sum of two sine basis functions.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00

1

2

3

4

5

6

7

8

9

ϕ0 ϕ1 ϕ2

u

Fig. 4.2 A function resulting from a weighted sum of three local piecewise linear (hat)
functions.

necessary step before treating a wider class of approximations within the

4.1 Finite element basis functions 75

family of finite element methods. The generalization is also compatible
with the concepts used in the FEniCS finite element software.

4.1.1 Elements and nodes
Let u and f be defined on an interval Ω. We divide Ω into Ne non-
overlapping subintervals Ω(e), e = 0, . . . , Ne − 1:

Ω = Ω(0) ∪ · · · ∪Ω(Ne) . (4.1)

We shall for now refer to Ω(e) as an element, identified by the unique
number e. On each element we introduce a set of points called nodes.
For now we assume that the nodes are uniformly spaced throughout the
element and that the boundary points of the elements are also nodes. The
nodes are given numbers both within an element and in the global domain.
These are referred to as local and global node numbers, respectively. Local
nodes are numbered with an index r = 0, . . . , d, while the Nn global
nodes are numbered as i = 0, . . . , Nn−1. Figure 4.3 shows nodes as small
circular disks and element boundaries as small vertical lines. Global node
numbers appear under the nodes, but local node numbers are not shown.
Since there are two nodes in each element, the local nodes are numbered
0 (left) and 1 (right) in each element.

543210
x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

Fig. 4.3 Finite element mesh with 5 elements and 6 nodes.

Nodes and elements uniquely define a finite element mesh, which is our
discrete representation of the domain in the computations. A common
special case is that of a uniformly partitioned mesh where each element has
the same length and the distance between nodes is constant. Figure 4.3
shows an example on a uniformly partitioned mesh. The strength of the
finite element method (in contrast to the finite difference method) is that
it is just as easy to work with a non-uniformly partitioned mesh in 3D
as a uniformly partitioned mesh in 1D.

http://fenicsproject.org

76 4 Function approximation by finite elements

Example. On Ω = [0, 1] we may introduce two elements, Ω(0) = [0, 0.4]
and Ω(1) = [0.4, 1]. Furthermore, let us introduce three nodes per element,
equally spaced within each element. Figure 4.4 shows the mesh with
Ne = 2 elements and Nn = 2Ne + 1 = 5 nodes. A node’s coordinate is
denoted by xi, where i is either a global node number or a local one. In
the latter case we also need to know the element number to uniquely
define the node.

The three nodes in element number 0 are x0 = 0, x1 = 0.2, and
x2 = 0.4. The local and global node numbers are here equal. In element
number 1, we have the local nodes x0 = 0.4, x1 = 0.7, and x2 = 1 and
the corresponding global nodes x2 = 0.4, x3 = 0.7, and x4 = 1. Note that
the global node x2 = 0.4 is shared by the two elements.

43210
x

Ω(0) Ω(1)

Fig. 4.4 Finite element mesh with 2 elements and 5 nodes.

For the purpose of implementation, we introduce two lists or arrays:
nodes for storing the coordinates of the nodes, with the global node
numbers as indices, and elements for holding the global node numbers
in each element. By defining elements as a list of lists, where each sublist
contains the global node numbers of one particular element, the indices
of each sublist will correspond to local node numbers for that element.
The nodes and elements lists for the sample mesh above take the form

nodes = [0, 0.2, 0.4, 0.7, 1]
elements = [[0, 1, 2], [2, 3, 4]]

Looking up the coordinate of, e.g., local node number 2 in element 1, is
done by nodes[elements[1][2]] (recall that nodes and elements start
their numbering at 0). The corresponding global node number is 4, so
we could alternatively look up the coordinate as nodes[4].

The numbering of elements and nodes does not need to be regular.
Figure 4.5 shows an example corresponding to

nodes = [1.5, 5.5, 4.2, 0.3, 2.2, 3.1]
elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]

4.1 Finite element basis functions 77

0 1 2 3 4 5 6 7
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

543 2 10

x

Ω(4) Ω(0)Ω(1)Ω(2)Ω(3)

Fig. 4.5 Example on irregular numbering of elements and nodes.

4.1.2 The basis functions

Construction principles. Finite element basis functions are in this text
recognized by the notation ϕi(x), where the index (now in the beginning)
corresponds to a global node number. Since ψi is the symbol for basis
functions in general in this text, the particular choice of finite element
basis functions means that we take ψi = ϕi.

Let i be the global node number corresponding to local node r in
element number e with d+1 local nodes. We distinguish between internal
nodes in an element and shared nodes. The latter are nodes that are
shared with the neighboring elements. The finite element basis functions
ϕi are now defined as follows.

• For an internal node, with global number i and local number r, take
ϕi(x) to be the Lagrange polynomial that is 1 at the local node r and
zero at all other nodes in the element. The degree of the polynomial
is d, according to (3.56). On all other elements, ϕi = 0.

• For a shared node, let ϕi be made up of the Lagrange polynomial
on this element that is 1 at node i, combined with the Lagrange
polynomial over the neighboring element that is also 1 at node i. On
all other elements, ϕi = 0.

A visual impression of three such basis functions is given in Figure 4.6.
When solving differential equations, we need the derivatives of these
basis functions as well, and the corresponding derivatives are shown in
Figure 4.7. Note that the derivatives are highly discontinuous! In these
figures, the domain Ω = [0, 1] is divided into four equal-sized elements,
each having three local nodes. The element boundaries are marked by
vertical dashed lines and the nodes by small circles. The function ϕ2(x)

78 4 Function approximation by finite elements

is composed of a quadratic Lagrange polynomial over element 0 and
1, ϕ3(x) corresponds to an internal node in element 1 and is therefore
nonzero on this element only, while ϕ4(x) is like ϕ2(x) composed to two
Lagrange polynomials over two elements. Also observe that the basis
function ϕi is zero at all nodes, except at global node number i. We also
remark that the shape of a basis function over an element is completely
determined by the coordinates of the local nodes in the element.

Fig. 4.6 Illustration of the piecewise quadratic basis functions associated with nodes in
an element.

0.0 0.2 0.4 0.6 0.8 1.0
2
1
0
1
2

ϕ ′2 (x)

ϕ ′3 (x)

ϕ ′4 (x)

Fig. 4.7 Illustration of the derivatives of the piecewise quadratic basis functions associated
with nodes in an element.

Properties of ϕi. The construction of basis functions according to the
principles above lead to two important properties of ϕi(x). First,

ϕi(xj) = δij , δij =
{

1, i = j,
0, i 6= j,

(4.2)

when xj is a node in the mesh with global node number j. The result
ϕi(xj) = δij is obtained as the Lagrange polynomials are constructed
to have exactly this property. The property also implies a convenient
interpretation of ci as the value of u at node i. To show this, we expand
u in the usual way as

∑
j cjψj and choose ψi = ϕi:

4.1 Finite element basis functions 79

u(xi) =
∑
j∈Is

cjψj(xi) =
∑
j∈Is

cjϕj(xi) = ciϕi(xi) = ci .

Because of this interpretation, the coefficient ci is by many named ui or
Ui.

Second, ϕi(x) is mostly zero throughout the domain:

• ϕi(x) 6= 0 only on those elements that contain global node i,
• ϕi(x)ϕj(x) 6= 0 if and only if i and j are global node numbers in the

same element.

Since Ai,j is the integral of ϕiϕj it means that most of the elements in
the coefficient matrix will be zero. We will come back to these properties
and use them actively in computations to save memory and CPU time.

In our example so far, each element has d+ 1 nodes, resulting in local
Lagrange polynomials of degree d (according to Section 3.4.2), but it is
not a requirement to have the same d value in each element.

4.1.3 Example on quadratic finite element functions

Let us set up the nodes and elements lists corresponding to the mesh
implied by Figure 4.6. Figure 4.8 sketches the mesh and the numbering.
We have

nodes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
elements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]

876543210

x

Ω(0) Ω(1) Ω(2) Ω(3)

Fig. 4.8 Sketch of mesh with 4 elements and 3 nodes per element.

Let us explain mathematically how the basis functions are constructed
according to the principles. Consider element number 1 in Figure 4.8,
Ω(1) = [0.25, 0.5], with local nodes 0, 1, and 2 corresponding to global

80 4 Function approximation by finite elements

nodes 2, 3, and 4. The coordinates of these nodes are 0.25, 0.375, and
0.5, respectively. We define three Lagrange polynomials on this element:

1. The polynomial that is 1 at local node 1 (global node 3) makes up
the basis function ϕ3(x) over this element, with ϕ3(x) = 0 outside
the element.

2. The polynomial that is 1 at local node 0 (global node 2) is the “right
part” of the global basis function ϕ2(x). The “left part” of ϕ2(x)
consists of a Lagrange polynomial associated with local node 2 in the
neighboring element Ω(0) = [0, 0.25].

3. Finally, the polynomial that is 1 at local node 2 (global node 4) is
the “left part” of the global basis function ϕ4(x). The “right part”
comes from the Lagrange polynomial that is 1 at local node 0 in the
neighboring element Ω(2) = [0.5, 0.75].

The specific mathematical form of the polynomials over element 1 is
given by the formula (3.56):

ϕ3(x) = (x− 0.25)(x− 0.5)
(0.375− 0.25)(0.375− 0.5) , x ∈ Ω(1)

ϕ2(x) = (x− 0.375)(x− 0.5)
(0.25− 0.375)(0.25− 0.5) , x ∈ Ω(1)

ϕ4(x) = (x− 0.25)(x− 0.375)
(0.5− 0.25)(0.5− 0.25) , x ∈ Ω(1).

As mentioned earlier, any global basis function ϕi(x) is zero on elements
that do not contain the node with global node number i. Clearly, the
property (4.2) is easily verified, see for instance that ϕ3(0.375) = 1 while
ϕ3(0.25) = 0 and ϕ3(0.5) = 0.

The other global functions associated with internal nodes, ϕ1, ϕ5, and
ϕ7, are all of the same shape as the drawn ϕ3 in Figure 4.6, while the
global basis functions associated with shared nodes have the same shape
as shown ϕ2 and ϕ4. If the elements were of different length, the basis
functions would be stretched according to the element size and hence be
different.

4.1.4 Example on linear finite element functions
Figure 4.9 shows piecewise linear basis functions (d = 1) (with derivatives
in Figure 4.10). These are mathematically simpler than the quadratic

4.1 Finite element basis functions 81

functions in the previous section, and one would therefore think that it
is easier to understand the linear functions first. However, linear basis
functions do not involve internal nodes and are therefore a special case
of the general situation. That is why we think it is better to understand
the construction of quadratic functions first, which easily generalize to
any d > 2, and then look at the special case d = 1.

Fig. 4.9 Illustration of the piecewise linear basis functions associated with nodes in an
element.

0.0 0.2 0.4 0.6 0.8 1.0
0.6
0.4
0.2
0.0
0.2
0.4
0.6

ϕ ′1 (x)

ϕ ′2 (x)

Fig. 4.10 Illustration of the derivatives of piecewise linear basis functions associated
with nodes in an element.

We have the same four elements on Ω = [0, 1]. Now there are no
internal nodes in the elements so that all basis functions are associated
with shared nodes and hence made up of two Lagrange polynomials, one
from each of the two neighboring elements. For example, ϕ1(x) results
from the Lagrange polynomial in element 0 that is 1 at local node 1 and
0 at local node 0, combined with the Lagrange polynomial in element 1
that is 1 at local node 0 and 0 at local node 1. The other basis functions
are constructed similarly.

Explicit mathematical formulas are needed for ϕi(x) in computations.
In the piecewise linear case, the formula (3.56) leads to

82 4 Function approximation by finite elements

ϕi(x) =


0, x < xi−1,
(x− xi−1)/(xi − xi−1), xi−1 ≤ x < xi,
1− (x− xi)/(xi+1 − xi), xi ≤ x < xi+1,
0, x ≥ xi+1 .

(4.3)

Here, xj , j = i−1, i, i+1, denotes the coordinate of node j. For elements
of equal length h the formulas can be simplified to

ϕi(x) =


0, x < xi−1,
(x− xi−1)/h, xi−1 ≤ x < xi,
1− (x− xi)/h, xi ≤ x < xi+1,
0, x ≥ xi+1.

(4.4)

4.1.5 Example on cubic finite element functions
Piecewise cubic basis functions can be defined by introducing four nodes
per element. Figure 4.11 shows examples on ϕi(x), i = 3, 4, 5, 6, associated
with element number 1. Note that ϕ4 and ϕ5 are nonzero only on element
number 1, while ϕ3 and ϕ6 are made up of Lagrange polynomials on two
neighboring elements.

Fig. 4.11 Illustration of the piecewise cubic basis functions associated with nodes in an
element.

We see that all the piecewise linear basis functions have the same
“hat” shape. They are naturally referred to as hat functions, also called
chapeau functions. The piecewise quadratic functions in Figure 4.6 are
seen to be of two types. “Rounded hats” associated with internal nodes
in the elements and some more “sombrero” shaped hats associated with
element boundary nodes. Higher-order basis functions also have hat-like
shapes, but the functions have pronounced oscillations in addition, as
illustrated in Figure 4.11.

A common terminology is to speak about linear elements as elements
with two local nodes associated with piecewise linear basis functions. Sim-

4.1 Finite element basis functions 83

ilarly, quadratic elements and cubic elements refer to piecewise quadratic
or cubic functions over elements with three or four local nodes, respec-
tively. Alternative names, frequently used in the following, are P1 for
linear elements, P2 for quadratic elements, and so forth: Pd signifies
degree d of the polynomial basis functions.

4.1.6 Calculating the linear system

The elements in the coefficient matrix and right-hand side are given by
the formulas (3.28) and (3.29), but now the choice of ψi is ϕi. Consider P1
elements where ϕi(x) is piecewise linear. Nodes and elements numbered
consecutively from left to right in a uniformly partitioned mesh imply
the nodes

xi = ih, i = 0, . . . , Nn − 1,

and the elements

Ω(i) = [xi, xi+1] = [ih, (i+ 1)h], i = 0, . . . , Ne − 1 . (4.5)

We have in this case Ne elements and Nn = Ne+ 1 nodes. The parameter
N denotes the number of unknowns in the expansion for u, and with
the P1 elements, N = Nn. The domain is Ω = [x0, xN]. The formula
for ϕi(x) is given by (4.4) and a graphical illustration is provided in
Figures 4.9 and 4.13.

543210

x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

ϕ2 ϕ3

Fig. 4.12 Illustration of the piecewise linear basis functions corresponding to global node
2 and 3.

Calculating specific matrix entries. Let us calculate the specific matrix
entry A2,3 =

∫
Ω ϕ2ϕ3 dx. Figure 4.12 shows what ϕ2 and ϕ3 look like.

We realize from this figure that the product ϕ2ϕ3 6= 0 only over element
2, which contains node 2 and 3. The particular formulas for ϕ2(x) and

84 4 Function approximation by finite elements

ϕ3(x) on [x2, x3] are found from (4.4). The function ϕ3 has positive slope
over [x2, x3] and corresponds to the interval [xi−1, xi] in (4.4). With i = 3
we get

ϕ3(x) = (x− x2)/h,

while ϕ2(x) has negative slope over [x2, x3] and corresponds to setting
i = 2 in (4.4),

ϕ2(x) = 1− (x− x2)/h .

We can now easily integrate,

A2,3 =
∫
Ω
ϕ2ϕ3 dx =

∫ x3

x2

(
1− x− x2

h

)
x− x2

h
dx = h

6 .

The diagonal entry in the coefficient matrix becomes

A2,2 =
∫ x2

x1

(
x− x1

h

)2
dx+

∫ x3

x2

(
1− x− x2

h

)2
dx = 2h

3 .

The entry A2,1 has an integral that is geometrically similar to the situation
in Figure 4.12, so we get A2,1 = h/6.

Calculating a general row in the matrix. We can now generalize the
calculation of matrix entries to a general row number i. The entry
Ai,i−1 =

∫
Ω ϕiϕi−1 dx involves hat functions as depicted in Figure 4.13.

Since the integral is geometrically identical to the situation with specific
nodes 2 and 3, we realize that Ai,i−1 = Ai,i+1 = h/6 and Ai,i = 2h/3.
However, we can compute the integral directly too:

Ai,i−1 =
∫
Ω
ϕiϕi−1 dx

=
∫ xi−1

xi−2

ϕiϕi−1 dx︸ ︷︷ ︸
ϕi=0

+
∫ xi

xi−1

ϕiϕi−1 dx+
∫ xi+1

xi

ϕiϕi−1 dx︸ ︷︷ ︸
ϕi−1=0

=
∫ xi

xi−1

(
x− xi
h

)
︸ ︷︷ ︸

ϕi(x)

(
1− x− xi−1

h

)
︸ ︷︷ ︸

ϕi−1(x)

dx = h

6 .

The particular formulas for ϕi−1(x) and ϕi(x) on [xi−1, xi] are found
from (4.4): ϕi is the linear function with positive slope, corresponding

4.1 Finite element basis functions 85

to the interval [xi−1, xi] in (4.4), while φi−1 has a negative slope so the
definition in interval [xi, xi+1] in (4.4) must be used.

i+1ii−1i−2

x

ϕi−1 ϕi

Fig. 4.13 Illustration of two neighboring linear (hat) functions with general node numbers.

The first and last row of the coefficient matrix lead to slightly different
integrals:

A0,0 =
∫
Ω
ϕ2

0 dx =
∫ x1

x0

(
1− x− x0

h

)2
dx = h

3 .

Similarly, AN,N involves an integral over only one element and hence
equals h/3.

i+1ii−1i−2

x

ϕi f(x)

Fig. 4.14 Right-hand side integral with the product of a basis function and the given
function to approximate.

The general formula for bi, see Figure 4.14, is now easy to set up

bi =
∫
Ω
ϕi(x)f(x) dx =

∫ xi

xi−1

x− xi−1

h
f(x) dx+

∫ xi+1

xi

(
1− x− xi

h

)
f(x) dx .

(4.6)
We remark that the above formula applies to internal nodes (living at the
interface between two elements) and that for the nodes on the boundaries
only one integral needs to be computed.

We need a specific f(x) function to compute these integrals. With
f(x) = x(1− x) and two equal-sized elements in Ω = [0, 1], one gets

86 4 Function approximation by finite elements

A = h

6

2 1 0
1 4 1
0 1 2

 , b = h2

12

 2− h
12− 14h
10− 17h

 .

The solution becomes

c0 = h2

6 , c1 = h− 5
6h

2, c2 = 2h− 23
6 h

2 .

The resulting function

u(x) = c0ϕ0(x) + c1ϕ1(x) + c2ϕ2(x)

is displayed in Figure 4.15 (left). Doubling the number of elements to
four leads to the improved approximation in the right part of Figure 4.15.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

u
f

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

u
f

Fig. 4.15 Least squares approximation of a parabola using 2 (left) and 4 (right) P1
elements.

4.1.7 Assembly of elementwise computations

Our integral computations so far have been straightforward. However,
with higher-degree polynomials and in higher dimensions (2D and 3D),
integrating in the physical domain gets increasingly complicated. Instead,
integrating over one element at a time, and transforming each element to
a common standardized geometry in a new reference coordinate system,
is technically easier. Almost all computer codes employ a finite element
algorithm that calculates the linear system by integrating over one
element at a time. We shall therefore explain this algorithm next. The
amount of details might be overwhelming during a first reading, but once
all those details are done right, one has a general finite element algorithm

4.1 Finite element basis functions 87

that can be applied to all sorts of elements, in any space dimension, no
matter how geometrically complicated the domain is.

The element matrix. We start by splitting the integral over Ω into a
sum of contributions from each element:

Ai,j =
∫
Ω
ϕiϕj dx =

∑
e

A
(e)
i,j , A

(e)
i,j =

∫
Ω(e)

ϕiϕj dx . (4.7)

Now, A(e)
i,j 6= 0, if and only if, i and j are nodes in element e (look

at Figure 4.13 to realize this property, but the result also holds for
all types of elements). Introduce i = q(e, r) as the mapping of local
node number r in element e to the global node number i. This is just a
short mathematical notation for the expression i=elements[e][r] in a
program. Let r and s be the local node numbers corresponding to the
global node numbers i = q(e, r) and j = q(e, s). With d + 1 nodes per
element, all the nonzero matrix entries in A(e)

i,j arise from the integrals
involving basis functions with indices corresponding to the global node
numbers in element number e:∫

Ω(e)
ϕq(e,r)ϕq(e,s) dx, r, s = 0, . . . , d .

These contributions can be collected in a (d+ 1)× (d+ 1) matrix known
as the element matrix. Let Id = {0, . . . , d} be the valid indices of r and
s. We introduce the notation

Ã(e) = {Ã(e)
r,s}, r, s ∈ Id,

for the element matrix. For P1 elements (d = 2) we have

Ã(e) =
[
Ã

(e)
0,0 Ã

(e)
0,1

Ã
(e)
1,0 Ã

(e)
1,1

]
.

while P2 elements have a 3× 3 element matrix:

Ã(e) =

 Ã
(e)
0,0 Ã

(e)
0,1 Ã

(e)
0,2

Ã
(e)
1,0 Ã

(e)
1,1 Ã

(e)
1,2

Ã
(e)
2,0 Ã

(e)
2,1 Ã

(e)
2,2

 .
Assembly of element matrices. Given the numbers Ã(e)

r,s , we should,
according to (4.7), add the contributions to the global coefficient matrix
by

88 4 Function approximation by finite elements

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã(e)
r,s , r, s ∈ Id . (4.8)

This process of adding in elementwise contributions to the global matrix
is called finite element assembly or simply assembly.

Figure 4.16 illustrates how element matrices for elements with two
nodes are added into the global matrix. More specifically, the figure shows
how the element matrix associated with elements 1 and 2 assembled,
assuming that global nodes are numbered from left to right in the domain.
With regularly numbered P3 elements, where the element matrices have
size 4× 4, the assembly of elements 1 and 2 are sketched in Figure 4.17.

Fig. 4.16 Illustration of matrix assembly: regularly numbered P1 elements.

Assembly of irregularly numbered elements and nodes. After assem-
bly of element matrices corresponding to regularly numbered elements
and nodes are understood, it is wise to study the assembly process for
irregularly numbered elements and nodes. Figure 4.5 shows a mesh where
the elements array, or q(e, r) mapping in mathematical notation, is
given as

elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]

The associated assembly of element matrices 1 and 2 is sketched in
Figure 4.18.

We have created animations to illustrate the assembly of P1 and P3
elements with regular numbering as well as P1 elements with irregular
numbering. The reader is encouraged to develop a “geometric” under-
standing of how element matrix entries are added to the global matrix.

http://hplgit.github.io/fem-book/doc/pub/book//mov/fe_assembly.html

4.1 Finite element basis functions 89

Fig. 4.17 Illustration of matrix assembly: regularly numbered P3 elements.

This understanding is crucial for hand computations with the finite
element method.

Fig. 4.18 Illustration of matrix assembly: irregularly numbered P1 elements.

The element vector. The right-hand side of the linear system is also
computed elementwise:

bi =
∫
Ω
f(x)ϕi(x) dx =

∑
e

b
(e)
i , b

(e)
i =

∫
Ω(e)

f(x)ϕi(x) dx . (4.9)

90 4 Function approximation by finite elements

We observe that b(e)
i 6= 0 if and only if global node i is a node in element

e (look at Figure 4.14 to realize this property). With d nodes per element
we can collect the d+ 1 nonzero contributions b(e)

i , for i = q(e, r), r ∈ Id,
in an element vector

b̃(e)
r = {b̃(e)

r }, r ∈ Id .

These contributions are added to the global right-hand side by an assem-
bly process similar to that for the element matrices:

bq(e,r) := bq(e,r) + b̃(e)
r , r ∈ Id . (4.10)

4.1.8 Mapping to a reference element

Instead of computing the integrals

Ã(e)
r,s =

∫
Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x) dx

over some element Ω(e) = [xL, xR] in the physical coordinate system,
it turns out that it is considerably easier and more convenient to map
the element domain [xL, xR] to a standardized reference element domain
[−1, 1] and compute all integrals over the same domain [−1, 1]. We have
now introduced xL and xR as the left and right boundary points of
an arbitrary element. With a natural, regular numbering of nodes and
elements from left to right through the domain, we have xL = xe and
xR = xe+1 for P1 elements.

The coordinate transformation. Let X ∈ [−1, 1] be the coordinate in
the reference element. A linear mapping, also known as an affine mapping,
from X to x can be written

x = 1
2(xL + xR) + 1

2(xR − xL)X . (4.11)

This relation can alternatively be expressed as

x = xm + 1
2hX, (4.12)

where we have introduced the element midpoint xm = (xL + xR)/2 and
the element length h = xR − xL.

4.1 Finite element basis functions 91

Formulas for the element matrix and vector entries. Integrating over
the reference element is a matter of just changing the integration variable
from x to X. Let

ϕ̃r(X) = ϕq(e,r)(x(X)) (4.13)

be the basis function associated with local node number r in the reference
element. Switching from x to X as integration variable, using the rules
from calculus, results in

Ã(e)
r,s =

∫
Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x) dx =
∫ 1

−1
ϕ̃r(X)ϕ̃s(X) dx

dX dX . (4.14)

In 2D and 3D, dx is transformed to detJ dX, where J is the Jacobian
of the mapping from x to X. In 1D, detJ dX = dx/ dX = h/2. To
obtain a uniform notation for 1D, 2D, and 3D problems we therefore
replace dx/ dX by det J now. The integration over the reference element
is then written as

Ã(e)
r,s =

∫ 1

−1
ϕ̃r(X)ϕ̃s(X) det J dX . (4.15)

The corresponding formula for the element vector entries becomes

b̃(e)
r =

∫
Ω(e)

f(x)ϕq(e,r)(x) dx =
∫ 1

−1
f(x(X))ϕ̃r(X) det J dX . (4.16)

Why reference elements?

The great advantage of using reference elements is that the formulas
for the basis functions, ϕ̃r(X), are the same for all elements and
independent of the element geometry (length and location in the
mesh). The geometric information is “factored out” in the simple
mapping formula and the associated det J quantity. Also, the in-
tegration domain is the same for all elements. All these features
contribute to simplify computer codes and make them more general.

Formulas for local basis functions. The ϕ̃r(x) functions are simply the
Lagrange polynomials defined through the local nodes in the reference

92 4 Function approximation by finite elements

element. For d = 1 and two nodes per element, we have the linear
Lagrange polynomials

ϕ̃0(X) = 1
2(1−X), (4.17)

ϕ̃1(X) = 1
2(1 +X). (4.18)

Quadratic polynomials, d = 2, have the formulas

ϕ̃0(X) = 1
2(X − 1)X, (4.19)

ϕ̃1(X) = 1−X2, (4.20)

ϕ̃2(X) = 1
2(X + 1)X. (4.21)

In general,

ϕ̃r(X) =
d∏

s=0,s 6=r

X −X(s)

X(r) −X(s)
, (4.22)

whereX(0), . . . , X(d) are the coordinates of the local nodes in the reference
element. These are normally uniformly spaced: X(r) = −1 + 2r/d, r ∈ Id.

4.1.9 Example on integration over a reference element

To illustrate the concepts from the previous section in a specific example,
we now consider calculation of the element matrix and vector for a
specific choice of d and f(x). A simple choice is d = 1 (P1 elements) and
f(x) = x(1 − x) on Ω = [0, 1]. We have the general expressions (4.15)
and (4.16) for Ã(e)

r,s and b̃(e)
r . Writing these out for the choices (4.17) and

(4.18), and using that det J = h/2, we can do the following calculations
of the element matrix entries:

4.1 Finite element basis functions 93

Ã
(e)
0,0 =

∫ 1

−1
ϕ̃0(X)ϕ̃0(X)h2 dX

=
∫ 1

−1

1
2(1−X)1

2(1−X)h2 dX = h

8

∫ 1

−1
(1−X)2 dX = h

3 , (4.23)

Ã
(e)
1,0 =

∫ 1

−1
ϕ̃1(X)ϕ̃0(X)h2 dX

=
∫ 1

−1

1
2(1 +X)1

2(1−X)h2 dX = h

8

∫ 1

−1
(1−X2) dX = h

6 , (4.24)

Ã
(e)
0,1 = Ã

(e)
1,0, (4.25)

Ã
(e)
1,1 =

∫ 1

−1
ϕ̃1(X)ϕ̃1(X)h2 dX

=
∫ 1

−1

1
2(1 +X)1

2(1 +X)h2 dX = h

8

∫ 1

−1
(1 +X)2 dX = h

3 . (4.26)

The corresponding entries in the element vector becomes using (4.12))

b̃
(e)
0 =

∫ 1

−1
f(x(X))ϕ̃0(X)h2 dX

=
∫ 1

−1
(xm + 1

2hX)(1− (xm + 1
2hX))1

2(1−X)h2 dX

= − 1
24h

3 + 1
6h

2xm −
1
12h

2 − 1
2hx

2
m + 1

2hxm, (4.27)

b̃
(e)
1 =

∫ 1

−1
f(x(X))ϕ̃1(X)h2 dX

=
∫ 1

−1
(xm + 1

2hX)(1− (xm + 1
2hX))1

2(1 +X)h2 dX

= − 1
24h

3 − 1
6h

2xm + 1
12h

2 − 1
2hx

2
m + 1

2hxm . (4.28)

In the last two expressions we have used the element midpoint xm.
Integration of lower-degree polynomials above is tedious, and higher-

degree polynomials involve much more algebra, but sympy may help. For
example, we can easily calculate (4.23), (4.24), and (4.27) by

>>> import sympy as sym
>>> x, x_m, h, X = sym.symbols(’x x_m h X’)
>>> sym.integrate(h/8*(1-X)**2, (X, -1, 1))
h/3
>>> sym.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6
>>> x = x_m + h/2*X

94 4 Function approximation by finite elements

>>> b_0 = sym.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print(b_0)
-h**3/24 + h**2*x_m/6 - h**2/12 - h*x_m**2/2 + h*x_m/2

4.2 Implementation

Based on the experience from the previous example, it makes sense to
write some code to automate the analytical integration process for any
choice of finite element basis functions. In addition, we can automate
the assembly process and the solution of the linear system. Another
advantage is that the code for these purposes document all details of all
steps in the finite element computational machinery. The complete code
can be found in the module file fe_approx1D.py.

4.2.1 Integration

First we need a Python function for defining ϕ̃r(X) in terms of a Lagrange
polynomial of degree d:

import sympy as sym
import numpy as np

def basis(d, point_distribution=’uniform’, symbolic=False):
"""
Return all local basis function phi as functions of the
local point X in a 1D element with d+1 nodes.
If symbolic=True, return symbolic expressions, else
return Python functions of X.
point_distribution can be ’uniform’ or ’Chebyshev’.
"""
X = sym.symbols(’X’)
if d == 0:

phi_sym = [1]
else:

if point_distribution == ’uniform’:
if symbolic:
Compute symbolic nodes

h = sym.Rational(1, d) # node spacing
nodes = [2*i*h - 1 for i in range(d+1)]

else:
nodes = np.linspace(-1, 1, d+1)

elif point_distribution == ’Chebyshev’:
Just numeric nodes
nodes = Chebyshev_nodes(-1, 1, d)

http://tinyurl.com/znpudbt/fe_approx1D.py

4.2 Implementation 95

phi_sym = [Lagrange_polynomial(X, r, nodes)
for r in range(d+1)]

Transform to Python functions
phi_num = [sym.lambdify([X], phi_sym[r], modules=’numpy’)

for r in range(d+1)]
return phi_sym if symbolic else phi_num

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

Observe how we construct the phi_sym list to be symbolic expressions
for ϕ̃r(X) with X as a Symbol object from sympy. Also note that the
Lagrange_polynomial function (here simply copied from Section 3.3.2)
works with both symbolic and numeric variables.

Now we can write the function that computes the element matrix with a
list of symbolic expressions for ϕr (phi = basis(d, symbolic=True)):

def element_matrix(phi, Omega_e, symbolic=True):
n = len(phi)
A_e = sym.zeros(n, n)
X = sym.Symbol(’X’)
if symbolic:

h = sym.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
detJ = h/2 # dx/dX
for r in range(n):

for s in range(r, n):
A_e[r,s] = sym.integrate(phi[r]*phi[s]*detJ, (X, -1, 1))
A_e[s,r] = A_e[r,s]

return A_e

In the symbolic case (symbolic is True), we introduce the element length
as a symbol h in the computations. Otherwise, the real numerical value
of the element interval Omega_e is used and the final matrix elements
are numbers, not symbols. This functionality can be demonstrated:

>>> from fe_approx1D import *
>>> phi = basis(d=1, symbolic=True)
>>> phi
[-X/2 + 1/2, X/2 + 1/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
[h/6, h/3]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.0166666666666667]
[0.0166666666666667, 0.0333333333333333]

96 4 Function approximation by finite elements

The computation of the element vector is done by a similar procedure:

def element_vector(f, phi, Omega_e, symbolic=True):
n = len(phi)
b_e = sym.zeros(n, 1)
Make f a function of X
X = sym.Symbol(’X’)
if symbolic:

h = sym.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
x = (Omega_e[0] + Omega_e[1])/2 + h/2*X # mapping
f = f.subs(’x’, x) # substitute mapping formula for x
detJ = h/2 # dx/dX
for r in range(n):

b_e[r] = sym.integrate(f*phi[r]*detJ, (X, -1, 1))
return b_e

Here we need to replace the symbol x in the expression for f by the
mapping formula such that f can be integrated in terms of X, cf. the
formula b̃(e)

r =
∫ 1
−1 f(x(X))ϕ̃r(X)h2 dX.

The integration in the element matrix function involves only products
of polynomials, which sympy can easily deal with, but for the right-
hand side sympy may face difficulties with certain types of expressions
f. The result of the integral is then an Integral object and not a
number or expression as when symbolic integration is successful. It may
therefore be wise to introduce a fall back to the numerical integration. The
symbolic integration can also spend considerable time before reaching an
unsuccessful conclusion, so we may also introduce a parameter symbolic
to turn symbolic integration on and off:

def element_vector(f, phi, Omega_e, symbolic=True):
...
if symbolic:

I = sym.integrate(f*phi[r]*detJ, (X, -1, 1))
if not symbolic or isinstance(I, sym.Integral):

h = Omega_e[1] - Omega_e[0] # Ensure h is numerical
detJ = h/2
integrand = sym.lambdify([X], f*phi[r]*detJ, ’mpmath’)
I = mpmath.quad(integrand, [-1, 1])

b_e[r] = I
...

Numerical integration requires that the symbolic integrand is converted
to a plain Python function (integrand) and that the element length h
is a real number.

4.2 Implementation 97

4.2.2 Linear system assembly and solution

The complete algorithm for computing and assembling the elementwise
contributions takes the following form

def assemble(nodes, elements, phi, f, symbolic=True):
N_n, N_e = len(nodes), len(elements)
if symbolic:

A = sym.zeros(N_n, N_n)
b = sym.zeros(N_n, 1) # note: (N_n, 1) matrix

else:
A = np.zeros((N_n, N_n))
b = np.zeros(N_n)

for e in range(N_e):
Omega_e = [nodes[elements[e][0]], nodes[elements[e][-1]]]

A_e = element_matrix(phi, Omega_e, symbolic)
b_e = element_vector(f, phi, Omega_e, symbolic)

for r in range(len(elements[e])):
for s in range(len(elements[e])):

A[elements[e][r],elements[e][s]] += A_e[r,s]
b[elements[e][r]] += b_e[r]

return A, b

The nodes and elements variables represent the finite element mesh as
explained earlier.

Given the coefficient matrix A and the right-hand side b, we can
compute the coefficients {cj}j∈Is in the expansion u(x) =

∑
j cjϕj as the

solution vector c of the linear system:

if symbolic:
c = A.LUsolve(b)

else:
c = np.linalg.solve(A, b)

When A and b are sympy arrays, the solution procedure implied by
A.LUsolve is symbolic. Otherwise, A and b are numpy arrays and a
standard numerical solver is called. The symbolic version is suited for
small problems only (small N values) since the calculation time becomes
prohibitively large otherwise. Normally, the symbolic integration will be
more time consuming in small problems than the symbolic solution of
the linear system.

98 4 Function approximation by finite elements

4.2.3 Example on computing symbolic approximations
We can exemplify the use of assemble on the computational case from
Section 4.1.6 with two P1 elements (linear basis functions) on the domain
Ω = [0, 1]. Let us first work with a symbolic element length:

>>> h, x = sym.symbols(’h x’)
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1, symbolic=True)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0]
[h/6, 2*h/3, h/6]
[0, h/6, h/3]
>>> b
[h**2/6 - h**3/12]
[h**2 - 7*h**3/6]
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
>>> c
[h**2/6]
[12*(7*h**2/12 - 35*h**3/72)/(7*h)]
[7*(4*h**2/7 - 23*h**3/21)/(2*h)]

4.2.4 Using interpolation instead of least squares
As an alternative to the least squares formulation, we may compute the c
vector based on the interpolation method from Section 3.4.1, using finite
element basis functions. Choosing the nodes as interpolation points, the
method can be written as

u(xi) =
∑
j∈Is

cjϕj(xi) = f(xi), i ∈ Is .

The coefficient matrix Ai,j = ϕj(xi) becomes the identity matrix because
basis function number j vanishes at all nodes, except node i: ϕj(xi) = δij .
Therefore, ci = f(xi).

The associated sympy calculations are

>>> fn = sym.lambdify([x], f)
>>> c = [fn(xc) for xc in nodes]
>>> c
[0, h*(1 - h), 2*h*(1 - 2*h)]

These expressions are much simpler than those based on least squares or
projection in combination with finite element basis functions. However,

4.2 Implementation 99

which of the two methods that is most appropriate for a given task is
problem-dependent, so we need both methods in our toolbox.

4.2.5 Example on computing numerical approximations

The numerical computations corresponding to the symbolic ones in
Section 4.2.3 (still done by sympy and the assemble function) go as
follows:

>>> nodes = [0, 0.5, 1]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1, symbolic=True)
>>> x = sym.Symbol(’x’)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>>> A
[0.166666666666667, 0.0833333333333333, 0]
[0.0833333333333333, 0.333333333333333, 0.0833333333333333]
[0, 0.0833333333333333, 0.166666666666667]
>>> b
[0.03125]
[0.104166666666667]
[0.03125]
>>> c = A.LUsolve(b)
>>> c
[0.0416666666666666]
[0.291666666666667]
[0.0416666666666666]

The fe_approx1D module contains functions for generating the nodes
and elements lists for equal-sized elements with any number of nodes
per element. The coordinates in nodes can be expressed either through
the element length symbol h (symbolic=True) or by real numbers
(symbolic=False):

nodes, elements = mesh_uniform(N_e=10, d=3, Omega=[0,1],
symbolic=True)

There is also a function

def approximate(f, symbolic=False, d=1, N_e=4, filename=’tmp.pdf’):

which computes a mesh with N_e elements, basis functions of degree d, and
approximates a given symbolic expression f by a finite element expansion
u(x) =

∑
j cjϕj(x). When symbolic is False, u(x) =

∑
j cjϕj(x) can be

computed at a (large) number of points and plotted together with f(x).
The construction of the pointwise function u from the solution vector
c is done elementwise by evaluating

∑
r crϕ̃r(X) at a (large) number of

100 4 Function approximation by finite elements

points in each element in the local coordinate system, and the discrete
(x, u) values on each element are stored in separate arrays that are finally
concatenated to form a global array for x and for u. The details are
found in the u_glob function in fe_approx1D.py.

4.2.6 The structure of the coefficient matrix

Let us first see how the global matrix looks if we assemble symbolic
element matrices, expressed in terms of h, from several elements:

>>> d=1; N_e=8; Omega=[0,1] # 8 linear elements on [0,1]
>>> phi = basis(d)
>>> f = x*(1-x)
>>> nodes, elements = mesh_symbolic(N_e, d, Omega)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0, 0, 0, 0, 0, 0, 0]
[h/6, 2*h/3, h/6, 0, 0, 0, 0, 0, 0]
[0, h/6, 2*h/3, h/6, 0, 0, 0, 0, 0]
[0, 0, h/6, 2*h/3, h/6, 0, 0, 0, 0]
[0, 0, 0, h/6, 2*h/3, h/6, 0, 0, 0]
[0, 0, 0, 0, h/6, 2*h/3, h/6, 0, 0]
[0, 0, 0, 0, 0, h/6, 2*h/3, h/6, 0]
[0, 0, 0, 0, 0, 0, h/6, 2*h/3, h/6]
[0, 0, 0, 0, 0, 0, 0, h/6, h/3]

The reader is encouraged to assemble the element matrices by hand and
verify this result, as this exercise will give a hands-on understanding of
what the assembly is about. In general we have a coefficient matrix that
is tridiagonal:

A = h

6



2 1 0 · · · · · · · · · · · · · · · 0
1 4 1
0 1 4 1
... 0

...
...
... 0 1 4 1
... 0
... . . . 1 4 1
0 · · · · · · · · · · · · · · · 0 1 2



(4.29)

4.2 Implementation 101

The structure of the right-hand side is more difficult to reveal since it
involves an assembly of elementwise integrals of f(x(X))ϕ̃r(X)h/2, which
obviously depend on the particular choice of f(x). Numerical integration
can give some insight into the nature of the right-hand side. For this
purpose it is easier to look at the integration in x coordinates, which
gives the general formula (4.6). For equal-sized elements of length h, we
can apply the Trapezoidal rule at the global node points to arrive at

bi = h

1
2ϕi(x0)f(x0) + 1

2ϕi(xN)f(xN) +
N−1∑
j=1

ϕi(xj)f(xj)

 ,
which leads to

bi =
{

1
2hf(xi), i = 0 or i = N,
hf(xi), 1 ≤ i ≤ N − 1 (4.30)

The reason for this simple formula is just that ϕi is either 0 or 1 at the
nodes and 0 at all but one of them.

Going to P2 elements (d=2) leads to the element matrix

A(e) = h

30

 4 2 −1
2 16 2
−1 2 4

 , (4.31)

and the following global matrix, assembled here from four elements:

A = h

30



4 2 −1 0 0 0 0 0 0
2 16 2 0 0 0 0 0 0
−1 2 8 2 −1 0 0 0 0
0 0 2 16 2 0 0 0 0
0 0 −1 2 8 2 −1 0 0
0 0 0 0 2 16 2 0 0
0 0 0 0 −1 2 8 2 −1
0 0 0 0 0 0 2 16 2
0 0 0 0 0 0 −1 2 4


. (4.32)

In general, for i odd we have the nonzero elements

Ai,i−2 = −1, Ai−1,i = 2, Ai,i = 8, Ai+1,i = 2, Ai+2,i = −1,

multiplied by h/30, and for i even we have the nonzero elements

102 4 Function approximation by finite elements

Ai−1,i = 2, Ai,i = 16, Ai+1,i = 2,

multiplied by h/30. The rows with odd numbers correspond to nodes at
the element boundaries and get contributions from two neighboring ele-
ments in the assembly process, while the even numbered rows correspond
to internal nodes in the elements where only one element contributes to
the values in the global matrix.

4.2.7 Applications

With the aid of the approximate function in the fe_approx1D module we
can easily investigate the quality of various finite element approximations
to some given functions. Figure 4.19 shows how linear and quadratic
elements approximate the polynomial f(x) = x(1 − x)8 on Ω = [0, 1],
using equal-sized elements. The results arise from the program

import sympy as sym
from fe_approx1D import approximate
x = sym.Symbol(’x’)

approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=4)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=2)
approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=8)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=4)

The quadratic functions are seen to be better than the linear ones for the
same value of N , as we increase N . This observation has some generality:
higher degree is not necessarily better on a coarse mesh, but it is as we
refine the mesh and the function becomes properly resolved.

4.2.8 Sparse matrix storage and solution

Some of the examples in the preceding section took several minutes to com-
pute, even on small meshes consisting of up to eight elements. The main
explanation for slow computations is unsuccessful symbolic integration:
sympy may use a lot of energy on integrals like

∫
f(x(X))ϕ̃r(X)h/2 dx

before giving up, and the program then resorts to numerical integration.
Codes that can deal with a large number of basis functions and accept
flexible choices of f(x) should compute all integrals numerically and
replace the matrix objects from sympy by the far more efficient array
objects from numpy.

4.2 Implementation 103

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.00

0.01

0.02

0.03

0.04

0.05

u
f

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.00

0.01

0.02

0.03

0.04

0.05

u
f

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.00

0.01

0.02

0.03

0.04

0.05

u
f

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.00

0.01

0.02

0.03

0.04

0.05

u
f

Fig. 4.19 Comparison of the finite element approximations: 4 P1 elements with 5 nodes
(upper left), 2 P2 elements with 5 nodes (upper right), 8 P1 elements with 9 nodes (lower
left), and 4 P2 elements with 9 nodes (lower right).

There is also another (potential) reason for slow code: the solution
algorithm for the linear system performs much more work than necessary.
Most of the matrix entries Ai,j are zero, because (ϕi, ϕj) = 0 unless i
and j are nodes in the same element. In 1D problems, we do not need to
store or compute with these zeros when solving the linear system, but
that requires solution methods adapted to the kind of matrices produced
by the finite element approximations.

A matrix whose majority of entries are zeros, is known as a sparse
matrix. Utilizing sparsity in software dramatically decreases the storage
demands and the CPU-time needed to compute the solution of the
linear system. This optimization is not very critical in 1D problems
where modern computers can afford computing with all the zeros in the
complete square matrix, but in 2D and especially in 3D, sparse matrices
are fundamental for feasible finite element computations. One of the
advantageous features of the finite element method is that it produces
very sparse matrices. The reason is that the basis functions have local

https://en.wikipedia.org/wiki/Sparse_matrix

104 4 Function approximation by finite elements

support such that the product of two basis functions, as typically met in
integrals, is mostly zero.

Using a numbering of nodes and elements from left to right over a
1D domain, the assembled coefficient matrix has only a few diagonals
different from zero. More precisely, 2d + 1 diagonals around the main
diagonal are different from zero, where d is the order of the polynomial.
With a different numbering of global nodes, say a random ordering,
the diagonal structure is lost, but the number of nonzero elements is
unaltered. Figures 4.20 and 4.21 exemplify sparsity patterns.

Fig. 4.20 Matrix sparsity pattern for left-to-right numbering (left) and random numbering
(right) of nodes in P1 elements.

Fig. 4.21 Matrix sparsity pattern for left-to-right numbering (left) and random numbering
(right) of nodes in P3 elements.

The scipy.sparse library supports creation of sparse matrices and
linear system solution.

• scipy.sparse.diags for matrix defined via diagonals
• scipy.sparse.dok_matrix for matrix incrementally defined via index

pairs (i, j)

The dok_matrix object is most convenient for finite element compu-
tations. This sparse matrix format is called DOK, which stands for

4.3 Comparison of finite elements and finite differences 105

Dictionary Of Keys: the implementation is basically a dictionary (hash)
with the entry indices (i,j) as keys.

Rather than declaring A = np.zeros((N_n, N_n)), a DOK sparse
matrix is created by

import scipy.sparse
A = scipy.sparse.dok_matrix((N_n, N_n))

When there is any need to set or add some matrix entry i,j, just do

A[i,j] = entry
or
A[i,j] += entry

The indexing creates the matrix entry on the fly, and only the nonzero
entries in the matrix will be stored.

To solve a system with right-hand side b (one-dimensional numpy
array) with a sparse coefficient matrix A, we must use some kind of
a sparse linear system solver. The safest choice is a method based on
sparse Gaussian elimination. One high-quality package for this purpose
if UMFPACK. It is interfaced from SciPy by

import scipy.sparse.linalg
c = scipy.sparse.linalg.spsolve(A.tocsr(), b, use_umfpack=True)

The call A.tocsr() is not strictly needed (a warning is issued otherwise),
but ensures that the solution algorithm can efficiently work with a copy
of the sparse matrix in Compressed Sparse Row (CSR) format.

An advantage of the scipy.sparse.diags matrix over the DOK for-
mat is that the former allows vectorized assignment to the matrix. Vec-
torization is possible for approximation problems when all elements are
of the same type. However, when solving differential equations, vectoriza-
tion may be more difficult in particular because of boundary conditions.
It also appears that the DOK sparse matrix format available in the
scipy.sparse package is fast enough even for big 1D problems on to-
day’s laptops, so the need for improving efficiency occurs only in 2D
and 3D problems, but then the complexity of the mesh favors the DOK
format.

4.3 Comparison of finite elements and finite differences

The previous sections on approximating f by a finite element function u
utilize the projection/Galerkin or least squares approaches to minimize

https://en.wikipedia.org/wiki/UMFPACK

106 4 Function approximation by finite elements

the approximation error. We may, alternatively, use the collocation/in-
terpolation method as described in Section 4.2.4. Here we shall compare
these three approaches with what one does in the finite difference method
when representing a given function on a mesh.

4.3.1 Finite difference approximation of given functions
Approximating a given function f(x) on a mesh in a finite difference
context will typically just sample f at the mesh points. If ui is the value
of the approximate u at the mesh point xi, we have ui = f(xi). The
collocation/interpolation method using finite element basis functions
gives exactly the same representation, as shown Section 4.2.4,

u(xi) = ci = f(xi) .

How does a finite element Galerkin or least squares approximation
differ from this straightforward interpolation of f? This is the question
to be addressed next. We now limit the scope to P1 elements since this
is the element type that gives formulas closest to those arising in the
finite difference method.

4.3.2 Interpretation of a finite element approximation in
terms of finite difference operators

The linear system arising from a Galerkin or least squares approximation
reads in general ∑

j∈Is
cj(ψi, ψj) = (f, ψi), i ∈ Is .

In the finite element approximation we choose ψi = ϕi. With ϕi corre-
sponding to P1 elements and a uniform mesh of element length h we have
in Section 4.1.6 calculated the matrix with entries (ϕi, ϕj). Equation
number i reads

h

6 (ui−1 + 4ui + ui+1) = (f, ϕi) . (4.33)

The first and last equation, corresponding to i = 0 and i = N are slightly
different, see Section 4.2.6.

The finite difference counterpart to (4.33) is just ui = fi as explained
in Section 4.3.1. To more easier compare this result to the finite element

4.3 Comparison of finite elements and finite differences 107

approach to approximating functions, we can rewrite the left-hand side
of (4.33) as

h(ui + 1
6(ui−1 − 2ui + ui+1)) . (4.34)

Thinking in terms of finite differences, we can write this expression using
finite difference operator notation:

[h(u+ h2

6 DxDxu)]i,

which is nothing but the standard discretization of (see also Ap-
pendix A.1)

h(u+ h2

6 u
′′) .

Before interpreting the approximation procedure as solving a differ-
ential equation, we need to work out what the right-hand side is in the
context of P1 elements. Since ϕi is the linear function that is 1 at xi and
zero at all other nodes, only the interval [xi−1, xi+1] contribute to the
integral on the right-hand side. This integral is naturally split into two
parts according to (4.4):

(f, ϕi) =
∫ xi

xi−1

f(x) 1
h

(x− xi−1) dx+
∫ xi+1

xi

f(x)(1− 1
h

(x− xi)) dx .

However, if f is not known we cannot do much else with this expression. It
is clear that many values of f around xi contribute to the right-hand side,
not just the single point value f(xi) as in the finite difference method.

To proceed with the right-hand side, we can turn to numerical inte-
gration schemes. The Trapezoidal method for (f, ϕi), based on sampling
the integrand fϕi at the node points xi = ih gives

(f, ϕi) =
∫
Ω
fϕi dx ≈ h

1
2(f(x0)ϕi(x0)+f(xN)ϕi(xN))+h

N−1∑
j=1

f(xj)ϕi(xj) .

Since ϕi is zero at all these points, except at xi, the Trapezoidal rule
collapses to one term:

(f, ϕi) ≈ hf(xi), (4.35)

108 4 Function approximation by finite elements

for i = 1, . . . , N − 1, which is the same result as with collocation/inter-
polation, and of course the same result as in the finite difference method.
For the end points i = 0 and i = N we get contribution from only one
element so

(f, ϕi) ≈
1
2hf(xi), i = 0, i = N . (4.36)

Simpson’s rule with sample points also in the middle of the elements,
at xi+ 1

2
= (xi + xi+1)/2, can be written as

∫
Ω
g(x) dx ≈ h̃

3

g(x0) + 2
N−1∑
j=1

g(xj) + 4
N−1∑
j=0

g(xj+ 1
2
) + f(x2N)

 ,
where h̃ = h/2 is the spacing between the sample points. Our inte-
grand is g = fϕi. For all the node points, ϕi(xj) = δij , and there-
fore

∑N−1
j=1 f(xj)ϕi(xj) = f(xi). At the midpoints, ϕi(xi± 1

2
) = 1/2 and

ϕi(xj+ 1
2
) = 0 for j > 1 and j < i− 1. Consequently,

N−1∑
j=0

f(xj+ 1
2
)ϕi(xj+ 1

2
) = 1

2(f(xj− 1
2
) + f(xj+ 1

2
)) .

When 1 ≤ i ≤ N − 1 we then get

(f, ϕi) ≈
h

3 (fi− 1
2

+ fi + fi+ 1
2
) . (4.37)

This result shows that, with Simpson’s rule, the finite element method
operates with the average of f over three points, while the finite difference
method just applies f at one point. We may interpret this as a "smearing"
or smoothing of f by the finite element method.

We can now summarize our findings. With the approximation of (f, ϕi)
by the Trapezoidal rule, P1 elements give rise to equations that can be
expressed as a finite difference discretization of

u+ h2

6 u
′′ = f, u′(0) = u′(L) = 0, (4.38)

expressed with operator notation as

[u+ h2

6 DxDxu = f]i . (4.39)

4.3 Comparison of finite elements and finite differences 109

As h→ 0, the extra term proportional to u′′ goes to zero, and the two
methods converge to the same solution.

With the Simpson’s rule, we may say that we solve

[u+ h2

6 DxDxu = f̄]i, (4.40)

where f̄i means the average 1
3(fi−1/2 + fi + fi+1/2).

The extra term h2

6 u
′′ represents a smoothing effect: with just this

term, we would find u by integrating f twice and thereby smooth f
considerably. In addition, the finite element representation of f involves
an average, or a smoothing, of f on the right-hand side of the equation
system. If f is a noisy function, direct interpolation ui = fi may result
in a noisy u too, but with a Galerkin or least squares formulation and P1
elements, we should expect that u is smoother than f unless h is very
small.

The interpretation that finite elements tend to smooth the solution is
valid in applications far beyond approximation of 1D functions.

4.3.3 Making finite elements behave as finite differences

With a simple trick, using numerical integration, we can easily produce
the result ui = fi with the Galerkin or least square formulation with
P1 elements. This is useful in many occasions when we deal with more
difficult differential equations and want the finite element method to
have properties like the finite difference method (solving standard linear
wave equations is one primary example).

Computations in physical space. We have already seen that applying
the Trapezoidal rule to the right-hand side (f, ϕi) simply gives f sampled
at xi. Using the Trapezoidal rule on the matrix entries Ai,j = (ϕi, ϕj)
involves a sum ∑

k

ϕi(xk)ϕj(xk),

but ϕi(xk) = δik and ϕj(xk) = δjk. The product ϕiϕj is then differ-
ent from zero only when sampled at xi and i = j. The Trapezoidal
approximation to the integral is then

(ϕi, ϕj) ≈ h, i = j,

110 4 Function approximation by finite elements

and zero if i 6= j. This means that we have obtained a diagonal matrix!
The first and last diagonal elements, (ϕ0, ϕ0) and (ϕN , ϕN) get contribu-
tion only from the first and last element, respectively, resulting in the
approximate integral value h/2. The corresponding right-hand side also
has a factor 1/2 for i = 0 and i = N . Therefore, the least squares or
Galerkin approach with P1 elements and Trapezoidal integration results
in

ci = fi, i ∈ Is .

Simpsons’s rule can be used to achieve a similar result for P2 elements,
i.e, a diagonal coefficient matrix, but with the previously derived average
of f on the right-hand side.

Elementwise computations. Identical results to those above will arise if
we perform elementwise computations. The idea is to use the Trapezoidal
rule on the reference element for computing the element matrix and vector.
When assembled, the same equations ci = f(xi) arise. Exercise 4.10
encourages you to carry out the details.

Terminology. The matrix with entries (ϕi, ϕj) typically arises from
terms proportional to u in a differential equation where u is the unknown
function. This matrix is often called the mass matrix, because in the
early days of the finite element method, the matrix arose from the mass
times acceleration term in Newton’s second law of motion. Making the
mass matrix diagonal by, e.g., numerical integration, as demonstrated
above, is a widely used technique and is called mass lumping. In time-
dependent problems it can sometimes enhance the numerical accuracy
and computational efficiency of the finite element method. However, there
are also examples where mass lumping destroys accuracy.

4.4 A generalized element concept

So far, finite element computing has employed the nodes and element
lists together with the definition of the basis functions in the reference el-
ement. Suppose we want to introduce a piecewise constant approximation
with one basis function ϕ̃0(x) = 1 in the reference element, corresponding
to a ϕi(x) function that is 1 on element number i and zero on all other
elements. Although we could associate the function value with a node
in the middle of the elements, there are no nodes at the ends, and the

4.4 A generalized element concept 111

previous code snippets will not work because we cannot find the element
boundaries from the nodes list.

In order to get a richer space of finite element approximations, we
need to revise the simple node and element concept presented so far
and introduce a more powerful terminology. Much literature employs the
definition of node and element introduced in the previous sections so
it is important have this knowledge, besides being a good pedagogical
background for understanding the extended element concept in the
following.

4.4.1 Cells, vertices, and degrees of freedom

We now introduce cells as the subdomains Ω(e) previously referred to as
elements. The cell boundaries are uniquely defined in terms of vertices.
This applies to cells in both 1D and higher dimensions. We also define
a set of degrees of freedom (dof), which are the quantities we aim to
compute. The most common type of degree of freedom is the value of
the unknown function u at some point. (For example, we can introduce
nodes as before and say the degrees of freedom are the values of u at
the nodes.) The basis functions are constructed so that they equal unity
for one particular degree of freedom and zero for the rest. This property
ensures that when we evaluate u =

∑
j cjϕj for degree of freedom number

i, we get u = ci. Integrals are performed over cells, usually by mapping
the cell of interest to a reference cell.

With the concepts of cells, vertices, and degrees of freedom we increase
the decoupling of the geometry (cell, vertices) from the space of basis
functions. We will associate different sets of basis functions with a cell. In
1D, all cells are intervals, while in 2D we can have cells that are triangles
with straight sides, or any polygon, or in fact any two-dimensional
geometry. Triangles and quadrilaterals are most common, though. The
popular cell types in 3D are tetrahedra and hexahedra.

4.4.2 Extended finite element concept

The concept of a finite element is now

• a reference cell in a local reference coordinate system;
• a set of basis functions ϕ̃i defined on the cell;

112 4 Function approximation by finite elements

• a set of degrees of freedom that uniquely determine how basis functions
from different elements are glued together across element interfaces.
A common technique is to choose the basis functions such that ϕ̃i = 1
for degree of freedom number i that is associated with nodal point xi
and ϕ̃i = 0 for all other degrees of freedom. This technique ensures
the desired continuity;

• a mapping between local and global degree of freedom numbers, here
called the dof map;

• a geometric mapping of the reference cell onto the cell in the physical
domain.

There must be a geometric description of a cell. This is trivial in 1D since
the cell is an interval and is described by the interval limits, here called
vertices. If the cell is Ω(e) = [xL, xR], vertex 0 is xL and vertex 1 is xR.
The reference cell in 1D is [−1, 1] in the reference coordinate system X.

The expansion of u over one cell is often used:

u(x) = ũ(X) =
∑
r

crϕ̃r(X), x ∈ Ω(e), X ∈ [−1, 1], (4.41)

where the sum is taken over the numbers of the degrees of freedom and
cr is the value of u for degree of freedom number r.

Our previous P1, P2, etc., elements are defined by introducing d+ 1
equally spaced nodes in the reference cell, a polynomial space (Pd)
containing a complete set of polynomials of order d, and saying that the
degrees of freedom are the d+ 1 function values at these nodes. The basis
functions must be 1 at one node and 0 at the others, and the Lagrange
polynomials have exactly this property. The nodes can be numbered from
left to right with associated degrees of freedom that are numbered in the
same way. The degree of freedom mapping becomes what was previously
represented by the elements lists. The cell mapping is the same affine
mapping (4.11) as before.

Notice
The extended finite element concept introduced above is quite
general and has served as a successful recipe for implementing many
finite element frameworks and for developing the theory behind.
Here, we have seen several different examples but the exposition is
most focused on 1D examples and the diversity is limited as many

4.4 A generalized element concept 113

of the different methods in 2D and 3D collapse to the same method
in 1D. The curious reader is advised to for instance look into the
numerous examples of finite elements implemented in FEniCS [23]
to gain insight into the variety of methods that exists.

4.4.3 Implementation

Implementationwise,

• we replace nodes by vertices;
• we introduce cells such that cell[e][r] gives the mapping from

local vertex r in cell e to the global vertex number in vertices;
• we replace elements by dof_map (the contents are the same for Pd

elements).

Consider the example from Section 4.1.1 where Ω = [0, 1] is divided into
two cells, Ω(0) = [0, 0.4] and Ω(1) = [0.4, 1], as depicted in Figure 4.4.
The vertices are [0, 0.4, 1]. Local vertex 0 and 1 are 0 and 0.4 in cell 0
and 0.4 and 1 in cell 1. A P2 element means that the degrees of freedom
are the value of u at three equally spaced points (nodes) in each cell.
The data structures become

vertices = [0, 0.4, 1]
cells = [[0, 1], [1, 2]]
dof_map = [[0, 1, 2], [2, 3, 4]]

If we approximate f by piecewise constants, known as P0 elements, we
simply introduce one point or node in an element, preferably X = 0, and
define one degree of freedom, which is the function value at this node.
Moreover, we set ϕ̃0(X) = 1. The cells and vertices arrays remain
the same, but dof_map is altered:

dof_map = [[0], [1]]

We use the cells and vertices lists to retrieve information on the
geometry of a cell, while dof_map is the q(e, r) mapping introduced
earlier in the assembly of element matrices and vectors. For example,
the Omega_e variable (representing the cell interval) in previous code
snippets must now be computed as

Omega_e = [vertices[cells[e][0], vertices[cells[e][1]]

The assembly is done by

114 4 Function approximation by finite elements

A[dof_map[e][r], dof_map[e][s]] += A_e[r,s]
b[dof_map[e][r]] += b_e[r]

We will hereafter drop the nodes and elements arrays and
work exclusively with cells, vertices, and dof_map. The module
fe_approx1D_numint.py now replaces the module fe_approx1D and
offers similar functions that work with the new concepts:

from fe_approx1D_numint import *
x = sym.Symbol(’x’)
f = x*(1 - x)
N_e = 10
vertices, cells, dof_map = mesh_uniform(N_e, d=3, Omega=[0,1])
phi = [basis(len(dof_map[e])-1) for e in range(N_e)]
A, b = assemble(vertices, cells, dof_map, phi, f)
c = np.linalg.solve(A, b)
Make very fine mesh and sample u(x) on this mesh for plotting
x_u, u = u_glob(c, vertices, cells, dof_map,

resolution_per_element=51)
plot(x_u, u)

These steps are offered in the approximate function, which we here
apply to see how well four P0 elements (piecewise constants) can approx-
imate a parabola:

from fe_approx1D_numint import *
x=sym.Symbol("x")
for N_e in 4, 8:

approximate(x*(1-x), d=0, N_e=N_e, Omega=[0,1])

Figure 4.22 shows the result.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

P0, Ne=4, exact integration

u
f

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

P0, Ne=8, exact integration

u
f

Fig. 4.22 Approximation of a parabola by 4 (left) and 8 (right) P0 elements.

4.4 A generalized element concept 115

4.4.4 Computing the error of the approximation

So far we have focused on computing the coefficients cj in the approx-
imation u(x) =

∑
j cjϕj as well as on plotting u and f for visual com-

parison. A more quantitative comparison needs to investigate the error
e(x) = f(x)− u(x). We mostly want a single number to reflect the error
and use a norm for this purpose, usually the L2 norm

||e||L2 =
(∫

Ω
e2 dx

)1/2
.

Since the finite element approximation is defined for all x ∈ Ω, and we are
interested in how u(x) deviates from f(x) through all the elements, we can
either integrate analytically or use an accurate numerical approximation.
The latter is more convenient as it is a generally feasible and simple
approach. The idea is to sample e(x) at a large number of points in each
element. The function u_glob in the fe_approx1D_numint module does
this for u(x) and returns an array x with coordinates and an array u
with the u values:

x, u = u_glob(c, vertices, cells, dof_map,
resolution_per_element=101)

e = f(x) - u

Let us use the Trapezoidal method to approximate the integral. Because
different elements may have different lengths, the x array may have a
non-uniformly distributed set of coordinates. Also, the u_glob function
works in an element by element fashion such that coordinates at the
boundaries between elements appear twice. We therefore need to use
a "raw" version of the Trapezoidal rule where we just add up all the
trapezoids:

∫
Ω
g(x) dx ≈

n−1∑
j=0

1
2(g(xj) + g(xj+1))(xj+1 − xj),

if x0, . . . , xn are all the coordinates in x. In vectorized Python code,

g_x = g(x)
integral = 0.5*np.sum((g_x[:-1] + g_x[1:])*(x[1:] - x[:-1]))

Computing the L2 norm of the error, here named E, is now achieved by

e2 = e**2
E = np.sqrt(0.5*np.sum((e2[:-1] + e2[1:])*(x[1:] - x[:-1]))

116 4 Function approximation by finite elements

How does the error depend on h and d?

Theory and experiments show that the least squares or projection/-
Galerkin method in combination with Pd elements of equal length
h has an error

||e||L2 = C|f (d+1)|hd+1, (4.42)

where C is a constant depending on d and Ω = [0, L], but not on h,
and the norm |f (d+1)| is defined through

|f (d+1)|2 =
∫ L

0

(
dd+1f

dxd+1

)2

dx.

4.4.5 Example on cubic Hermite polynomials

The finite elements considered so far represent u as piecewise polynomials
with discontinuous derivatives at the cell boundaries. Sometimes it is
desirable to have continuous derivatives. A primary example is the
solution of differential equations with fourth-order derivatives where
standard finite element formulations lead to a need for basis functions
with continuous first-order derivatives. The most common type of such
basis functions in 1D is the so-called cubic Hermite polynomials. The
construction of such polynomials, as explained next, will further exemplify
the concepts of a cell, vertex, degree of freedom, and dof map.

Given a reference cell [−1, 1], we seek cubic polynomials with the
values of the function and its first-order derivative at X = −1 and X = 1
as the four degrees of freedom. Let us number the degrees of freedom as

• 0: value of function at X = −1
• 1: value of first derivative at X = −1
• 2: value of function at X = 1
• 3: value of first derivative at X = 1

By having the derivatives as unknowns, we ensure that the derivative
of a basis function in two neighboring elements is the same at the node
points.

The four basis functions can be written in a general form

4.5 Numerical integration 117

ϕ̃i(X) =
3∑
j=0

Ci,jX
j ,

with four coefficients Ci,j , j = 0, 1, 2, 3, to be determined for each i. The
constraints that basis function i must be 1 for degree of freedom number
i and zero for the other three degrees of freedom, gives four equations to
determine Ci,j for each i. In mathematical detail,

ϕ̃0(−1) = 1, ϕ̃0(1) = ϕ̃′0(−1) = ϕ̃′i(1) = 0,
ϕ̃′1(−1) = 1, ϕ̃1(−1) = ϕ̃1(1) = ϕ̃′1(1) = 0,
ϕ̃2(1) = 1, ϕ̃2(−1) = ϕ̃′2(−1) = ϕ̃′2(1) = 0,
ϕ̃′3(1) = 1, ϕ̃3(−1) = ϕ̃′3(−1) = ϕ̃3(1) = 0 .

These four 4× 4 linear equations can be solved, yielding the following
formulas for the cubic basis functions:

ϕ̃0(X) = 1− 3
4(X + 1)2 + 1

4(X + 1)3 (4.43)

ϕ̃1(X) = −(X + 1)(1− 1
2(X + 1))2 (4.44)

ϕ̃2(X) = 3
4(X + 1)2 − 1

2(X + 1)3 (4.45)

ϕ̃3(X) = −1
2(X + 1)(1

2(X + 1)2 − (X + 1)) (4.46)

(4.47)

The construction of the dof map needs a scheme for numbering the
global degrees of freedom. A natural left-to-right numbering has the
function value at vertex xi as degree of freedom number 2i and the value
of the derivative at xi as degree of freedom number 2i+1, i = 0, . . . , Ne+1.

4.5 Numerical integration

Finite element codes usually apply numerical approximations to integrals.
Since the integrands in the coefficient matrix often are (lower-order)
polynomials, integration rules that can integrate polynomials exactly are
popular.

Numerical integration rules can be expressed in a common form,

118 4 Function approximation by finite elements

∫ 1

−1
g(X) dX ≈

M∑
j=0

wjg(X̄j), (4.48)

where X̄j are integration points and wj are integration weights, j =
0, . . . ,M . Different rules correspond to different choices of points and
weights.

The very simplest method is the Midpoint rule,∫ 1

−1
g(X) dX ≈ 2g(0), X̄0 = 0, w0 = 2, (4.49)

which integrates linear functions exactly.

4.5.1 Newton-Cotes rules

The Newton-Cotes rules are based on a fixed uniform distribution of
the integration points. The first two formulas in this family are the
well-known Trapezoidal rule,

∫ 1

−1
g(X) dX ≈ g(−1) + g(1), X̄0 = −1, X̄1 = 1, w0 = w1 = 1,

(4.50)
and Simpson’s rule,∫ 1

−1
g(X) dX ≈ 1

3 (g(−1) + 4g(0) + g(1)) , (4.51)

where

X̄0 = −1, X̄1 = 0, X̄2 = 1, w0 = w2 = 1
3 , w1 = 4

3 . (4.52)

Newton-Cotes rules up to five points is supported in the module file
numint.py.

For higher accuracy one can divide the reference cell into a set of subin-
tervals and use the rules above on each subinterval. This approach results
in composite rules, well-known from basic introductions to numerical
integration of

∫ b
a f(x) dx.

http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
http://tinyurl.com/znpudbt/numint.py

4.6 Finite elements in 2D and 3D 119

4.5.2 Gauss-Legendre rules with optimized points
More accurate rules, for a given M , arise if the location of the integration
points are optimized for polynomial integrands. The Gauss-Legendre
rules (also known as Gauss-Legendre quadrature or Gaussian quadrature)
constitute one such class of integration methods. Two widely applied
Gauss-Legendre rules in this family have the choice

M = 1 : X̄0 = − 1√
3
, X̄1 = 1√

3
, w0 = w1 = 1 (4.53)

M = 2 : X̄0 = −
√

3
5 , X̄0 = 0, X̄2 =

√
3
5 , w0 = w2 = 5

9 , w1 = 8
9 .

(4.54)

These rules integrate 3rd and 5th degree polynomials exactly. In general,
an M -point Gauss-Legendre rule integrates a polynomial of degree 2M +
1 exactly. The code numint.py contains a large collection of Gauss-
Legendre rules.

4.6 Finite elements in 2D and 3D

Finite element approximation is particularly powerful in 2D and 3D
because the method can handle a geometrically complex domain Ω with
ease. The principal idea is, as in 1D, to divide the domain into cells and
use polynomials for approximating a function over a cell. Two popular
cell shapes are triangles and quadrilaterals. It is common to denote
finite elements on triangles and tetrahedrons as P while elements defined
in terms of quadrilaterals and boxes are denoted by Q. Figures 4.23,
4.24, and 4.25 provide examples. P1 elements means linear functions
(a0 + a1x+ a2y) over triangles, while Q1 elements have bilinear functions
(a0 + a1x+ a2y+ a3xy) over rectangular cells. Higher-order elements can
easily be defined.

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

Fig. 4.23 Example on 2D P1 elements.

http://en.wikipedia.org/wiki/Gaussian_quadrature
http://en.wikipedia.org/wiki/Gaussian_quadrature

120 4 Function approximation by finite elements

0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0

Fig. 4.24 Example on 2D P1 elements in a deformed geometry.

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

Fig. 4.25 Example on 2D Q1 elements.

4.6 Finite elements in 2D and 3D 121

4.6.1 Basis functions over triangles in the physical domain

Cells with triangular shape will be in main focus here. With the P1
triangular element, u is a linear function over each cell, as depicted in
Figure 4.26, with discontinuous derivatives at the cell boundaries.

Fig. 4.26 Example on scalar function defined in terms of piecewise linear 2D functions
defined on triangles.

We give the vertices of the cells global and local numbers as in 1D.
The degrees of freedom in the P1 element are the function values at a
set of nodes, which are the three vertices. The basis function ϕi(x, y) is
then 1 at the vertex with global vertex number i and zero at all other
vertices. On an element, the three degrees of freedom uniquely determine
the linear basis functions in that element, as usual. The global ϕi(x, y)
function is then a combination of the linear functions (planar surfaces)
over all the neighboring cells that have vertex number i in common.
Figure 4.27 tries to illustrate the shape of such a “pyramid”-like function.

Element matrices and vectors. As in 1D, we split the integral over
Ω into a sum of integrals over cells. Also as in 1D, ϕi overlaps ϕj (i.e.,
ϕiϕj 6= 0) if and only if i and j are vertices in the same cell. Therefore,
the integral of ϕiϕj over an element is nonzero only when i and j run
over the vertex numbers in the element. These nonzero contributions to
the coefficient matrix are, as in 1D, collected in an element matrix. The

122 4 Function approximation by finite elements

Fig. 4.27 Example on a piecewise linear 2D basis function over a patch of triangles.

size of the element matrix becomes 3× 3 since there are three degrees
of freedom that i and j run over. Again, as in 1D, we number the local
vertices in a cell, starting at 0, and add the entries in the element matrix
into the global system matrix, exactly as in 1D. All the details and code
appear below.

4.6.2 Basis functions over triangles in the reference cell

As in 1D, we can define the basis functions and the degrees of freedom
in a reference cell and then use a mapping from the reference coordinate
system to the physical coordinate system. We also need a mapping of
local degrees of freedom numbers to global degrees of freedom numbers.

The reference cell in an (X, Y) coordinate system has vertices (0, 0),
(1, 0), and (0, 1), corresponding to local vertex numbers 0, 1, and 2,
respectively. The P1 element has linear functions ϕ̃r(X, Y) as basis
functions, r = 0, 1, 2. Since a linear function ϕ̃r(X, Y) in 2D is of the
form Cr,0 + Cr,1X + Cr,2Y , and hence has three parameters Cr,0, Cr,1,
and Cr,2, we need three degrees of freedom. These are in general taken as
the function values at a set of nodes. For the P1 element the set of nodes
is the three vertices. Figure 4.28 displays the geometry of the element
and the location of the nodes.

4.6 Finite elements in 2D and 3D 123

Fig. 4.28 2D P1 element.

Requiring ϕ̃r = 1 at node number r and ϕ̃r = 0 at the two other nodes,
gives three linear equations to determine Cr,0, Cr,1, and Cr,2. The result
is

ϕ̃0(X, Y) = 1−X − Y, (4.55)
ϕ̃1(X, Y) = X, (4.56)
ϕ̃2(X, Y) = Y (4.57)

Higher-order approximations are obtained by increasing the polynomial
order, adding additional nodes, and letting the degrees of freedom be
function values at the nodes. Figure 4.29 shows the location of the six
nodes in the P2 element.

Fig. 4.29 2D P2 element.

A polynomial of degree p in X and Y has np = (p+ 1)(p+ 2)/2 terms
and hence needs np nodes. The values at the nodes constitute np degrees
of freedom. The location of the nodes for ϕ̃r up to degree 6 is displayed
in Figure 4.30.

The generalization to 3D is straightforward: the reference element is
a tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) in a

http://en.wikipedia.org/wiki/Tetrahedron

124 4 Function approximation by finite elements

Fig. 4.30 2D P1, P2, P3, P4, P5, and P6 elements.

X, Y, Z reference coordinate system. The P1 element has its degrees of
freedom as four nodes, which are the four vertices, see Figure 4.31. The
P2 element adds additional nodes along the edges of the cell, yielding a
total of 10 nodes and degrees of freedom, see Figure 4.32.

Fig. 4.31 P1 elements in 1D, 2D, and 3D.

The interval in 1D, the triangle in 2D, the tetrahedron in 3D, and its
generalizations to higher space dimensions are known as simplex cells (the
geometry) or simplex elements (the geometry, basis functions, degrees of
freedom, etc.). The plural forms simplices and simplexes are also much
used shorter terms when referring to this type of cells or elements. The
side of a simplex is called a face, while the tetrahedron also has edges.

http://en.wikipedia.org/wiki/Simplex

4.6 Finite elements in 2D and 3D 125

Fig. 4.32 P2 elements in 1D, 2D, and 3D.

Acknowledgment. Figures 4.28-4.32 are created by Anders Logg and
taken from the FEniCS book: Automated Solution of Differential Equa-
tions by the Finite Element Method, edited by A. Logg, K.-A. Mardal,
and G. N. Wells, published by Springer, 2012.

4.6.3 Affine mapping of the reference cell

Let ϕ̃(1)
r denote the basis functions associated with the P1 element

in 1D, 2D, or 3D, and let xq(e,r) be the physical coordinates of local
vertex number r in cell e. Furthermore, let X be a point in the reference
coordinate system corresponding to the point x in the physical coordinate
system. The affine mapping of any X onto x is then defined by

x =
∑
r

ϕ̃(1)
r (X)xq(e,r), (4.58)

where r runs over the local vertex numbers in the cell. The affine mapping
essentially stretches, translates, and rotates the triangle. Straight or
planar faces of the reference cell are therefore mapped onto straight or
planar faces in the physical coordinate system. The mapping can be used
for both P1 and higher-order elements, but note that the mapping itself
always applies the P1 basis functions.

4.6.4 Isoparametric mapping of the reference cell
Instead of using the P1 basis functions in the mapping (4.58), we may
use the basis functions of the actual Pd element:

x =
∑
r

ϕ̃r(X)xq(e,r), (4.59)

https://launchpad.net/fenics-book
http://goo.gl/lbyVMH

126 4 Function approximation by finite elements

x

local global

2

1

x

1

2
X

X

Fig. 4.33 Affine mapping of a P1 element.

where r runs over all nodes, i.e., all points associated with the degrees of
freedom. This is called an isoparametric mapping. For P1 elements it is
identical to the affine mapping (4.58), but for higher-order elements the
mapping of the straight or planar faces of the reference cell will result in
a curved face in the physical coordinate system. For example, when we
use the basis functions of the triangular P2 element in 2D in (4.59), the
straight faces of the reference triangle are mapped onto curved faces of
parabolic shape in the physical coordinate system, see Figure 4.34.

x

local global

2

1

x

1

2
X

X

Fig. 4.34 Isoparametric mapping of a P2 element.

From (4.58) or (4.59) it is easy to realize that the vertices are correctly
mapped. Consider a vertex with local number s. Then ϕ̃s = 1 at this
vertex and zero at the others. This means that only one term in the sum

4.7 Implementation 127

is nonzero and x = xq(e,s), which is the coordinate of this vertex in the
global coordinate system.

4.6.5 Computing integrals

Let Ω̃r denote the reference cell and Ω(e) the cell in the physical coordi-
nate system. The transformation of the integral from the physical to the
reference coordinate system reads

∫
Ω(e)

ϕi(x)ϕj(x) dx =
∫
Ω̃r
ϕ̃i(X)ϕ̃j(X) det J dX, (4.60)∫

Ω(e)
ϕi(x)f(x) dx =

∫
Ω̃r
ϕ̃i(X)f(x(X)) det J dX, (4.61)

where dx means the infinitesimal area element dxdy in 2D and dxdydz in
3D, with a similar definition of dX. The quantity det J is the determinant
of the Jacobian of the mapping x(X). In 2D,

J =
[
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

]
, det J = ∂x

∂X

∂y

∂Y
− ∂x

∂Y

∂y

∂X
. (4.62)

With the affine mapping (4.58), det J = 2∆, where ∆ is the area or
volume of the cell in the physical coordinate system.

Remark. Observe that finite elements in 2D and 3D build on the same
ideas and concepts as in 1D, but there is simply much more to compute
because the specific mathematical formulas in 2D and 3D are more com-
plicated and the book-keeping with dof maps also gets more complicated.
The manual work is tedious, lengthy, and error-prone so automation by
the computer is a must.

4.7 Implementation

Our previous programs for doing 1D approximation by finite element
basis function had a focus on all the small details needed to compute
the solution. When going to 2D and 3D, the basic algorithms are the
same, but the amount of computational detail with basis functions,
reference functions, mappings, numerical integration and so on, becomes
overwhelming because of all the flexibility and choices of elements. For

128 4 Function approximation by finite elements

this purpose, we must, except in the simplest cases with P1 elements,
use some well-developed, existing computer library.

4.7.1 Example of approximation in 2D using FEniCS

Here we shall use FEniCS, which is a free, open source finite element
package for advanced computations. The package can be programmed in
C++ or Python. How it works is best illustrated by an example.
Mathematical problem. We want to approximate the function f(x) =
2xy − x2 by P1 and P2 elements on [0, 2]× [−1, 1] using a division into
8 × 8 squares, which are then divided into rectangles and then into
triangles.
The code. Observe that the code employs the basic concepts from 1D,
but is capable of using any element in FEniCS on any mesh in any
number of space dimensions (!).

from fenics import *

def approx(f, V):
"""Return Galerkin approximation to f in V."""
u = TrialFunction(V)
v = TestFunction(V)
a = u*v*dx
L = f*v*dx
u = Function(V)
solve(a == L, u)
return u

def problem():
f = Expression(’2*x[0]*x[1] - pow(x[0], 2)’, degree=2)
mesh = RectangleMesh(Point(0,-1), Point(2,1), 8, 8)

V1 = FunctionSpace(mesh, ’P’, 1)
u1 = approx(f, V1)
u1.rename(’u1’, ’u1’)
u1_error = errornorm(f, u1, ’L2’)
u1_norm = norm(u1, ’L2’)

V2 = FunctionSpace(mesh, ’P’, 2)
u2 = approx(f, V2)
u2.rename(’u2’, ’u2’)
u2_error = errornorm(f, u2, ’L2’)
u2_norm = norm(u2, ’L2’)

print(’L2 errors: e1=%g, e2=%g’ % (u1_error, u2_error))
print(’L2 norms: n1=%g, n2=%g’ % (u1_norm, u2_norm))
Simple plotting

http://fenicsproject.org

4.7 Implementation 129

import matplotlib.pyplot as plt
plot(f, title=’f’, mesh=mesh)
plt.show()
plot(u1, title=’u1’)
plt.show()
plot(u2, title=’u2’)
plt.show()

if __name__ == ’__main__’:
problem()

Figure 4.35 shows the computed u1. The plots of u2 and f are identical
and therefore not shown. The plot shows that visually the approximation
is quite close to f, but to quantify it more precisely we simply compute
the error using the function errornorm. The output of errors becomes

L2 errors: e1=0.01314, e2=4.93418e-15
L2 norms: n1=4.46217, n2=4.46219

Hence, the second order approximation u2 is able to reproduce f up
to floating point precision, whereas the first order approximation u1 has
an error of slightly more than 1

3%.

-8.00 -8.00

-5.75 -5.75

-3.50 -3.50

-1.25 -1.25

1.00 1.00

Fig. 4.35 Plot of the computed approximation using Lagrange elements of second order.

Dissection of the code. The function approx is a general solver function
for any f and V . We define the unknown u in the variational form
a = a(u, v) =

∫
uv dx as a TrialFunction object and the test function v

as a TestFunction object. Then we define the variational form through
the integrand u*v*dx. The linear form L is similarly defined as f*v*dx.
Here, f is an Expression object in FEniCS, i.e., a formula defined in
terms of a C++ expression. This expression is in turn jit-compiled into

130 4 Function approximation by finite elements

a Python object for fast evaluation. With a and L defined, we re-define
u to be a finite element function Function, which is now the unknown
scalar field to be computed by the simple expression solve(a == L, u).
We remark that the above function approx is implemented in FEniCS
(in a slightly more general fashion) in the function project.

The problem function applies approx to solve a specific problem.

Integrating SymPy and FEniCS. The definition of f must be expressed
in C++. This part requires two definitions: one of f and one of Ω, or
more precisely: the mesh (discrete Ω divided into cells). The definition
of f is here expressed in C++ (it will be compiled for fast evaluation),
where the independent coordinates are given by a C/C++ vector x. This
means that x is x[0], y is x[1], and z is x[2]. Moreover, x[0]**2 must
be written as pow(x[0], 2) in C/C++.

Fortunately, we can easily integrate SymPy and Expression objects,
because SymPy can take a formula and translate it to C/C++ code, and
then we can require a Python code to numerically evaluate the formula.
Here is how we can specify f in SymPy and use it in FEniCS as an
Expression object:

>>> import sympy as sym
>>> x, y = sym.symbols(’x[0] x[1]’)
>>> f = 2*x*y - x**2
>>> print(f)
-x[0]**2 + 2*x[0]*x[1]
>>> f = sym.printing.ccode(f) # Translate to C code
>>> print(f)
-pow(x[0], 2) + 2*x[0]*x[1]
>>> import fenics as fe
>>> f = fe.Expression(f, degree=2)

Here, the function ccode generates C code and we use x and y as
placeholders for x[0] and x[1], which represent the coordinate of a
general point x in any dimension. The output of ccode can then be used
directly in Expression.

4.7.2 Refined code with curve plotting

Interpolation and projection. The operation of defining a, L, and solving
for a u is so common that it has been implemented in the FEniCS function
project:

u = project(f, V)

4.7 Implementation 131

So, there is no need for our approx function!
If we want to do interpolation (or collocation) instead, we simply do

u = interpolate(f, V)

Plotting the solution along a line. Having u and f available as finite
element functions (Function objects), we can easily plot the solution
along a line since FEniCS has functionality for evaluating a Function
at arbitrary points inside the domain. For example, here is the code for
plotting u and f along a line x = const or y = const.

import numpy as np
import matplotlib.pyplot as plt

def comparison_plot2D(
u, f, # Function expressions in x and y
value=0.5, # x or y equals this value
variation=’y’, # independent variable
n=100, # no of intervals in plot
tol=1E-8, # tolerance for points inside the domain
plottitle=’’, # heading in plot
filename=’tmp’, # stem of filename
):
"""
Plot u and f along a line in x or y dir with n intervals
and a tolerance of tol for points inside the domain.
"""
v = np.linspace(-1+tol, 1-tol, n+1)
Compute points along specified line:
points = np.array([(value, v_)

if variation == ’y’ else (v_, value)
for v_ in v])

u_values = [u(point) for point in points] # eval. Function
f_values = [f(point) for point in points]
plt.figure()
plt.plot(v, u_values, ’r-’, v, f_values, ’b--’)
plt.legend([’u’, ’f’], loc=’upper left’)
if variation == ’y’:

plt.xlabel(’y’); plt.ylabel(’u, f’)
else:

plt.xlabel(’x’); plt.ylabel(’u, f’)
plt.title(plottitle)
plt.savefig(filename + ’.pdf’)
plt.savefig(filename + ’.png’)

Integrating plotting and computations. It is now very easy to give
some graphical impression of the approximations for various kinds of 2D
elements. Basically, to solve the problem of approximating f = 2xy − x2

on Ω = [−1, 1] × [0, 2] by P2 elements on a 2 × 2 mesh, we want to
integrate the function above with following type of computations:

132 4 Function approximation by finite elements

import fenics as fe
f = fe.Expression(’2*x[0]*x[1] - pow(x[0], 2)’, degree=2)
mesh = fe.RectangleMesh(fe.Point(1,-1), fe.Point(2,1), 2, 2)
V = fe.FunctionSpace(mesh, ’P’, 2)
u = fe.project(f, V)
err = fe.errornorm(f, u, ’L2’)
print(err)

However, we can now easily compare different type of elements and mesh
resolutions:

import fenics as fe
import sympy as sym
x, y = sym.symbols(’x[0] x[1]’)

def problem(f, nx=8, ny=8, degrees=[1,2]):
"""
Plot u along x=const or y=const for Lagrange elements,
of given degrees, on a nx times ny mesh. f is a SymPy expression.
"""
f = sym.printing.ccode(f)
f = fe.Expression(f, degree=2)
mesh = fe.RectangleMesh(

fe.Point(-1, 0), fe.Point(1, 2), 2, 2)
for degree in degrees:

if degree == 0:
The P0 element is specified like this in FEniCS
V = fe.FunctionSpace(mesh, ’DG’, 0)

else:
The Lagrange Pd family of elements, d=1,2,3,...
V = fe.FunctionSpace(mesh, ’P’, degree)

u = fe.project(f, V)
u_error = fe.errornorm(f, u, ’L2’)
print(’||u-f||=%g’ % u_error, degree)
comparison_plot2D(

u, f,
n=50,
value=0.4, variation=’x’,
plottitle=’Approximation by P%d elements’ % degree,
filename=’approx_fenics_by_P%d’ % degree,
tol=1E-3)

#fe.plot(u, title=’Approx by P%d’ % degree)

if __name__ == ’__main__’:
x and y are global SymPy variables
f = 2*x*y - x**16
f = 2*x*y - x**2
problem(f, nx=2, ny=2, degrees=[0, 1, 2])
plt.show()

(We note that this code issues a lot of warnings from the u(point)
evaluations.)

4.8 Exercises 133

We show in Figure 4.36 how f is approximated by P0, P1, and P2
elements on a very coarse 2× 2 mesh consisting of 8 cells.

We have also added the result obtained by P2 elements.

1.0 0.5 0.0 0.5 1.0
x

2.0

1.5

1.0

0.5

0.0

0.5

u,
 f

Approximation by P0 elements

u
f

1.0 0.5 0.0 0.5 1.0
x

2.0

1.5

1.0

0.5

0.0

0.5

u,
 f

Approximation by P1 elements

u
f

1.0 0.5 0.0 0.5 1.0
x

2.0

1.5

1.0

0.5

0.0

0.5

u,
 f

Approximation by P2 elements

u
f

Fig. 4.36 Comparison of P0, P1, and P2 approximations (left to right) along a line in a
2D mesh.

Questions

There are two striking features in the figure:

1. The P2 solution is exact. Why?
2. The P1 solution does not seem to be a least squares approxima-

tion. Why?

With this code, found in the file approx_fenics.py, we can easily
run lots of experiments with the Lagrange element family. Just write the
SymPy expression and choose the mesh resolution!

4.8 Exercises

Problem 4.1: Define nodes and elements

Consider a domain Ω = [0, 2] divided into the three elements [0, 1], [1, 1.2],
and [1.2, 2].

For P1 and P2 elements, set up the list of coordinates and nodes
(nodes) and the numbers of the nodes that belong to each element
(elements) in two cases: 1) nodes and elements numbered from left to
right, and 2) nodes and elements numbered from right to left.
Filename: fe_numberings1.

$approx_fenics.py

134 4 Function approximation by finite elements

Problem 4.2: Define vertices, cells, and dof maps

Repeat Problem 4.1, but define the data structures vertices, cells,
and dof_map instead of nodes and elements.
Filename: fe_numberings2.

Problem 4.3: Construct matrix sparsity patterns

Problem 4.1 describes a element mesh with a total of five elements,
but with two different element and node orderings. For each of the two
orderings, make a 5× 5 matrix and fill in the entries that will be nonzero.

Hint. A matrix entry (i, j) is nonzero if i and j are nodes in the same
element.
Filename: fe_sparsity_pattern.

Problem 4.4: Perform symbolic finite element computations

Perform symbolic calculations to find formulas for the coefficient matrix
and right-hand side when approximating f(x) = sin(x) on Ω = [0, π] by
two P1 elements of size π/2. Solve the system and compare u(π/2) with
the exact value 1.
Filename: fe_sin_P1.

Problem 4.5: Approximate a steep function by P1 and P2
elements

Given

f(x) = tanh(s(x− 1
2))

use the Galerkin or least squares method with finite elements to find
an approximate function u(x). Choose s = 20 and try Ne = 4, 8, 16 P1
elements and Ne = 2, 4, 8 P2 elements. Integrate fϕi numerically.

Hint. You can automate the computations by calling the approximate
method in the fe_approx1D_numint module.
Filename: fe_tanh_P1P2.

4.8 Exercises 135

Problem 4.6: Approximate a steep function by P3 and P4
elements

a) Solve Problem 4.5 using Ne = 1, 2, 4 P3 and P4 elements.
b) How will an interpolation method work in this case with the same
number of nodes?
Filename: fe_tanh_P3P4.

Exercise 4.7: Investigate the approximation error in finite
elements

The theory (4.42) from Section 4.4.4 predicts that the error in the Pd
approximation of a function should behave as hd+1, where h is the length
of the element. Use experiments to verify this asymptotic behavior (i.e.,
for small enough h). Choose three examples: f(x) = Ae−ωx on [0, 3/ω],
f(x) = A sin(ωx) on Ω = [0, 2π/ω] for constant A and ω, and f(x) =

√
x

on [0, 1].
Hint 1. Run a series of experiments: (hi, Ei), i = 0, . . . ,m, where Ei is
the L2 norm of the error corresponding to element length hi. Assume an
error model E = Chr and compute r from two successive experiments:

ri = ln(Ei+1/Ei)/ ln(hi+1/hi), i = 0, . . . ,m− 1 .

Hopefully, the sequence r0, . . . , rm−1 converges to the true r, and rm−1
can be taken as an approximation to r. Run such experiments for different
d for the different f(x) functions.
Hint 2. The approximate function in fe_approx1D_numint.py is handy
for calculating the numerical solution. This function returns the finite
element solution as the coefficients {ci}i∈Is . To compute u, use u_glob
from the same module. Use the Trapezoidal rule to integrate the L2

error:

xc, u = u_glob(c, vertices, cells, dof_map)
e = f_func(xc) - u
L2_error = 0
e2 = e**2
for i in range(len(xc)-1):

L2_error += 0.5*(e2[i+1] + e2[i])*(xc[i+1] - xc[i])
L2_error = np.sqrt(L2_error)

The reason for this Trapezoidal integration is that u_glob returns coor-
dinates xc and corresponding u values where some of the coordinates

136 4 Function approximation by finite elements

(the cell vertices) coincides, because the solution is computed in one
element at a time, using all local nodes. Also note that there are many
coordinates in xc per cell such that we can accurately compute the error
inside each cell.
Filename: Pd_approx_error.

Problem 4.8: Approximate a step function by finite elements

Approximate the step function

f(x) =
{

0 if 0 ≤ x < 1/2,
1 if 1/2 ≤ x ≥ 1/2

by 2, 4, 8, and 16 elements and P1, P2, P3, and P4. Compare approxi-
mations visually.
Hint. This f can also be expressed in terms of the Heaviside function
H(x): f(x) = H(x− 1/2). Therefore, f can be defined by

f = sym.Heaviside(x - sym.Rational(1,2))

making the approximate function in the fe_approx1D.py module an
obvious candidate to solve the problem. However, sympy does not handle
symbolic integration with this particular integrand, and the approximate
function faces a problem when converting f to a Python function (for
plotting) since Heaviside is not an available function in numpy.

An alternative is to perform hand calculations. This is an instructive
task, but in practice only feasible for few elements and P1 and P2 elements.
It is better to copy the functions element_matrix, element_vector,
assemble, and approximate from the fe_approx1D_numint.py file and
edit these functions such that they can compute approximations with f
given as a Python function and not a symbolic expression. Also assume
that phi computed by the basis function is a Python callable function.
Remove all instances of the symbolic variable and associated code.
Filename: fe_Heaviside_P1P2.

Exercise 4.9: 2D approximation with orthogonal functions

a) Assume we have basis functions ϕi(x, y) in 2D that are orthogonal
such that (ϕi, ϕj) = 0 when i 6= j. The function least_squares in the
file approx2D.py will then spend much time on computing off-diagonal

http://tinyurl.com/znpudbt/fe_approx2D.py

4.8 Exercises 137

terms in the coefficient matrix that we know are zero. To speed up the
computations, make a version least_squares_orth that utilizes the
orthogonality among the basis functions.

b) Apply the function to approximate

f(x, y) = x(1− x)y(1− y)e−x−y

on Ω = [0, 1]× [0, 1] via basis functions

ϕi(x, y) = sin((p+ 1)πx) sin((q + 1)πy), i = q(Nx + 1) + p,

where p = 0, . . . , Nx and q = 0, . . . , Ny.

Hint. Get ideas from the function least_squares_orth in Section 3.3.3
and file approx1D.py.

c) Make a unit test for the least_squares_orth function.
Filename: approx2D_ls_orth.

Exercise 4.10: Use the Trapezoidal rule and P1 elements

Consider the approximation of some f(x) on an interval Ω using the least
squares or Galerkin methods with P1 elements. Derive the element matrix
and vector using the Trapezoidal rule (4.50) for calculating integrals on
the reference element. Assemble the contributions, assuming a uniform
cell partitioning, and show that the resulting linear system has the form
ci = f(xi) for i ∈ Is.
Filename: fe_P1_trapez.

Exercise 4.11: Compare P1 elements and interpolation

We shall approximate the function

f(x) = 1 + ε sin(2πnx), x ∈ Ω = [0, 1],

where n ∈ Z and ε ≥ 0.

a) Plot f(x) for n = 1, 2, 3 and find the wavelength of the function.

b) We want to use NP elements per wavelength. Show that the number
of elements is then nNP .

http://tinyurl.com/znpudbt/fe_approx1D.py

138 4 Function approximation by finite elements

c) The critical quantity for accuracy is the number of elements per
wavelength, not the element size in itself. It therefore suffices to study
an f with just one wavelength in Ω = [0, 1]. Set ε = 0.5.

Run the least squares or projection/Galerkin method for NP =
2, 4, 8, 16, 32. Compute the error E = ||u− f ||L2 .

Hint 1. Use the fe_approx1D_numint module to compute u and use
the technique from Section 4.4.4 to compute the norm of the error.

Hint 2. Read up on the Nyquist–Shannon sampling theorem.

d) Repeat the set of experiments in the above point, but use interpola-
tion/collocation based on the node points to compute u(x) (recall that ci
is now simply f(xi)). Compute the error E = ||u− f ||L2 . Which method
seems to be most accurate?
Filename: fe_P1_vs_interp.

Exercise 4.12: Implement 3D computations with global basis
functions

Extend the approx2D.py code to 3D by applying ideas from Section 3.6.4.
Construct some 3D problem to make a test function for the implementa-
tion.

Hint. Drop symbolic integration since it is in general too slow for 3D
problems. Also use scipy.integrate.nquad instead of mpmath.quad for
numerical integration, since it is much faster.
Filename: approx3D.

Exercise 4.13: Use Simpson’s rule and P2 elements

Redo Exercise 4.10, but use P2 elements and Simpson’s rule based on
sampling the integrands at the nodes in the reference cell.
Filename: fe_P2_simpson.

Exercise 4.14: Make a 3D code for Lagrange elements of
arbitrary order

Extend the code from Section 4.7.2 to 3D.

http://tinyurl.com/znpudbt/approx2D.py

Variational formulations with
global basis functions 5

The finite element method is a very flexible approach for solving partial
differential equations. Its two most attractive features are the ease of
handling domains of complex shape in two and three dimensions and
the variety of polynomials (with different properties and orders) that are
available. The latter feature typically leads to errors proportional to hd+1,
where h is the element length and d is the polynomial degree. When
the solution is sufficiently smooth, the ability to use larger d creates
methods that are much more computationally efficient than standard
finite difference methods (and equally efficient finite difference methods
are technically much harder to construct).

However, before we attack finite element methods, with localized basis
functions, it can be easier from a pedagogical point of view to study
approximations by global functions because the mathematics in this case
gets simpler.

5.1 Basic principles for approximating differential
equations

The finite element method is usually applied for discretization in space,
and therefore spatial problems will be our focus in the coming sections.
Extensions to time-dependent problems usually employs finite difference
approximations in time.

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

140 5 Variational formulations with global basis functions

The coming sections address at how global basis functions and the
least squares, Galerkin, and collocation principles can be used to solve
differential equations.

5.1.1 Differential equation models
Let us consider an abstract differential equation for a function u(x) of
one variable, written as

L(u) = 0, x ∈ Ω . (5.1)

Here are a few examples on possible choices of L(u), of increasing com-
plexity:

L(u) = d2u

dx2 − f(x), (5.2)

L(u) = d

dx

(
α(x)du

dx

)
+ f(x), (5.3)

L(u) = d

dx

(
α(u)du

dx

)
− au+ f(x), (5.4)

L(u) = d

dx

(
α(u)du

dx

)
+ f(u, x) . (5.5)

Both α(x) and f(x) are considered as specified functions, while a is
a prescribed parameter. Differential equations corresponding to (5.2)-
(5.3) arise in diffusion phenomena, such as stationary (time-independent)
transport of heat in solids and flow of viscous fluids between flat plates.
The form (5.4) arises when transient diffusion or wave phenomena are
discretized in time by finite differences. The equation (5.5) appears in
chemical models when diffusion of a substance is combined with chemical
reactions. Also in biology, (5.5) plays an important role, both for spreading
of species and in models involving generation and propagation of electrical
signals.

Let Ω = [0, L] be the domain in one space dimension. In addition
to the differential equation, u must fulfill boundary conditions at the
boundaries of the domain, x = 0 and x = L. When L contains up to
second-order derivatives, as in the examples above, we need one boundary
condition at each of the (two) boundary points, here abstractly specified
as

5.1 Basic principles for approximating differential equations 141

B0(u) = 0, x = 0, B1(u) = 0, x = L (5.6)

There are three common choices of boundary conditions:

Bi(u) = u− g, Dirichlet condition (5.7)

Bi(u) = −αdu
dx
− g, Neumann condition (5.8)

Bi(u) = −αdu
dx
−H(u− g), Robin condition (5.9)

Here, g and H are specified quantities.
From now on we shall use ue(x) as symbol for the exact solution,

fulfilling

L(ue) = 0, x ∈ Ω, (5.10)

while u(x) is our notation for an approximate solution of the differential
equation.

Remark on notation
In the literature about the finite element method, it is common to use
u as the exact solution and uh as the approximate solution, where h
is a discretization parameter. However, the vast part of the present
text is about the approximate solutions, and having a subscript h
attached all the time is cumbersome. Of equal importance is the
close correspondence between implementation and mathematics
that we strive to achieve in this text: when it is natural to use u and
not u_h in code, we let the mathematical notation be dictated by
the code’s preferred notation. In the relatively few cases where we
need to work with the exact solution of the PDE problem we call it
ue in mathematics and u_e in the code (the function for computing
u_e is named u_exact).

5.1.2 Simple model problems and their solutions

A common model problem used much in the forthcoming examples is

142 5 Variational formulations with global basis functions

− u′′(x) = f(x), x ∈ Ω = [0, L], u(0) = 0, u(L) = D . (5.11)

A closely related problem with a different boundary condition at x = 0
reads

− u′′(x) = f(x), x ∈ Ω = [0, L], u′(0) = C, u(L) = D . (5.12)

A third variant has a variable coefficient,

− (α(x)u′(x))′ = f(x), x ∈ Ω = [0, L], u′(0) = C, u(L) = D .
(5.13)

The solution u to the model problem (5.11) can be determined as

u′(x) = −
∫ x

0
f(x) + c0,

u(x) =
∫ x

0
u′(x) + c1,

where c0 and c1 are determined by the boundary conditions such that
u′(0) = C and u(L) = D.

Computing the solution is easily done using sympy. Some common
code is defined first:

import sympy as sym
x, L, C, D, c_0, c_1, = sym.symbols(’x L C D c_0 c_1’)

The following function computes the solution symbolically for the model
problem (5.11):

def model1(f, L, D):
"""Solve -u’’ = f(x), u(0)=0, u(L)=D."""
Integrate twice
u_x = - sym.integrate(f, (x, 0, x)) + c_0
u = sym.integrate(u_x, (x, 0, x)) + c_1
Set up 2 equations from the 2 boundary conditions and solve
with respect to the integration constants c_0, c_1
r = sym.solve([u.subs(x, 0)-0, # x=0 condition

u.subs(x,L)-D], # x=L condition
[c_0, c_1]) # unknowns

Substitute the integration constants in the solution
u = u.subs(c_0, r[c_0]).subs(c_1, r[c_1])
u = sym.simplify(sym.expand(u))
return u

Calling model1(2, L, D) results in the solution

5.1 Basic principles for approximating differential equations 143

u(x) = 1
L
x
(
D + L2 − Lx

)
(5.14)

The model problem (5.12) can be solved by

def model2(f, L, C, D):
"""Solve -u’’ = f(x), u’(0)=C, u(L)=D."""
u_x = - sym.integrate(f, (x, 0, x)) + c_0
u = sym.integrate(u_x, (x, 0, x)) + c_1
r = sym.solve([sym.diff(u,x).subs(x, 0)-C, # x=0 cond.

u.subs(x,L)-D], # x=L cond.
[c_0, c_1])

u = u.subs(c_0, r[c_0]).subs(c_1, r[c_1])
u = sym.simplify(sym.expand(u))
return u

to yield

u(x) = −x2 + Cx− CL+D + L2, (5.15)

if f(x) = 2. Model (5.13) requires a bit more involved code,

def model3(f, a, L, C, D):
"""Solve -(a*u’)’ = f(x), u(0)=C, u(L)=D."""
au_x = - sym.integrate(f, (x, 0, x)) + c_0
u = sym.integrate(au_x/a, (x, 0, x)) + c_1
r = sym.solve([u.subs(x, 0)-C,

u.subs(x,L)-D],
[c_0, c_1])

u = u.subs(c_0, r[c_0]).subs(c_1, r[c_1])
u = sym.simplify(sym.expand(u))
return u

def demo():
f = 2
u = model1(f, L, D)
print(’model1:’, u, u.subs(x, 0), u.subs(x, L))
print(sym.latex(u, mode=’plain’))
u = model2(f, L, C, D)
#f = x
#u = model2(f, L, C, D)
print(’model2:’, u, sym.diff(u, x).subs(x, 0), u.subs(x, L))
print(sym.latex(u, mode=’plain’))
u = model3(0, 1+x**2, L, C, D)
print(’model3:’, u, u.subs(x, 0), u.subs(x, L))
print(sym.latex(u, mode=’plain’))

if __name__ == ’__main__’:
demo()

With f(x) = 0 and α(x) = 1 + x2 we get

144 5 Variational formulations with global basis functions

u(x) = C tan−1 (L)− C tan−1 (x) +D tan−1 (x)
tan−1 (L)

5.1.3 Forming the residual
The fundamental idea is to seek an approximate solution u in some space
V ,

V = span{ψ0(x), . . . , ψN (x)},

which means that u can always be expressed as a linear combination of
the basis functions {ψj}j∈Is , with Is as the index set {0, . . . , N}:

u(x) =
∑
j∈Is

cjψj(x) .

The coefficients {cj}j∈Is are unknowns to be computed.
(Later, in Section 6.2, we will see that if we specify boundary values

of u different from zero, we must look for an approximate solution
u(x) = B(x)+

∑
j cjψj(x), where

∑
j cjψj ∈ V and B(x) is some function

for incorporating the right boundary values. Because of B(x), u will not
necessarily lie in V . This modification does not imply any difficulties.)

We need principles for deriving N+1 equations to determine the N+1
unknowns {ci}i∈Is . When approximating a given function f by u =∑
j cjϕj , a key idea is to minimize the square norm of the approximation

error e = u − f or (equivalently) demand that e is orthogonal to V .
Working with e is not so useful here since the approximation error in
our case is e = ue − u and ue is unknown. The only general indicator
we have on the quality of the approximate solution is to what degree u
fulfills the differential equation. Inserting u =

∑
j cjψj into L(u) reveals

that the result is not zero, because u in general is an approximation and
not identical to ue. The nonzero result,

R = L(u) = L(
∑
j

cjψj), (5.16)

is called the residual and measures the error in fulfilling the governing
equation.

Various principles for determining {cj}j∈Is try to minimize R in some
sense. Note that R varies with x and the {cj}j∈Is parameters. We may
write this dependence explicitly as

5.1 Basic principles for approximating differential equations 145

R = R(x; c0, . . . , cN) . (5.17)

Below, we present three principles for making R small: a least squares
method, a projection or Galerkin method, and a collocation or interpola-
tion method.

5.1.4 The least squares method

The least-squares method aims to find {ci}i∈Is such that the square norm
of the residual

||R|| = (R,R) =
∫
Ω
R2 dx (5.18)

is minimized. By introducing an inner product of two functions f and g
on Ω as

(f, g) =
∫
Ω
f(x)g(x) dx, (5.19)

the least-squares method can be defined as

min
c0,...,cN

E = (R,R) . (5.20)

Differentiating with respect to the free parameters {ci}i∈Is gives the
N + 1 equations∫

Ω
2R∂R

∂ci
dx = 0 ⇔ (R, ∂R

∂ci
) = 0, i ∈ Is . (5.21)

5.1.5 The Galerkin method

The least-squares principle is equivalent to demanding the error to be
orthogonal to the space V when approximating a function f by u ∈ V .
With a differential equation we do not know the true error so we must
instead require the residual R to be orthogonal to V . This idea implies
seeking {ci}i∈Is such that

(R, v) = 0, ∀v ∈ V . (5.22)

This is the Galerkin method for differential equations.
The above abstract statement can be made concrete by choosing a

concrete basis. For example, the statement is equivalent to R being

146 5 Variational formulations with global basis functions

orthogonal to the N + 1 basis functions {ψi} spanning V (and this is the
most convenient way to express (5.22):

(R,ψi) = 0, i ∈ Is, (5.23)

resulting in N + 1 equations for determining {ci}i∈Is .

5.1.6 The method of weighted residuals

A generalization of the Galerkin method is to demand that R is orthogonal
to some space W , but not necessarily the same space as V where we
seek the unknown function. This generalization is called the method of
weighted residuals:

(R, v) = 0, ∀v ∈ W . (5.24)

If {w0, . . . , wN} is a basis for W , we can equivalently express the method
of weighted residuals as

(R,wi) = 0, i ∈ Is . (5.25)

The result is N + 1 equations for {ci}i∈Is .
The least-squares method can also be viewed as a weighted residual

method with wi = ∂R/∂ci.

Variational formulation of the continuous problem

Statements like (5.22), (5.23), (5.24), or (5.25)) are known as weak
formulations or variational formulations. These equations are in this
text primarily used for a numerical approximation u ∈ V , where V
is a finite-dimensional space with dimension N + 1. However, we
may also let the exact solution ue fulfill a variational formulation
(L(ue), v) = 0 ∀v ∈ V , but the exact solution lies in general in
a space with infinite dimensions (because an infinite number of
parameters are needed to specify the solution). The variational for-
mulation for ue in an infinite-dimensional space V is a mathematical
way of stating the problem and acts as an alternative to the usual
(strong) formulation of a differential equation with initial and/or
boundary conditions.

https://en.wikipedia.org/wiki/Weak_formulation
https://en.wikipedia.org/wiki/Weak_formulation

5.1 Basic principles for approximating differential equations 147

Much of the literature on finite element methods takes a dif-
ferential equation problem and first transforms it to a variational
formulation in an infinite-dimensional space V , before searching
for an approximate solution in a finite-dimensional subspace of V .
However, we prefer the more intuitive approach with an approx-
imate solution u in a finite-dimensional space V inserted in the
differential equation, and then the resulting residual is demanded
to be orthogonal to V .

Remark on terminology

The terms weak or variational formulations often refer to a statement
like (5.22) or (5.24) after integration by parts has been performed
(the integration by parts technique is explained in Section 5.1.11).
The result after integration by parts is what is obtained after taking
the first variation of a minimization problem (see Section 5.2.4).
However, in this text we use variational formulation as a common
term for formulations which, in contrast to the differential equation
R = 0, instead demand that an average of R is zero: (R, v) = 0 for
all v in some space.

5.1.7 The method of weighted residual and the truncation
error

In finite difference methods the concept truncation error is often used to
analyze schemes. In our case the continuous problem is:

Lu = 0,

and the corresponding discrete problem is:

Lhuh = 0.

The truncation error is defined in terms of the discrete operator Lh
applied to the continuous solution u as follows:

th = Lhu.

148 5 Variational formulations with global basis functions

A finite difference method is consistent if ‖th‖ → 0 as h→ 0.
To relate the truncation error to the weighted residual, we multiply

by a test function v and integrate

(th, w) = (Lhu, v) = (Lu, v) = (Luh, v) = (R, v) = 0 ∀v ∈ W.

Hence, both the truncation error and the residual are orthogonal to our
test space W and hence consistent.

5.1.8 Test and trial functions

In the context of the Galerkin method and the method of weighted
residuals it is common to use the name trial function for the approximate
u =

∑
j cjψj . The space containing the trial function is known as the

trial space. The function v entering the orthogonality requirement in the
Galerkin method and the method of weighted residuals is called test
function, and so are the ψi or wi functions that are used as weights in
the inner products with the residual. The space where the test functions
comes from is naturally called the test space.

We see that in the method of weighted residuals the test and trial
spaces are different and so are the test and trial functions. In the Galerkin
method the test and trial spaces are the same (so far).

5.1.9 The collocation method

The idea of the collocation method is to demand that R vanishes at
N + 1 selected points x0, . . . , xN in Ω:

R(xi; c0, . . . , cN) = 0, i ∈ Is . (5.26)

The collocation method can also be viewed as a method of weighted
residuals with Dirac delta functions as weighting functions. Let δ(x− xi)
be the Dirac delta function centered around x = xi with the properties
that δ(x− xi) = 0 for x 6= xi and∫

Ω
f(x)δ(x− xi) dx = f(xi), xi ∈ Ω . (5.27)

Intuitively, we may think of δ(x − xi) as a very peak-shaped function
around x = xi with an integral

∫∞
−∞ δ(x− xi)dx that evaluates to unity.

Mathematically, it can be shown that δ(x− xi) is the limit of a Gaussian

5.1 Basic principles for approximating differential equations 149

function centered at x = xi with a standard deviation that approaches
zero. Using this latter model, we can roughly visualize delta functions
as done in Figure 5.1. Because of (5.27), we can let wi = δ(x − xi)
be weighting functions in the method of weighted residuals, and (5.25)
becomes equivalent to (5.26).

0.0 0.2 0.4 0.6 0.8 1.0
x

0

10

20

30

40

w

Fig. 5.1 Approximation of delta functions by narrow Gaussian functions.

The subdomain collocation method. The idea of this approach is to
demand the integral of R to vanish over N + 1 subdomains Ωi of Ω:∫

Ωi

R dx = 0, i ∈ Is . (5.28)

This statement can also be expressed as a weighted residual method∫
Ω
Rwi dx = 0, i ∈ Is, (5.29)

where wi = 1 for x ∈ Ωi and wi = 0 otherwise.

150 5 Variational formulations with global basis functions

5.1.10 Examples on using the principles

Let us now apply global basis functions to illustrate the different principles
for making the residual R small.

The model problem. We consider the differential equation problem

− u′′(x) = f(x), x ∈ Ω = [0, L], u(0) = 0, u(L) = 0 . (5.30)

Basis functions. Our choice of basis functions ψi for V is

ψi(x) = sin
(

(i+ 1)π x
L

)
, i ∈ Is . (5.31)

An important property of these functions is that ψi(0) = ψi(L) = 0,
which means that the boundary conditions on u are fulfilled:

u(0) =
∑
j

cjψj(0) = 0, u(L) =
∑
j

cjψj(L) = 0 .

Another nice property is that the chosen sine functions are orthogonal
on Ω:

L∫
0

sin
(

(i+ 1)π x
L

)
sin
(

(j + 1)π x
L

)
dx =

{
1
2L i = j
0, i 6= j

(5.32)

provided i and j are integers.

The residual. We can readily calculate the following explicit expression
for the residual:

R(x; c0, . . . , cN) = u′′(x) + f(x),

= d2

dx2

∑
j∈Is

cjψj(x)

+ f(x),

=
∑
j∈Is

cjψ
′′
j (x) + f(x) . (5.33)

The least squares method. The equations (5.21) in the least squares
method require an expression for ∂R/∂ci. We have

5.1 Basic principles for approximating differential equations 151

∂R

∂ci
= ∂

∂ci

∑
j∈Is

cjψ
′′
j (x) + f(x)

 =
∑
j∈Is

∂cj
∂ci

ψ′′j (x) = ψ′′i (x) . (5.34)

The governing equations for the unknown parameters {cj}j∈Is are then

(
∑
j

cjψ
′′
j + f, ψ′′i) = 0, i ∈ Is, (5.35)

which can be rearranged as∑
j∈Is

(ψ′′i , ψ′′j)cj = −(f, ψ′′i), i ∈ Is . (5.36)

This is nothing but a linear system∑
j∈Is

Ai,jcj = bi, i ∈ Is .

The entries in the coefficient matrix are given by

Ai,j = (ψ′′i , ψ′′j)

= π4(i+ 1)2(j + 1)2L−4
∫ L

0
sin
(

(i+ 1)π x
L

)
sin
(

(j + 1)π x
L

)
dx

The orthogonality of the sine functions simplify the coefficient matrix:

Ai,j =
{

1
2L
−3π4(i+ 1)4 i = j

0, i 6= j
(5.37)

The right-hand side reads

bi = −(f, ψ′′i) = (i+ 1)2π2L−2
∫ L

0
f(x) sin

(
(i+ 1)π x

L

)
dx (5.38)

Since the coefficient matrix is diagonal we can easily solve for

ci = 2L
π2(i+ 1)2

∫ L

0
f(x) sin

(
(i+ 1)π x

L

)
dx . (5.39)

With the special choice of f(x) = 2, the coefficients can be calculated in
sympy by

import sympy as sym

152 5 Variational formulations with global basis functions

i, j = sym.symbols(’i j’, integer=True)
x, L = sym.symbols(’x L’)
f = 2
a = 2*L/(sym.pi**2*(i+1)**2)
c_i = a*sym.integrate(f*sym.sin((i+1)*sym.pi*x/L), (x, 0, L))
c_i = sym.simplify(c_i)
print(c_i)

The answer becomes

ci = 4
L2
(
(−1)i + 1

)
π3 (i3 + 3i2 + 3i+ 1)

Now, 1 + (−1)i = 0 for i odd, so only the coefficients with even index
are nonzero. Introducing i = 2k for k = 0, . . . , N/2 to count the relevant
indices (for N odd, k goes to (N − 1)/2), we get the solution

u(x) =
N/2∑
k=0

8L2

π3(2k + 1)3 sin
(

(2k + 1)π x
L

)
. (5.40)

The coefficients decay very fast: c2 = c0/27, c4 = c0/125. The solution
will therefore be dominated by the first term,

u(x) ≈ 8L2

π3 sin
(
π
x

L

)
.

The Galerkin method. The Galerkin principle (5.22) applied to (5.30)
consists of inserting our special residual (5.33) in (5.22)

(u′′ + f, v) = 0, ∀v ∈ V,

or

(u′′, v) = −(f, v), ∀v ∈ V . (5.41)

This is the variational formulation, based on the Galerkin principle, of our
differential equation. The ∀v ∈ V requirement is equivalent to demanding
the equation (u′′, v) = −(f, v) to be fulfilled for all basis functions v = ψi,
i ∈ Is, see (5.22) and (5.23). We therefore have

(
∑
j∈Is

cjψ
′′
j , ψi) = −(f, ψi), i ∈ Is . (5.42)

This equation can be rearranged to a form that explicitly shows that we
get a linear system for the unknowns {cj}j∈Is :

5.1 Basic principles for approximating differential equations 153∑
j∈Is

(ψi, ψ′′j)cj = (f, ψi), i ∈ Is . (5.43)

For the particular choice of the basis functions (5.31) we get in fact
the same linear system as in the least squares method because ψ′′ =
−(i+ 1)2π2L−2ψ. Consequently, the solution u(x) becomes identical to
the one produced by the least squares method.

The collocation method. For the collocation method (5.26) we need
to decide upon a set of N + 1 collocation points in Ω. A simple choice
is to use uniformly spaced points: xi = i∆x, where ∆x = L/N in our
case (N ≥ 1). However, these points lead to at least two rows in the
matrix consisting of zeros (since ψi(x0) = 0 and ψi(xN) = 0), thereby
making the matrix singular and non-invertible. This forces us to choose
some other collocation points, e.g., random points or points uniformly
distributed in the interior of Ω. Demanding the residual to vanish at
these points leads, in our model problem (5.30), to the equations

−
∑
j∈Is

cjψ
′′
j (xi) = f(xi), i ∈ Is, (5.44)

which is seen to be a linear system with entries

Ai,j = −ψ′′j (xi) = (j + 1)2π2L−2 sin
(

(j + 1)πxi
L

)
,

in the coefficient matrix and entries bi = 2 for the right-hand side (when
f(x) = 2).

The special case of N = 0 can sometimes be of interest. A natural
choice is then the midpoint x0 = L/2 of the domain, resulting in A0,0 =
−ψ′′0(x0) = π2L−2, f(x0) = 2, and hence c0 = 2L2/π2.

Comparison. In the present model problem, with f(x) = 2, the exact
solution is u(x) = x(L − x), while for N = 0 the Galerkin and least
squares method result in u(x) = 8L2π−3 sin(πx/L) and the collocation
method leads to u(x) = 2L2π−2 sin(πx/L). We can quickly use sympy to
verify that the maximum error occurs at the midpoint x = L/2 and find
what the errors are. First we set up the error expressions:

>>> import sympy as sym
>>> # Computing with Dirichlet conditions: -u’’=2 and sines
>>> x, L = sym.symbols(’x L’)
>>> e_Galerkin = x*(L-x) - 8*L**2*sym.pi**(-3)*sym.sin(sym.pi*x/L)
>>> e_colloc = x*(L-x) - 2*L**2*sym.pi**(-2)*sym.sin(sym.pi*x/L)

154 5 Variational formulations with global basis functions

If the derivative of the errors vanish at x = L/2, the errors reach their
maximum values here (the errors vanish at the boundary points).

>>> dedx_Galerkin = sym.diff(e_Galerkin, x)
>>> dedx_Galerkin.subs(x, L/2)
0
>>> dedx_colloc = sym.diff(e_colloc, x)
>>> dedx_colloc.subs(x, L/2)
0

Finally, we can compute the maximum error at x = L/2 and evaluate
the expressions numerically with three decimals:

>>> sym.simplify(e_Galerkin.subs(x, L/2).evalf(n=3))
-0.00812*L**2
>>> sym.simplify(e_colloc.subs(x, L/2).evalf(n=3))
0.0473*L**2

The error in the collocation method is about 6 times larger than the
error in the Galerkin or least squares method.

5.1.11 Integration by parts

A problem arises if we want to apply popular finite element functions to
solve our model problem (5.30) by the standard least squares, Galerkin, or
collocation methods: the piecewise polynomials ψi(x) have discontinuous
derivatives at the cell boundaries which makes it problematic to compute
the second-order derivative. This fact actually makes the least squares
and collocation methods less suitable for finite element approximation of
the unknown function. (By rewriting the equation −u′′ = f as a system of
two first-order equations, u′ = v and −v′ = f , the least squares method
can be applied. Also, differentiating discontinuous functions can actually
be handled by distribution theory in mathematics.) The Galerkin method
and the method of weighted residuals can, however, be applied together
with finite element basis functions if we use integration by parts as a
means for transforming a second-order derivative to a first-order one.

Consider the model problem (5.30) and its Galerkin formulation

−(u′′, v) = (f, v) ∀v ∈ V .

Using integration by parts in the Galerkin method, we can “move” a
derivative of u onto v:

5.1 Basic principles for approximating differential equations 155∫ L

0
u′′(x)v(x) dx = −

∫ L

0
u′(x)v′(x) dx+ [vu′]L0

= −
∫ L

0
u′(x)v′(x) dx+ u′(L)v(L)− u′(0)v(0) .

(5.45)

Usually, one integrates the problem at the stage where the u and v
functions enter the formulation. Alternatively, but less common, we can
integrate by parts in the expressions for the matrix entries:

∫ L

0
ψi(x)ψ′′j (x) dx = −

∫ L

0
ψ′i(x)ψ′j(x)dx+ [ψiψ′j]L0

= −
∫ L

0
ψ′i(x)ψ′j(x) dx+ ψi(L)ψ′j(L)− ψi(0)ψ′j(0) .

(5.46)

Integration by parts serves to reduce the order of the derivatives and to
make the coefficient matrix symmetric since (ψ′i, ψ′j) = (ψ′j , ψ′i). The sym-
metry property depends on the type of terms that enter the differential
equation. As will be seen later in Section 6.3, integration by parts also
provides a method for implementing boundary conditions involving u′.

With the choice (5.31) of basis functions we see that the “boundary
terms” ψi(L)ψ′j(L) and ψi(0)ψ′j(0) vanish since ψi(0) = ψi(L) = 0. We
therefore end up with the following alternative Galerkin formulation:

−(u′′, v) = (u′, v′) = (f, v) ∀v ∈ V .

Weak form. Since the variational formulation after integration by parts
make weaker demands on the differentiability of u and the basis functions
ψi, the resulting integral formulation is referred to as a weak form of the
differential equation problem. The original variational formulation with
second-order derivatives, or the differential equation problem with second-
order derivative, is then the strong form, with stronger requirements on
the differentiability of the functions.

For differential equations with second-order derivatives, expressed as
variational formulations and solved by finite element methods, we will
always perform integration by parts to arrive at expressions involving
only first-order derivatives.

156 5 Variational formulations with global basis functions

5.1.12 Boundary function

So far we have assumed zero Dirichlet boundary conditions, typically
u(0) = u(L) = 0, and we have demanded that ψi(0) = ψi(L) = 0 for
i ∈ Is. What about a boundary condition like u(L) = D 6= 0? This
condition immediately faces a problem: u =

∑
j cjϕj(L) = 0 since all

ϕi(L) = 0.
We remark that we faced exactly the same problem in Section 3.3.2

where we considered Fourier series approximations of functions that
where non-zero at the boundaries. We will use the same trick as we did
earlier to get around this problem.

A boundary condition of the form u(L) = D can be implemented by
demanding that all ψi(L) = 0, but adding a boundary function B(x) with
the right boundary value, B(L) = D, to the expansion for u:

u(x) = B(x) +
∑
j∈Is

cjψj(x) .

This u gets the right value at x = L:

u(L) = B(L) +
∑
j∈Is

cjψj(L) = B(L) = D .

The idea is that for any boundary where u is known we demand ψi to
vanish and construct a function B(x) to attain the boundary value of u.
There are no restrictions on how B(x) varies with x in the interior of the
domain, so this variation needs to be constructed in some way. Exactly
how we decide the variation to be, is not important.

For example, with u(0) = 0 and u(L) = D, we can choose B(x) =
xD/L, since this form ensures that B(x) fulfills the boundary conditions:
B(0) = 0 and B(L) = D. The unknown function is then sought on the
form

u(x) = x

L
D +

∑
j∈Is

cjψj(x), (5.47)

with ψi(0) = ψi(L) = 0.
The particular shape of the B(x) function is not important as long as

its boundary values are correct. For example, B(x) = D(x/L)p for any
power p will work fine in the above example. Another choice could be
B(x) = D sin(πx/(2L)).

5.2 Computing with global polynomials 157

As a more general example, consider a domain Ω = [a, b] where the
boundary conditions are u(a) = Ua and u(b) = Ub. A class of possible
B(x) functions is

B(x) = Ua + Ub − Ua
(b− a)p (x− a)p, p > 0 . (5.48)

Real applications will most likely use the simplest version, p = 1, but
here such a p parameter was included to demonstrate that there are
many choices of B(x) in a problem. Fortunately, there is a general,
unique technique for constructing B(x) when we use finite element basis
functions for V .

How to deal with nonzero Dirichlet conditions
The general procedure of incorporating Dirichlet boundary condi-
tions goes as follows. Let ∂ΩE be the part(s) of the boundary ∂Ω
of the domain Ω where u is specified. Set ψi = 0 at the points in
∂ΩE and seek u as

u(x) = B(x) +
∑
j∈Is

cjψj(x), (5.49)

where B(x) equals the boundary conditions on u at ∂ΩE .

Remark. With the B(x) term, u does not in general lie in V =
span {ψ0, . . . , ψN} anymore. Moreover, when a prescribed value of u
at the boundary, say u(a) = Ua is different from zero, it does not make
sense to say that u lies in a vector space, because this space does not
obey the requirements of addition and scalar multiplication. For example,
2u does not lie in the space since its boundary value is 2Ua, which is
incorrect. It only makes sense to split u in two parts, as done above, and
have the unknown part

∑
j cjψj in a proper function space.

5.2 Computing with global polynomials

The next example uses global polynomials and shows that if our solu-
tion, modulo boundary conditions, lies in the space spanned by these
polynomials, then the Galerkin method recovers the exact solution.

158 5 Variational formulations with global basis functions

5.2.1 Computing with Dirichlet and Neumann conditions

Let us perform the necessary calculations to solve

−u′′(x) = 2, x ∈ Ω = [0, 1], u′(0) = C, u(1) = D,

using a global polynomial basis ψi ∼ xi. The requirements on ψi is that
ψi(1) = 0, because u is specified at x = 1, so a proper set of polynomial
basis functions can be

ψi(x) = (1− x)i+1, i ∈ Is .

A suitable B(x) function to handle the boundary condition u(1) = D is
B(x) = Dx. The variational formulation becomes

(u′, v′) = (2, v)− Cv(0) ∀v ∈ V .

From inserting u = B +
∑
j cjψj and choosing v = ψi we get∑

j∈Is
(ψ′j , ψ′i)cj = (2, ψi)− (B′, ψ′i)− Cψi(0), i ∈ Is .

The entries in the linear system are then

Ai,j = (ψ′j , ψ′i) =
∫ 1

0
ψ′i(x)ψ′j(x) dx =

∫ 1

0
(i+ 1)(j + 1)(1− x)i+j dx

= (i+ 1)(j + 1)
i+ j + 1 ,

bi = (2, ψi)− (D,ψ′i)− Cψi(0)

=
∫ 1

0
(2ψi(x)−Dψ′i(x)) dx− Cψi(0)

=
∫ 1

0

(
2(1− x)i+1 +D(i+ 1)(1− x)i

)
dx− C

= (D − C)(i+ 2) + 2
i+ 2 = D − C + 2

i+ 2 .

Relevant sympy commands to help calculate these expressions are

from sympy import *
x, C, D = symbols(’x C D’)
i, j = symbols(’i j’, integer=True, positive=True)
psi_i = (1-x)**(i+1)
psi_j = psi_i.subs(i, j)
integrand = diff(psi_i, x)*diff(psi_j, x)

5.2 Computing with global polynomials 159

integrand = simplify(integrand)
A_ij = integrate(integrand, (x, 0, 1))
A_ij = simplify(A_ij)
print(’A_ij:’, A_ij)
f = 2
b_i = integrate(f*psi_i, (x, 0, 1)) - \

integrate(diff(D*x, x)*diff(psi_i, x), (x, 0, 1)) - \
C*psi_i.subs(x, 0)

b_i = simplify(b_i)
print(’b_i:’, b_i)

The output becomes

A_ij: (i + 1)*(j + 1)/(i + j + 1)
b_i: ((-C + D)*(i + 2) + 2)/(i + 2)

We can now choose some N and form the linear system, say for N = 1:

N = 1
A = zeros(N+1, N+1)
b = zeros(N+1)
print(’fresh b:’, b)
for r in range(N+1):

for s in range(N+1):
A[r,s] = A_ij.subs(i, r).subs(j, s)

b[r,0] = b_i.subs(i, r)

The system becomes(
1 1
1 4/3

)(
c0
c1

)
=
(

1− C +D
2/3− C +D

)
The solution (c = A.LUsolve(b)) becomes c0 = 2−C+D and c1 = −1,
resulting in

u(x) = 1− x2 +D + C(x− 1), (5.50)

We can form this u in sympy and check that the differential equation and
the boundary conditions are satisfied:

u = sum(c[r,0]*psi_i.subs(i, r) for r in range(N+1)) + D*x
print(’u:’, simplify(u))
print("u’’:", simplify(diff(u, x, x)))
print(’BC x=0:’, simplify(diff(u, x).subs(x, 0)))
print(’BC x=1:’, simplify(u.subs(x, 1)))

The output becomes

u: C*x - C + D - x**2 + 1
u’’: -2
BC x=0: C
BC x=1: D

160 5 Variational formulations with global basis functions

The complete sympy code is found in u_xx_2_CD.py.
The exact solution is found by integrating twice and applying the

boundary conditions, either by hand or using sympy as shown in Sec-
tion 5.1.2. It appears that the numerical solution coincides with the exact
one. This result is to be expected because if (ue − B) ∈ V , u = ue, as
proved next.

5.2.2 When the numerical method is exact

We have some variational formulation: find (u − B) ∈ V such that
a(u, v) = L(u) ∀v ∈ V . The exact solution also fulfills a(ue, v) = L(v),
but normally (ue −B) lies in a much larger (infinite-dimensional) space.
Suppose, nevertheless, that ue − B = E, where E ∈ V . That is, apart
from Dirichlet conditions, ue lies in our finite-dimensional space V which
we use to compute u. Writing also u on the same form u = B+F , F ∈ V ,
we have

a(ue, v) = a(B + E, v) = L(v) ∀v ∈ V,
a(u, v) = a(B + F, v) = L(v) ∀v ∈ V .

Since these are two variational statements in the same space, we can
subtract them and use the bilinear property of a(·, ·):

a(B + E, v)− a(B + F, v) = L(v)− L(v)
a(B + E − (B + F), v) = 0

a(E − F), v) = 0

If a(E − F), v) = 0 for all v in V , then E − F must be zero everywhere
in the domain, i.e., E = F . Or in other words: u = ue. This proves that
the exact solution is recovered if ue −B lies in V ., i.e., can be expressed
as
∑
j∈Is djψj where {ψj}j∈Is is a basis for V . The method will then

compute the solution cj = dj , j ∈ Is.
The case treated in Section 5.2.1 is of the type where ue − B is a

quadratic function that is 0 at x = 1, and therefore (ue −B) ∈ V , and
the method finds the exact solution.

http://tinyurl.com/znpudbt/u_xx_2_CD.py

5.2 Computing with global polynomials 161

5.2.3 Abstract notation for variational formulations

We have seen that variational formulations end up with a formula in-
volving u and v, such as (u′, v′) and a formula involving v and known
functions, such as (f, v). A widely used notation is to introduce an
abstract variational statement written as

a(u, v) = L(v) ∀v ∈ V,

where a(u, v) is a so-called bilinear form involving all the terms that
contain both the test and trial function, while L(v) is a linear form
containing all the terms without the trial function. For example, the
statement∫

Ω
u′v′ dx =

∫
Ω
fv dx or (u′, v′) = (f, v) ∀v ∈ V

can be written in abstract form: find u such that

a(u, v) = L(v) ∀v ∈ V,

where we have the definitions

a(u, v) = (u′, v′), L(v) = (f, v) .

The term linear means that

L(α1v1 + α2v2) = α1L(v1) + α2L(v2)

for two test functions v1 and v2, and scalar parameters α1 and α2.
Similarly, the term bilinear means that a(u, v) is linear in both its
arguments:

a(α1u1 + α2u2, v) = α1a(u1, v) + α2a(u2, v),
a(u, α1v1 + α2v2) = α1a(u, v1) + α2a(u, v2) .

In nonlinear problems these linearity properties do not hold in general
and the abstract notation is then

F (u; v) = 0 ∀v ∈ V .

The matrix system associated with a(u, v) = L(v) can also be written
in an abstract form by inserting v = ψi and u =

∑
j cjψj in a(u, v) = L(v).

Using the linear properties, we get

162 5 Variational formulations with global basis functions

∑
j∈Is

a(ψj , ψi)cj = L(ψi), i ∈ Is,

which is a linear system∑
j∈Is

Ai,jcj = bi, i ∈ Is,

where

Ai,j = a(ψj , ψi), bi = L(ψi) .

In many problems, a(u, v) is symmetric such that a(ψj , ψi) = a(ψi, ψj).
In those cases the coefficient matrix becomes symmetric, Ai,j = Aj,i, a
property that can simplify solution algorithms for linear systems and
make them more stable. The property also reduces memory requirements
and the computational work.

The abstract notation a(u, v) = L(v) for linear differential equation
problems is much used in the literature and in description of finite element
software (in particular the FEniCS documentation). We shall frequently
summarize variational forms using this notation.

5.2.4 Variational problems and minimization of functionals

Example. Many physical problems can be modeled as partial differential
equations and as minimization problems. For example, the deflection
u(x) of an elastic string subject to a transversal force f(x) is governed
by the differential equation problem

−u′′(x) = f(x), x ∈ (0, L), x(0) = x(L) = 0 .

Equivalently, the deflection u(x) is the function v that minimizes the
potential energy F (v) in a string,

F (v) = 1
2

∫ L

0

(
(v′)2 − fv

)
dx .

That is, F (u) = minv∈V F (v). The quantity F (v) is called a functional:
it takes one or more functions as input and produces a number. Loosely
speaking, we may say that a functional is “a function of functions”.
Functionals very often involve integral expressions as above.

http://fenicsproject.org

5.2 Computing with global polynomials 163

A range of physical problems can be formulated either as a differential
equation or as a minimization of some functional. Quite often, the
differential equation arises from Newton’s 2nd law of motion while the
functional expresses a certain kind of energy.

Many traditional applications of the finite element method, especially
in solid mechanics and constructions with beams and plates, start with
formulating F (v) from physical principles, such as minimization of elastic
energy, and then proceeds with deriving a(u, v) = L(v), which is the
formulation usually desired in software implementations.

The general minimization problem. The relation between a differential
equation and minimization of a functional can be expressed in a general
mathematical way using our abstract notation for a variational form:
a(u, v) = L(v). It can be shown that the variational statement

a(u, v) = L(v) ∀v ∈ V,

is equivalent to minimizing the functional

F (v) = 1
2a(v, v)− L(v)

over all functions v ∈ V . That is,

F (u) ≤ F (v) ∀v ∈ V .

Derivation. To see this, we write F (u) ≤ F (η), ∀η ∈ V instead and set
η = u + εv, where v ∈ V is an arbitrary function in V . For any given
arbitrary v, we can view F (v) as a function g(ε) and find the extrema of
g, which is a function of one variable. We have

F (η) = F (u+ εv) = 1
2a(u+ εv, u+ εv)− L(u+ εv) .

From the linearity of a and L we get

g(ε) = F (u+ εu)

= 1
2a(u+ εv, u+ εv)− L(u+ εv)

= 1
2a(u, u+ εv) + 1

2εa(v, u+ εu)− L(u)− εL(v)

= 1
2a(u, u) + 1

2εa(u, v) + 1
2εa(v, u) + 1

2ε
2a(v, v)− L(u)− εL(v) .

164 5 Variational formulations with global basis functions

If we now assume that a is symmetric, a(u, v) = a(v, u), we can write

g(ε) = 1
2a(u, u) + εa(u, v) + 1

2ε
2a(v, v)− L(u)− εL(v) .

The extrema of g is found by searching for ε such that g′(ε) = 0:

g′(ε) = a(u, v)− L(v) + εa(v, v) = 0 .

This linear equation in ε has a solution ε = (a(u, v) − L(u))/a(v, v) if
a(v, v) > 0. But recall that a(u, v) = L(v) for any v, so we must have
ε = 0. Since the reasoning above holds for any v ∈ V , the function
η = u + εv that makes F (η) extreme must have ε = 0, i.e., η = u, the
solution of a(u, v) = L(v) for any v in V .

Looking at g′′(ε) = a(v, v), we realize that ε = 0 corresponds to a
unique minimum if a(v, v) > 0.

The equivalence of a variational form a(u, v) = L(v) ∀v ∈ V and the
minimization problem F (u) ≤ F (v) ∀v ∈ V requires that 1) a is bilinear
and L is linear, 2) a(u, v) is symmetric: a(u, v) = a(v, u), and 3) that
a(v, v) > 0.
Minimization of the discretized functional. Inserting v =

∑
j cjψj

turns minimization of F (v) into minimization of a quadratic function of
the parameters c0, . . . , cN :

F̄ (c0, . . . , cN) =
∑
j∈Is

∑
i∈Is

a(ψi, ψj)cicj −
∑
j∈Is

L(ψj)cj

of N + 1 parameters.
Minimization of F̄ implies

∂F̄

∂ci
= 0, i ∈ Is .

After some algebra one finds∑
j∈Is

a(ψi, ψj)cj = L(ψi), i ∈ Is,

which is the same system as the one arising from a(u, v) = L(v).
Calculus of variations. A branch of applied mathematics, called calculus
of variations, deals with the technique of minimizing functionals to derive
differential equations. The technique involves taking the variation (a
kind of derivative) of functionals, which have given name to terms like
variational form, variational problem, and variational formulation.

https://en.wikipedia.org/wiki/Calculus_of_variations
https://en.wikipedia.org/wiki/Calculus_of_variations

5.3 Examples on variational formulations 165

5.3 Examples on variational formulations

The following sections derive variational formulations for some prototype
differential equations in 1D, and demonstrate how we with ease can
handle variable coefficients, mixed Dirichlet and Neumann boundary
conditions, first-order derivatives, and nonlinearities.

5.3.1 Variable coefficient
Consider the problem

− d

dx

(
α(x)du

dx

)
= f(x), x ∈ Ω = [0, L], u(0) = C, u(L) = D .

(5.51)
There are two new features of this problem compared with previous
examples: a variable coefficient α(x) and nonzero Dirichlet conditions at
both boundary points.

Let us first deal with the boundary conditions. We seek

u(x) = B(x) +
∑
j∈Is

cjψi(x) .

Since the Dirichlet conditions demand

ψi(0) = ψi(L) = 0, i ∈ Is,

the function B(x) must fulfill B(0) = C and B(L) = D. The we are
guaranteed that u(0) = C and u(L) = D. How B varies in between x = 0
and x = L is not of importance. One possible choice is

B(x) = C + 1
L

(D − C)x,

which follows from (5.48) with p = 1.
We seek (u−B) ∈ V . As usual,

V = span{ψ0, . . . , ψN} .

Note that any v ∈ V has the property v(0) = v(L) = 0.
The residual arises by inserting our u in the differential equation:

R = − d

dx

(
α
du

dx

)
− f .

166 5 Variational formulations with global basis functions

Galerkin’s method is

(R, v) = 0, ∀v ∈ V,

or written with explicit integrals,∫
Ω

(
− d

dx

(
α
du

dx

)
− f

)
v dx = 0, ∀v ∈ V .

We proceed with integration by parts to lower the derivative from second
to first order:

−
∫
Ω

d

dx

(
α(x)du

dx

)
v dx =

∫
Ω
α(x)du

dx

dv

dx
dx−

[
α
du

dx
v

]L
0
.

The boundary term vanishes since v(0) = v(L) = 0. The variational
formulation is then∫

Ω
α(x)du

dx

dv

dx
dx =

∫
Ω
f(x)v dx, ∀v ∈ V .

The variational formulation can alternatively be written in a more com-
pact form:

(αu′, v′) = (f, v), ∀v ∈ V .

The corresponding abstract notation reads

a(u, v) = L(v) ∀v ∈ V,

with
a(u, v) = (αu′, v′), L(v) = (f, v) .

We may insert u = B+
∑
j cjψj and v = ψi to derive the linear system:

(αB′ + α
∑
j∈Is

cjψ
′
j , ψ

′
i) = (f, ψi), i ∈ Is .

Isolating everything with the cj coefficients on the left-hand side and all
known terms on the right-hand side gives∑

j∈Is
(αψ′j , ψ′i)cj = (f, ψi) + (α(D − C)L−1, ψ′i), i ∈ Is .

This is nothing but a linear system
∑
j Ai,jcj = bi with

5.3 Examples on variational formulations 167

Ai,j = (αψ′j , ψ′i) =
∫
Ω
α(x)ψ′j(x), ψ′i(x) dx,

bi = (f, ψi) + (α(D − C)L−1, ψ′i) =
∫
Ω

(
f(x)ψi(x) + α(x)D − C

L
ψ′i(x)

)
dx .

5.3.2 First-order derivative in the equation and boundary
condition

The next problem to formulate in terms of a variational form reads

− u′′(x) + bu′(x) = f(x), x ∈ Ω = [0, L], u(0) = C, u′(L) = E .
(5.52)

The new features are a first-order derivative u′ in the equation and the
boundary condition involving the derivative: u′(L) = E. Since we have a
Dirichlet condition at x = 0, we must force ψi(0) = 0 and use a boundary
function to take care of the condition u(0) = C. Because there is no
Dirichlet condition on x = L we do not make any requirements to ψi(L).
The simplest possible choice of B(x) is B(x) = C.

The expansion for u becomes

u = C +
∑
j∈Is

cjψi(x) .

The variational formulation arises from multiplying the equation by a
test function v ∈ V and integrating over Ω:

(−u′′ + bu′ − f, v) = 0, ∀v ∈ V

We apply integration by parts to the u′′v term only. Although we could
also integrate u′v by parts, this is not common. The result becomes

(u′, v′) + (bu′, v) = (f, v) + [u′v]L0 , ∀v ∈ V .

Now, v(0) = 0 so

[u′v]L0 = u′(L)v(L) = Ev(L),

because u′(L) = E. Thus, integration by parts allows us to take care of
the Neumann condition in the boundary term.

168 5 Variational formulations with global basis functions

Natural and essential boundary conditions

A common mistake is to forget a boundary term like [u′v]L0 in the
integration by parts. Such a mistake implies that we actually impose
the condition u′ = 0 unless there is a Dirichlet condition (i.e., v = 0)
at that point! This fact has great practical consequences, because
it is easy to forget the boundary term, and that implicitly set a
boundary condition!

Since homogeneous Neumann conditions can be incorporated
without “doing anything” (i.e., omitting the boundary term), and
non-homogeneous Neumann conditions can just be inserted in the
boundary term, such conditions are known as natural boundary
conditions. Dirichlet conditions require more essential steps in the
mathematical formulation, such as forcing all ϕi = 0 on the bound-
ary and constructing a B(x), and are therefore known as essential
boundary conditions.

The final variational form reads

(u′, v′) + (bu′, v) = (f, v) + Ev(L), ∀v ∈ V .

In the abstract notation we have

a(u, v) = L(v) ∀v ∈ V,

with the particular formulas

a(u, v) = (u′, v′) + (bu′, v), L(v) = (f, v) + Ev(L) .

The associated linear system is derived by inserting u = B +
∑
j cjψj

and replacing v by ψi for i ∈ Is. Some algebra results in∑
j∈Is

((ψ′j , ψ′i) + (bψ′j , ψi))︸ ︷︷ ︸
Ai,j

cj = (f, ψi) + Eψi(L)︸ ︷︷ ︸
bi

.

Observe that in this problem, the coefficient matrix is not symmetric,
because of the term

(bψ′j , ψi) =
∫
Ω
bψ′jψi dx 6=

∫
Ω
bψ′iψj dx = (ψ′i, bψj) .

5.3 Examples on variational formulations 169

5.3.3 Nonlinear coefficient

Finally, we show that the techniques used above to derive variational
forms apply to nonlinear differential equation problems as well. Here
is a model problem with a nonlinear coefficient α(u) and a nonlinear
right-hand side f(u):

− (α(u)u′)′ = f(u), x ∈ [0, L], u(0) = 0, u′(L) = E . (5.53)

Our space V has basis {ψi}i∈Is , and because of the condition u(0) = 0,
we must require ψi(0) = 0, i ∈ Is.

Galerkin’s method is about inserting the approximate u, multiplying
the differential equation by v ∈ V , and integrate,

−
∫ L

0

d

dx

(
α(u)du

dx

)
v dx =

∫ L

0
f(u)v dx ∀v ∈ V .

The integration by parts does not differ from the case where we have
α(x) instead of α(u):∫ L

0
α(u)du

dx

dv

dx
dx =

∫ L

0
f(u)v dx+ [α(u)vu′]L0 ∀v ∈ V .

The term α(u(0))v(0)u′(0) = 0 since v(0). The other term,
α(u(L))v(L)u′(L), is used to impose the other boundary condition
u′(L) = E, resulting in

∫ L

0
α(u)du

dx

dv

dx
dx =

∫ L

0
f(u)v dx+ α(u(L))v(L)E ∀v ∈ V,

or alternatively written more compactly as

(α(u)u′, v′) = (f(u), v) + α(u(L))v(L)E ∀v ∈ V .

Since the problem is nonlinear, we cannot identify a bilinear form a(u, v)
and a linear form L(v). An abstract formulation is typically find u such
that

F (u; v) = 0 ∀v ∈ V,

with
F (u; v) = (a(u)u′, v′)− (f(u), v)− a(L)v(L)E .

170 5 Variational formulations with global basis functions

By inserting u =
∑
j cjψj and v = ψi in F (u; v), we get a nonlinear

system of algebraic equations for the unknowns ci, i ∈ Is. Such systems
must be solved by constructing a sequence of linear systems whose
solutions hopefully converge to the solution of the nonlinear system.
Frequently applied methods are Picard iteration and Newton’s method.

5.4 Implementation of the algorithms

Our hand calculations can benefit greatly by symbolic computing, as
shown earlier, so it is natural to extend our approximation programs
based on sympy to the problem domain of variational formulations.

5.4.1 Extensions of the code for approximation

The user must prepare a function integrand_lhs(psi, i, j) for re-
turning the integrand of the integral that contributes to matrix entry
(i, j) on the left-hand side. The psi variable is a Python dictionary
holding the basis functions and their derivatives in symbolic form. More
precisely, psi[q] is a list of

{d
qψ0

dxq
, . . . ,

dqψNn−1

dxq
} .

Similarly, integrand_rhs(psi, i) returns the integrand for entry num-
ber i in the right-hand side vector.

Since we also have contributions to the right-hand side vector (and
potentially also the matrix) from boundary terms without any integral,
we introduce two additional functions, boundary_lhs(psi, i, j) and
boundary_rhs(psi, i) for returning terms in the variational formula-
tion that are not to be integrated over the domain Ω. Examples, to be
shown later, will explain in more detail how these user-supplied functions
may look like.

The linear system can be computed and solved symbolically by the
following function:

import sympy as sym

def solver(integrand_lhs, integrand_rhs, psi, Omega,
boundary_lhs=None, boundary_rhs=None):

N = len(psi[0]) - 1
A = sym.zeros(N+1, N+1)

5.4 Implementation of the algorithms 171

b = sym.zeros(N+1, 1)
x = sym.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = integrand_lhs(psi, i, j)
I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if boundary_lhs is not None:

I += boundary_lhs(psi, i, j)
A[i,j] = A[j,i] = I # assume symmetry

integrand = integrand_rhs(psi, i)
I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if boundary_rhs is not None:

I += boundary_rhs(psi, i)
b[i,0] = I

c = A.LUsolve(b)
u = sum(c[i,0]*psi[0][i] for i in range(len(psi[0])))
return u, c

5.4.2 Fallback to numerical methods

Not surprisingly, symbolic solution of differential equations, discretized
by a Galerkin or least squares method with global basis functions, is of
limited interest beyond the simplest problems, because symbolic inte-
gration might be very time consuming or impossible, not only in sympy
but also in WolframAlpha (which applies the perhaps most powerful
symbolic integration software available today: Mathematica). Numerical
integration as an option is therefore desirable.

The extended solver function below tries to combine symbolic and
numerical integration. The latter can be enforced by the user, or it can be
invoked after a non-successful symbolic integration (being detected by an
Integral object as the result of the integration in sympy). Note that for a
numerical integration, symbolic expressions must be converted to Python
functions (using lambdify), and the expressions cannot contain other
symbols than x. The real solver routine in the varform1D.py file has
error checking and meaningful error messages in such cases. The solver
code below is a condensed version of the real one, with the purpose
of showing how to automate the Galerkin or least squares method for
solving differential equations in 1D with global basis functions:

def solver(integrand_lhs, integrand_rhs, psi, Omega,
boundary_lhs=None, boundary_rhs=None, symbolic=True):

N = len(psi[0]) - 1
A = sym.zeros(N+1, N+1)
b = sym.zeros(N+1, 1)
x = sym.Symbol(’x’)

http://wolframalpha.com
http://tinyurl.com/znpudbt/varform1D.py

172 5 Variational formulations with global basis functions

for i in range(N+1):
for j in range(i, N+1):

integrand = integrand_lhs(psi, i, j)
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sym.Integral):

symbolic = False # force num.int. hereafter
if not symbolic:

integrand_ = sym.lambdify([x], integrand, ’mpmath’)
I = mpmath.quad(integrand_, [Omega[0], Omega[1]])

if boundary_lhs is not None:
I += boundary_lhs(psi, i, j)

A[i,j] = A[j,i] = I
integrand = integrand_rhs(psi, i)
if symbolic:

I = sym.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sym.Integral):

symbolic = False
if not symbolic:

integrand_ = sym.lambdify([x], integrand, ’mpmath’)
I = mpmath.quad(integrand_, [Omega[0], Omega[1]])

if boundary_rhs is not None:
I += boundary_rhs(psi, i)

b[i,0] = I
c = A.LUsolve(b)
u = sum(c[i,0]*psi[0][i] for i in range(len(psi[0])))
return u, c

5.4.3 Example with constant right-hand side

To demonstrate the code above, we address

−u′′(x) = b, x ∈ Ω = [0, 1], u(0) = 1, u(1) = 0,

with b as a (symbolic) constant. A possible basis for the space V is
ψi(x) = xi+1(1− x), i ∈ Is. Note that ψi(0) = ψi(1) = 0 as required by
the Dirichlet conditions. We need a B(x) function to take care of the
known boundary values of u. Any function B(x) = 1− xp, p ∈ R, is a
candidate, and one arbitrary choice from this family is B(x) = 1− x3.
The unknown function is then written as

u(x) = B(x) +
∑
j∈Is

cjψj(x) .

Let us use the Galerkin method to derive the variational formulation.
Multiplying the differential equation by v and integrating by parts yield

5.4 Implementation of the algorithms 173∫ 1

0
u′v′ dx =

∫ 1

0
fv dx ∀v ∈ V,

and with u = B +
∑
j cjψj we get the linear system

∑
j∈Is

(∫ 1

0
ψ′iψ

′
j dx

)
cj =

∫ 1

0
(fψi −B′ψ′i) dx, i ∈ Is . (5.54)

The application can be coded as follows with sympy:

import sympy as sym
x, b = sym.symbols("x b")
f = b
B = 1 - x**3
dBdx = sym.diff(B, x)

Compute basis functions and their derivatives
N = 3
psi = {0: [x**(i+1)*(1-x) for i in range(N+1)]}
psi[1] = [sym.diff(psi_i, x) for psi_i in psi[0]]

def integrand_lhs(psi, i, j):
return psi[1][i]*psi[1][j]

def integrand_rhs(psi, i):
return f*psi[0][i] - dBdx*psi[1][i]

Omega = [0, 1]

from varform1D import solver
u_bar, _ = solver(integrand_lhs, integrand_rhs, psi, Omega,

verbose=True, symbolic=True)
u = B + u_bar
print("solution u:", sym.simplify(sym.expand(u)))

The printout of u reads -b*x**2/2 + b*x/2 - x + 1. Note that ex-
panding u, before simplifying, is necessary in the present case to get a
compact, final expression with sympy. Doing expand before simplify
is a common strategy for simplifying expressions in sympy. However, a
non-expanded u might be preferable in other cases - this depends on the
problem in question.

The exact solution ue(x) can be derived by some sympy code that
closely follows the examples in Section 5.1.2. The idea is to integrate
−u′′ = b twice and determine the integration constants from the boundary
conditions:

C1, C2 = sym.symbols(’C1 C2’) # integration constants
f1 = sym.integrate(f, x) + C1

174 5 Variational formulations with global basis functions

f2 = sym.integrate(f1, x) + C2
Find C1 and C2 from the boundary conditions u(0)=0, u(1)=1
s = sym.solve([u_e.subs(x,0) - 1, u_e.subs(x,1) - 0], [C1, C2])
Form the exact solution
u_e = -f2 + s[C1]*x + s[C2]
print(’analytical solution:’, u_e)
print(’error:’, sym.simplify(sym.expand(u - u_e)))

The last line prints 0, which is not surprising when ue(x) is a parabola
and our approximate u contains polynomials up to degree 4. It suffices to
have N = 1, i.e., polynomials of degree 2, to recover the exact solution.

We can play around with the code and test that with f = Kxp, for
some constants K and p, the solution is a polynomial of degree p + 2,
and N = p+ 1 guarantees that the approximate solution is exact.

Although the symbolic code is capable of integrating many choices of
f(x), the symbolic expressions for u quickly become lengthy and non-
informative, so numerical integration in the code, and hence numerical
answers, have the greatest application potential.

5.5 Approximations may fail: convection-diffusion

In the previous examples we have obtained reasonable approximations
of the continuous solution with several different approaches. In this
section we will consider a convection-diffusion equation where many
methods will fail. The failure is purely numerical and it is often tied to
the resolution. The current example is perhaps the prime example of
numerical instabilities in the context of numerical solution algorithms
for PDEs. Consider the equation

−εuxx − ux = 0, ∈ (0, 1), (5.55)
u(0) = 1, (5.56)
u(1) = 0. (5.57)

The PDE problem describes a convection-diffusion problem where
the convection is modeled by the first order term −ux and diffusion is
described by the second order term −εuxx. In many applications ε� 1
and the dominating term is −ux. The sign of −ux is not important, the
same problem occurs for ux. The sign only determine the direction of
the convection.

For ε = 0, the solution satisfies

5.5 Approximations may fail: convection-diffusion 175

u(x)− u(1) =
∫ x

1
(−ux)(− dx) = 0,

which means that u(x) = u(1). Clearly only the boundary condition at
x = 1 is required and the solution is constant throughout the domain.

If 0 < ε � 1 such that the term −ux is dominating, the solution is
similar to the solution for ε = 0 in the interior. However, the second order
term −εuxx makes the problem a second order problem and two boundary
conditions are required, one condition at each side. The boundary condi-
tion at x = 0 forces the solution to be zero at that point and this creates
a sharp gradient close to x = 0. For this reason, the problem is called a
singular perturbation problem as the problem changes fundamentally in
the sense that different boundary conditions are required in the limiting
case ε = 0.

The solution of the above problem is

u(x) = e−x/ε − 1
e−1/ε − 1 . (5.58)

Fig. 5.2 Analytical solution to the convection-diffusion problem for varying ε.

The solution is plotted in Figure 5.2 for different values of ε. Clearly,
as ε decrease the exponential function represents a sharper and sharper

176 5 Variational formulations with global basis functions

gradient. From a physical or engineering point of view, the equation
(5.55) represents the simplest problem involving a common phenomenon
of boundary layers. Boundary layers are common in all kinds of fluid
flow and is a main problem when discretizing such equations. Boundary
layers have the characteristics of the solution (5.58), that is; a sharp
local exponential gradient. In fluid flow the parameter ε is often related
to the inverse of the Reynolds number which frequently in engineering
is significantly larger than 103 as it was here. In these applications the
boundary layer is extremely thin and the gradient extremely sharp.

In this chapter we will not embark on the fascinating and complex issue
of boundary layer theory but only consider the numerical issues related
to this phenomenon. Let us as earlier therefore consider an approximate
solution on the following form

u(x) = û(x) +B(x) =
N−1∑
j=1

cjψj(x) +B(x) (5.59)

As earlier {ψj(x)}N−1
j=1 } are zero at the boundary x = 0 and x = 1 and

the boundary conditions are accounted for by the function B(x). Let

B(x) = c0(1− x) + cNx . (5.60)

Then we fixate c0 = 0 and cN = 1 which makes B(x) = x. To determine
{cj}N−1

j=1 } we consider the homogeneous Dirichlet problem where we solve
for û = u−B. The homogeneous Dirichlet problem reads

−εûxx + ûx = 1, ∈ (0, 1), (5.61)
û(0) = 0, (5.62)
û(1) = 0 .

The Galerkin formulation of (5.62) is obtained as∫ 1

0
(−εû′′ + û′ − 1)ψj dx .

Integration by parts leads to∫ 1

0
εû′ψ′i + û′ψi − 1ψi dx .

In other words, we need to solve the linear system
∑
j Ai,jcj = bi where

5.5 Approximations may fail: convection-diffusion 177

Ai,j =
∫ 1

0
εψ′jψ

′
i + ψ′jψi dx,

bi =
∫ 1

0
1ψj dx .

A sketch of a corresponding code where we also plot the behavior of
the solution with respect to different ε goes as follows.

import matplotlib.pyplot as plt
N = 8
psi = series(x, series_type, N) # Lagrange, Bernstein, sin, ...
eps_values =[1.0, 0.1, 0.01, 0.001]
for eps in eps_valuess:

A = sym.zeros(N-1, N-1)
b = sym.zeros(N-1)

for i in range(0, N-1):
integrand = f*psi[i]
integrand = sym.lambdify([x], integrand, ’mpmath’)
b[i,0] = mpmath.quad(integrand, [Omega[0], Omega[1]])
for j in range(0, N-1):

integrand = eps*sym.diff(psi[i], x)*\
sym.diff(psi[j], x) - sym.diff(psi[i], x)*psi[j]

integrand = sym.lambdify([x], integrand, ’mpmath’)
A[i,j] = mpmath.quad(integrand, [Omega[0], Omega[1]])

c = A.LUsolve(b)
u = sum(c[r,0]*psi[r] for r in range(N-1)) + x

U = sym.lambdify([x], u, modules=’numpy’)
x_ = numpy.arange(Omega[0], Omega[1], 1/((N+1)*100.0))
U_ = U(x_)
plt.plot(x_, U_)

The numerical solutions for different ε is shown in Figure 5.3 and 5.4
for N = 8 and N = 16, respectively. From these figures we can make two
observations. The first observation is that the numerical solution contains
non-physical oscillations that grows as ε decreases. These oscillations are
so strong that for N = 8, the numerical solutions do not resemble the
true solution at all for ε less than 1/10. The true solution is always in the
interval [0, 1] while the numerical solution has values larger than 2 for
ε = 1/100 and larger than 10 for ε = 1/1000. The second observation is
that the numerical solutions appear to improve as N increases. While the
numerical solution is outside the interval [0, 1] for ε less than 1/10 the
magnitude of the oscillations clearly has decreased. Both Lagrange and
Bernstein approximations have similar problems, but the computations
using Bernstein polynomials are significantly more efficient and are
therefore shown.

178 5 Variational formulations with global basis functions

Fig. 5.3 Solution obtained with Galerkin approximation using Bernstein polynomials of
order up to 8 for various ε.

Fig. 5.4 Solution obtained with Galerkin approximation using Bernstein polynomials of
order up to 16 for various ε.

5.5 Approximations may fail: convection-diffusion 179

We will return to this example later and show examples of techniques
that can be used to improve the approximation. The complete source
code can be found in conv_diff.py.

http://tinyurl.com/znpudbt/conv_diff.py

180 5 Variational formulations with global basis functions

5.6 Exercises

Exercise 5.1: Refactor functions into a more general class

Section 5.1.2 lists three functions for computing the analytical solution
of some simple model problems. There is quite some repetitive code,
suggesting that the functions can benefit from being refactored into a
class hierarchy, where the super class solves −(a(x)u′(x))′ = f(x) and
where subclasses define the equations for the boundary conditions in
a model. Make a method for returning the residual in the differential
equation and the boundary conditions when the solution is inserted
in these equations. Create a test function that verifies that all three
residuals vanish for each of the model problems in Section 5.1.2. Also
make a method that returns the solution either as sympy expression
or as a string in LATEX format. Add a fourth subclass for the problem
−(au′)′ = f with a Robin boundary condition:

u(0) = 0, −u′(L) = C(u−D) .

Demonstrate the use of this subclass for the case f = 0 and a =
√

1 + x.
Filename: uxx_f_sympy_class.

Exercise 5.2: Compute the deflection of a cable with sine
functions

A hanging cable of length L with significant tension T has a deflection
w(x) governed by

Tw′′(x) = `(x),

where `(x) the vertical load per unit length. The cable is fixed at x = 0
and x = L so the boundary conditions become w(0) = w(L) = 0. The
deflection w is positive upwards, and ` is positive when it acts downwards.

If we assume a constant load `(x) = const, the solution is expected to
be symmetric around x = L/2. For a function w(x) that is symmetric
around some point x0, it means that w(x0 − h) = w(x0 + h), and then
w′(x0) = limh→0(w(x0 + h) − w(x0 − h))/(2h) = 0. We can therefore
utilize symmetry to halve the domain. We then seek w(x) in [0, L/2]
with boundary conditions w(0) = 0 and w′(L/2) = 0.

The problem can be scaled by introducing dimensionless variables,

5.6 Exercises 181

x̄ = x

L/2 , ū = w

wc
,

where wc is a characteristic size of w. Inserted in the problem for w,

4Twc
L2

d2ū

dx̄2 = ` (= const) .

A desire is to have u and its derivatives about unity, so choosing wc such
that |d2ū/dx̄2| = 1 is an idea. Then wc = 1

4`L
2/T , and the problem for

the scaled vertical deflection u becomes

u′′ = 1, x ∈ (0, 1), u(0) = 0, u′(1) = 0 .

Observe that there are no physical parameters in this scaled problem.
From now on we have for convenience renamed x to be the scaled quantity
x̄.
a) Find the exact solution for the deflection u.
b) A possible function space is spanned by ψi = sin((2i + 1)πx/2),
i = 0, . . . , N . These functions fulfill the necessary condition ψi(0) = 0,
but they also fulfill ψ′i(1) = 0 such that both boundary conditions are
fulfilled by the expansion u =

∑
j cjϕj .

Use a Galerkin and a least squares method to find the coefficients cj
in u(x) =

∑
j cjψj . Find how fast the coefficients decrease in magnitude

by looking at cj/cj−1. Find the error in the maximum deflection at x = 1
when only one basis function is used (N = 0).
Hint. In this case, where the basis functions and their derivatives are
orthogonal, it is easiest to set up the calculations by hand and use sympy
to help out with the integrals.
c) Visualize the solutions in b) for N = 0, 1, 20.
d) The functions in b) were selected such that they fulfill the condition
ψ′(1) = 0. However, in the Galerkin method, where we integrate by
parts, the condition u′(1) = 0 is incorporated in the variational form.
This leads to the idea of just choosing a simpler basis, namely “all” sine
functions ψi = sin((i+ 1)πx2). Will the method adjust the coefficient such
that the additional functions compared with those in b) get vanishing
coefficients? Or will the additional basis functions improve the solution?
Use Galerkin’s method.
e) Now we drop the symmetry condition at x = 1 and extend the domain
to [0, 2] such that it covers the entire (scaled) physical cable. The problem
now reads

182 5 Variational formulations with global basis functions

u′′ = 1, x ∈ (0, 2), u(0) = u(2) = 0 .

This time we need basis functions that are zero at x = 0 and x = 2. The
set sin((i+ 1)πx2) from d) is a candidate since they vanish x = 2 for any
i. Compute the approximation in this case. Why is this approximation
without the problem that this set of basis functions introduced in d)?
Filename: cable_sin.

Exercise 5.3: Compute the deflection of a cable with power
functions

a) Repeat Exercise 5.2 b), but work with the space

V = span{x, x2, x3, x4, . . .} .

Choose the dimension of V to be 4 and observe that the exact solution
is recovered by the Galerkin method.

Hint. Use the solver function from varform1D.py.

b) What happens if we use a least squares method for this problem with
the basis in a)?
Filename: cable_xn.

Exercise 5.4: Check integration by parts

Consider the Galerkin method for the problem involving u in Exercise 5.2.
Show that the formulas for cj are independent of whether we perform
integration by parts or not.
Filename: cable_integr_by_parts.

Variational formulations with finite
elements 6

We shall now take the ideas from previous chapters and put together such
that we can solve PDEs using the flexible finite element basis functions.
This is quite a machinery with many details, but the chapter is mostly
an assembly of concepts and details we have already met.

6.1 Computing with finite elements

The purpose of this section is to demonstrate in detail how the finite
element method can then be applied to the model problem

−u′′(x) = 2, x ∈ (0, L), u(0) = u(L) = 0,

with variational formulation

(u′, v′) = (2, v) ∀v ∈ V .

Any v ∈ V must obey v(0) = v(L) = 0 because of the Dirichlet conditions
on u. The variational formulation is derived in Section 5.1.11.

6.1.1 Finite element mesh and basis functions

We introduce a finite element mesh with Ne cells, all with length h, and
number the cells from left to right. Choosing P1 elements, there are two
nodes per cell, and the coordinates of the nodes become

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

184 6 Variational formulations with finite elements

xi = ih, h = L/Ne, i = 0, . . . , Nn − 1 = Ne .

Any node i is associated with a finite element basis function ϕi(x).
When approximating a given function f by a finite element function
u, we expand u using finite element basis functions associated with all
nodes in the mesh. The parameter N , which counts the unknowns from
0 to N , is then equal to Nn − 1 such that the total number of unknowns,
N + 1, is the total number of nodes. However, when solving differential
equations we will often have N < Nn − 1 because of Dirichlet boundary
conditions. The reason is simple: we know what u are at some (here two)
nodes, and the number of unknown parameters is naturally reduced.

In our case with homogeneous Dirichlet boundary conditions, we do
not need any boundary function B(x), so we can work with the expansion

u(x) =
∑
j∈Is

cjψj(x) . (6.1)

Because of the boundary conditions, we must demand ψi(0) = ψi(L) = 0,
i ∈ Is. When ψi for all i = 0, . . . , N is to be selected among the finite
element basis functions ϕj , j = 0, . . . , Nn − 1, we have to avoid using ϕj
functions that do not vanish at x0 = 0 and xNn−1 = L. However, all ϕj
vanish at these two nodes for j = 1, . . . , Nn − 2. Only basis functions
associated with the end nodes, ϕ0 and ϕNn−1, violate the boundary
conditions of our differential equation. Therefore, we select the basis
functions ϕi to be the set of finite element basis functions associated
with all the interior nodes in the mesh:

ψi = ϕi+1, i = 0, . . . , N .

The i index runs over all the unknowns ci in the expansion for u, and in
this case N = Nn − 3.

In the general case, and in particular on domains in higher dimen-
sions, the nodes are not necessarily numbered from left to right, so we
introduce a mapping from the node numbering, or more precisely the
degree of freedom numbering, to the numbering of the unknowns in the
final equation system. These unknowns take on the numbers 0, . . . , N .
Unknown number j in the linear system corresponds to degree of freedom
number ν(j), j ∈ Is. We can then write

ψi = ϕν(i), i = 0, . . . , N .

6.1 Computing with finite elements 185

With a regular numbering as in the present example, ν(j) = j + 1,
j = 0, . . . , N = Nn − 3.

6.1.2 Computation in the global physical domain

We shall first perform a computation in the x coordinate system because
the integrals can be easily computed here by simple, visual, geometric
considerations. This is called a global approach since we work in the x
coordinate system and compute integrals on the global domain [0, L].

The entries in the coefficient matrix and right-hand side are

Ai,j =
∫ L

0
ψ′i(x)ψ′j(x) dx, bi =

∫ L

0
2ψi(x) dx, i, j ∈ Is .

Expressed in terms of finite element basis functions ϕi we get the alter-
native expressions

Ai,j =
∫ L

0
ϕ′i+1(x)ϕ′j+1(x) dx, bi =

∫ L

0
2ϕi+1(x) dx, i, j ∈ Is .

For the following calculations the subscripts on the finite element basis
functions are more conveniently written as i and j instead of i+ 1 and
j + 1, so our notation becomes

Ai−1,j−1 =
∫ L

0
ϕ′i(x)ϕ′j(x) dx, bi−1 =

∫ L

0
2ϕi(x) dx,

where the i and j indices run as i, j = 1, . . . , N + 1 = Nn − 2.
The ϕi(x) function is a hat function with peak at x = xi and a linear

variation in [xi−1, xi] and [xi, xi+1]. The derivative is 1/h to the left of
xi and −1/h to the right, or more formally,

ϕ′i(x) =


0, x < xi−1,
h−1, xi−1 ≤ x < xi,
−h−1, xi ≤ x < xi+1,
0, x ≥ xi+1

(6.2)

Figure 6.1 shows ϕ′2(x) and ϕ′3(x).
We realize that ϕ′i and ϕ′j has no overlap, and hence their product

vanishes, unless i and j are nodes belonging to the same cell. The only
nonzero contributions to the coefficient matrix are therefore

186 6 Variational formulations with finite elements

543210

x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

ϕ ′2 ϕ ′3

Fig. 6.1 Illustration of the derivative of piecewise linear basis functions associated with
nodes in cell 2.

Ai−1,i−2 =
∫ L

0
ϕ′i(x)ϕ′i−1(x) dx,

Ai−1,i−1 =
∫ L

0
ϕ′i(x)2 dx,

Ai−1,i =
∫ L

0
ϕ′i(x)ϕ′i+1(x) dx,

for i = 1, . . . , N + 1, but for i = 1, Ai−1,i−2 is not defined, and for
i = N + 1, Ai−1,i is not defined.

From Figure 6.1, we see that ϕ′i−1(x) and ϕ′i(x) have overlap of one cell
Ω(i−1) = [xi−1, xi] and that their product then is −1/h2. The integrand
is constant and therefore Ai−1,i−2 = −h−2h = −h−1. A similar reasoning
can be applied to Ai−1,i, which also becomes −h−1. The integral of ϕ′i(x)2

gets contributions from two cells, Ω(i−1) = [xi−1, xi] and Ω(i) = [xi, xi+1],
but ϕ′i(x)2 = h−2 in both cells, and the length of the integration interval
is 2h so we get Ai−1,i−1 = 2h−1.

The right-hand side involves an integral of 2ϕi(x), i = 1, . . . , Nn − 2,
which is just the area under a hat function of height 1 and width 2h, i.e.,
equal to h. Hence, bi−1 = 2h.

To summarize the linear system, we switch from i to i+ 1 such that
we can write

Ai,i−1 = Ai,i+1 = −h−1, Ai,i = 2h−1, bi = 2h .

The equation system to be solved only involves the unknowns ci for
i ∈ Is. With our numbering of unknowns and nodes, we have that ci

6.1 Computing with finite elements 187

equals u(xi+1). The complete matrix system then takes the following
form:

1
h



1 −1 0 · · · · · · · · · · · · · · · 0
−1 2 −1
0 −1 2 −1
... 0

...
...
... 0 −1 2 −1
... 0
... −1
0 · · · · · · · · · · · · · · · 0 −1 1





c0
...
...
...
...
...
...
...
cN



=



2h
...
...
...
...
...
...
...

2h



(6.3)

6.1.3 Comparison with a finite difference discretization
A typical row in the matrix system (6.3) can be written as

− 1
h
ci−1 + 2

h
ci −

1
h
ci+1 = 2h . (6.4)

Let us introduce the notation uj for the value of u at node j: uj = u(xj),
since we have the interpretation u(xj) =

∑
j cjϕ(xj) =

∑
j cjδij = cj .

The unknowns c0, . . . , cN are u1, . . . , uNn−2. Shifting i with i+ 1 in (6.4)
and inserting ui = ci−1, we get

− 1
h
ui−1 + 2

h
ui −

1
h
ui+1 = 2h, (6.5)

A finite difference discretization of −u′′(x) = 2 by a centered, second-
order finite difference approximation u′′(xi) ≈ [DxDxu]i with ∆x = h
yields

− ui−1 − 2ui + ui+1

h2 = 2, (6.6)

which is, in fact, equal to (6.5) if (6.5) is divided by h. Therefore, the
finite difference and the finite element method are equivalent in this
simple test problem.

Sometimes a finite element method generates the finite difference
equations on a uniform mesh, and sometimes the finite element method

188 6 Variational formulations with finite elements

generates equations that are different. The differences are modest, but
may influence the numerical quality of the solution significantly, especially
in time-dependent problems. It depends on the problem at hand whether a
finite element discretization is more or less accurate than a corresponding
finite difference discretization.

6.1.4 Cellwise computations

Software for finite element computations normally employs the cell by
cell computational procedure where an element matrix and vector are
calculated for each cell and assembled in the global linear system. Let us
go through the details of this type of algorithm.

All integrals are mapped to the local reference coordinate system
X ∈ [−1, 1]. In the present case, the matrix entries contain derivatives
with respect to x,

A
(e)
i−1,j−1 =

∫
Ω(e)

ϕ′i(x)ϕ′j(x) dx =
∫ 1

−1

d

dx
ϕ̃r(X) d

dx
ϕ̃s(X)h2 dX,

where the global degree of freedom i is related to the local degree of
freedom r through i = q(e, r). Similarly, j = q(e, s). The local degrees of
freedom run as r, s = 0, 1 for a P1 element.
The integral for the element matrix. There are simple formulas for
the basis functions ϕ̃r(X) as functions of X. However, we now need to
find the derivative of ϕ̃r(X) with respect to x. Given

ϕ̃0(X) = 1
2(1−X), ϕ̃1(X) = 1

2(1 +X),

we can easily compute dϕ̃r/dX:

dϕ̃0

dX
= −1

2 ,
dϕ̃1

dX
= 1

2 .

From the chain rule,

dϕ̃r
dx

= dϕ̃r
dX

dX

dx
= 2
h

dϕ̃r
dX

. (6.7)

The transformed integral is then

A
(e)
i−1,j−1 =

∫
Ω(e)

ϕ′i(x)ϕ′j(x) dx =
∫ 1

−1

2
h

dϕ̃r
dX

2
h

dϕ̃s
dX

h

2 dX .

6.1 Computing with finite elements 189

The integral for the element vector. The right-hand side is transformed
according to

b
(e)
i−1 =

∫
Ω(e)

2ϕi(x) dx =
∫ 1

−1
2ϕ̃r(X)h2 dX, i = q(e, r), r = 0, 1 .

Detailed calculations of the element matrix and vector. Specifically
for P1 elements we arrive at the following calculations for the element
matrix entries:

Ã
(e)
0,0 =

∫ 1

−1

2
h

(
−1

2

) 2
h

(
−1

2

)
h

2 dX = 1
h

Ã
(e)
0,1 =

∫ 1

−1

2
h

(
−1

2

) 2
h

(1
2

)
h

2 dX = −1
h

Ã
(e)
1,0 =

∫ 1

−1

2
h

(1
2

) 2
h

(
−1

2

)
h

2 dX = −1
h

Ã
(e)
1,1 =

∫ 1

−1

2
h

(1
2

) 2
h

(1
2

)
h

2 dX = 1
h

The element vector entries become

b̃
(e)
0 =

∫ 1

−1
21

2(1−X)h2 dX = h

b̃
(e)
1 =

∫ 1

−1
21

2(1 +X)h2 dX = h .

Expressing these entries in matrix and vector notation, we have

Ã(e) = 1
h

(
1 −1
−1 1

)
, b̃(e) = h

(
1
1

)
. (6.8)

Contributions from the first and last cell. The first and last cell
involve only one unknown and one basis function because of the Dirichlet
boundary conditions at the first and last node. The element matrix
therefore becomes a 1×1 matrix and there is only one entry in the element
vector. On cell 0, only ψ0 = ϕ1 is involved, corresponding to integration
with ϕ̃1. On cell Ne, only ψN = ϕNn−2 is involved, corresponding to
integration with ϕ̃0. We then get the special end-cell contributions

Ã(e) = 1
h

(
1
)
, b̃(e) = h

(
1
)
, (6.9)

190 6 Variational formulations with finite elements

for e = 0 and e = Ne. In these cells, we have only one degree of freedom,
not two as in the interior cells.

Assembly. The next step is to assemble the contributions from the
various cells. The assembly of an element matrix and vector into the
global matrix and right-hand side can be expressed as

Aq(e,r),q(e,s) = Aq(e,r),q(e,s) + Ã(e)
r,s , bq(e,r) = bq(e,r) + b̃(e)

r ,

for r and s running over all local degrees of freedom in cell e.
To make the assembly algorithm more precise, it is convenient to set

up Python data structures and a code snippet for carrying out all details
of the algorithm. For a mesh of four equal-sized P1 elements and L = 2
we have

vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 1], [1, 2], [2, 3], [3, 4]]
dof_map = [[0], [0, 1], [1, 2], [2]]

The total number of degrees of freedom is 3, being the function values
at the internal 3 nodes where u is unknown. In cell 0 we have global
degree of freedom 0, the next cell has u unknown at its two nodes, which
become global degrees of freedom 0 and 1, and so forth according to
the dof_map list. The mathematical q(e, r) quantity is nothing but the
dof_map list.

Assume all element matrices are stored in a list Ae such that
Ae[e][i,j] is Ã(e)

i,j . A corresponding list for the element vectors is named
be, where be[e][r] is b̃(e)

r . A Python code snippet illustrates all details
of the assembly algorithm:

A[i,j]: coefficient matrix, b[i]: right-hand side
for e in range(len(Ae)):

for r in range(Ae[e].shape[0]):
for s in range(Ae[e].shape[1]):

A[dof_map[e,r],dof_map[e,s]] += Ae[e][i,j]
b[dof_map[e,r]] += be[e][i,j]

The general case with N_e P1 elements of length h has

N_n = N_e + 1
vertices = [i*h for i in range(N_n)]
cells = [[e, e+1] for e in range(N_e)]
dof_map = [[0]] + [[e-1, e] for i in range(1, N_e)] + [[N_n-2]]

6.2 Boundary conditions: specified nonzero value 191

Carrying out the assembly results in a linear system that is identical
to (6.3), which is not surprising, since the procedures is mathematically
equivalent to the calculations in the physical domain.

So far, our technique for computing the matrix system have assumed
that u(0) = u(L) = 0. The next section deals with the extension to
nonzero Dirichlet conditions.

6.2 Boundary conditions: specified nonzero value

We have to take special actions to incorporate nonzero Dirichlet condi-
tions, such as u(L) = D, into the computational procedures. The present
section outlines alternative, yet mathematically equivalent, methods.

6.2.1 General construction of a boundary function
In Section 5.1.12 we introduced a boundary function B(x) to deal with
nonzero Dirichlet boundary conditions for u. The construction of such
a function is not always trivial, especially not in multiple dimensions.
However, a simple and general constructive idea exists when the basis
functions have the property

ϕi(xj) = δij , δij =
{

1, i = j,
0, i 6= j,

where xj is a boundary point. Examples on such functions are the
Lagrange interpolating polynomials and finite element functions.

Suppose now that u has Dirichlet boundary conditions at nodes with
numbers i ∈ Ib. For example, Ib = {0, Nn − 1} in a 1D mesh with node
numbering from left to right and Dirichlet conditions at the end nodes
i = 0 and i = Nn − 1. Let Ui be the corresponding prescribed values of
u(xi). We can then, in general, use

B(x) =
∑
j∈Ib

Ujϕj(x) . (6.10)

It is easy to verify that B(xi) =
∑
j∈Ib Ujϕj(xi) = Ui.

The unknown function can then be written as

u(x) =
∑
j∈Ib

Ujϕj(x) +
∑
j∈Is

cjϕν(j), (6.11)

192 6 Variational formulations with finite elements

where ν(j) maps unknown number j in the equation system to node ν(j),
Ib is the set of indices corresponding to basis functions associated with
nodes where Dirichlet conditions apply, and Is is the set of indices used
to number the unknowns from zero to N . We can easily show that with
this u, a Dirichlet condition u(xk) = Uk is fulfilled:

u(xk) =
∑
j∈Ib

Uj ϕj(xk)︸ ︷︷ ︸
6=0⇔ j=k

+
∑
j∈Is

cj ϕν(j)(xk)︸ ︷︷ ︸
=0, k 6∈Is

= Uk

Some examples will further clarify the notation. With a regular left-
to-right numbering of nodes in a mesh with P1 elements, and Dirichlet
conditions at x = 0, we use finite element basis functions associated with
the nodes 1, 2, . . . , Nn − 1, implying that ν(j) = j + 1, j = 0, . . . , N ,
where N = Nn − 2. Consider a particular mesh:

543210
x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

The expansion associated with this mesh becomes

u(x) = U0ϕ0(x) + c0ϕ1(x) + c1ϕ2(x) + · · ·+ c4ϕ5(x) .

Switching to the more standard case of left-to-right numbering and
boundary conditions u(0) = C, u(L) = D, we have N = Nn − 3 and

u(x) = Cϕ0 +DϕNn−1 +
∑
j∈Is

cjϕj+1

= Cϕ0 +DϕNn + c0ϕ1 + c1ϕ2 + · · ·+ cNϕNn−2 .

Finite element meshes in non-trivial 2D and 3D geometries usually
leads to an irregular cell and node numbering. Let us therefore take a
look at an irregular numbering in 1D:

6.2 Boundary conditions: specified nonzero value 193

0 1 2 3 4 5 6 7
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

543 2 10

x

Ω(4) Ω(0)Ω(1)Ω(2)Ω(3)

Say we in this mesh have Dirichlet conditions on the left-most and
right-most node, with numbers 3 and 1, respectively. We can number
the unknowns at the interior nodes as we want, e.g., from left to right,
resulting in ν(0) = 0, ν(1) = 4, ν(2) = 5, ν(3) = 2. This gives

B(x) = U3ϕ3(x) + U1ϕ1(x),

and

u(x) = B(x) +
3∑
j=0

cjϕν(j) = U3ϕ3 + U1ϕ1 + c0ϕ0 + c1ϕ4 + c2ϕ5 + c3ϕ2 .

The idea of constructing B, described here, generalizes almost trivially
to 2D and 3D problems: B =

∑
j∈Ib Ujϕj , where Ib is the index set

containing the numbers of all the nodes on the boundaries where Dirichlet
values are prescribed.

6.2.2 Example on computing with a finite element-based
boundary function

Let us see how the model problem −u′′ = 2, u(0) = C, u(L) = D,
is affected by a B(x) to incorporate boundary values. Inserting the
expression

u(x) = B(x) +
∑
j∈Is

cjψj(x)

194 6 Variational formulations with finite elements

in −(u′′, ψi) = (f, ψi) and integrating by parts results in a linear system
with

Ai,j =
∫ L

0
ψ′i(x)ψ′j(x) dx, bi =

∫ L

0
(f(x)ψi(x)−B′(x)ψ′i(x)) dx .

We choose ψi = ϕi+1, i = 0, . . . , N = Nn − 3 if the node numbering is
from left to right. (Later we also need the assumption that cells too are
numbered from left to right.) The boundary function becomes

B(x) = Cϕ0(x) +DϕNn−1(x) .

The expansion for u(x) is

u(x) = B(x) +
∑
j∈Is

cjϕj+1(x) .

We can write the matrix and right-hand side entries as

Ai−1,j−1 =
∫ L

0
ϕ′i(x)ϕ′j(x) dx,

bi−1 =
∫ L

0
(f(x)ϕ′i(x)− (Cϕ′0(x) +Dϕ′Nn−1(x))ϕ′i(x)) dx,

for i, j = 1, . . . , N + 1 = Nn − 2. Note that we have here used B′ =
Cϕ′0 +Dϕ′Nn−1.

Computations in physical coordinates. Most of the terms in the linear
system have already been computed so we concentrate on the new con-
tribution from the boundary function. The integral C

∫ L
0 ϕ′0(x))ϕ′i(x) dx,

associated with the Dirichlet condition in x = 0, can only get a nonzero
contribution from the first cell, Ω(0) = [x0, x1] since ϕ′0(x) = 0 on all
other cells. Moreover, ϕ′0(x)ϕ′i(x) dx 6= 0 only for i = 0 and i = 1 (but
node i = 0 is excluded from the formulation), since ϕi = 0 on the first cell
if i > 1. With a similar reasoning we realize that D

∫ L
0 ϕ′Nn−1(x))ϕ′i(x) dx

can only get a nonzero contribution from the last cell. From the explana-
tions of the calculations in Section 4.1.6 we then find that

6.2 Boundary conditions: specified nonzero value 195∫ L

0
ϕ′0(x)ϕ′1(x) dx = (−1

h
) · 1
h
· h = −1

h
,∫ L

0
ϕ′Nn−1(x)ϕ′Nn−2(x) dx = 1

h
· (−1

h
) · h = −1

h
.

With these expressions we get

b0 =
∫ L

0
f(x)ϕ1 dx− C(−1

h
), bN =

∫ L

0
f(x)ϕNn−2 dx−D(−1

h
) .

Cellwise computations on the reference element. As an equivalent
alternative, we now turn to cellwise computations. The element matrices
and vectors are calculated as in Section 6.1.4, so we concentrate on the
impact of the new term involving B(x). This new term, B′ = Cϕ′0 +
Dϕ′Nn−1, vanishes on all cells except for e = 0 and e = Ne. Over the first
cell (e = 0) the B′(x) function in local coordinates reads

dB

dx
= C

2
h

dϕ̃0

dX
,

while over the last cell (e = Ne) it looks like

dB

dx
= D

2
h

dϕ̃1

dX
.

For an arbitrary interior cell, we have the formula

b̃(e)
r =

∫ 1

−1
f(x(X))ϕ̃r(X)h2 dX,

for an entry in the local element vector. In the first cell, the value at
local node 0 is known so only the value at local node 1 is unknown. The
associated element vector entry becomes

b̃
(1)
0 =

∫ 1

−1

(
fϕ̃1 − C

2
h

dϕ̃0

dX

2
h

dϕ̃1

dX

)
h

2 dX

= h

2 2
∫ 1

−1
ϕ̃1 dX − C 2

h
(−1

2) 2
h

1
2
h

2 · 2 = h+ C
1
h
.

The value at local node 1 in the last cell is known so the element vector
here is

196 6 Variational formulations with finite elements

b̃Ne0 =
∫ 1

−1

(
fϕ̃0 −D

2
h

dϕ̃1

dX

2
h

dϕ̃0

dX

)
h

2 dX

= h

2 2
∫ 1

−1
ϕ̃0 dX −D 2

h

1
2

2
h

(−1
2)h2 · 2 = h+D

1
h
.

The contributions from the B(x) function to the global right-hand side
vector becomes C/h for b0 and D/h for bN , exactly as we computed in
the physical domain.

6.2.3 Modification of the linear system

From an implementational point of view, there is a convenient alternative
to adding the B(x) function and using only the basis functions associated
with nodes where u is truly unknown. Instead of seeking

u(x) =
∑
j∈Ib

Ujϕj(x) +
∑
j∈Is

cjϕν(j)(x), (6.12)

we use the sum over all degrees of freedom, including the known boundary
values:

u(x) =
∑
j∈Is

cjϕj(x) . (6.13)

Note that the collections of unknowns {ci}i∈Is in (6.12) and (6.13) are
different. The index set Is = {0, . . . , N} always goes to N , and the
number of unknowns is N + 1, but in (6.12) the unknowns correspond
to nodes where u is not known, while in (6.13) the unknowns cover u
values at all the nodes. So, if the index set Ib contains Nb node numbers
where u is prescribed, we have that N = Nn −Nb in (6.12) and N = Nn

in (6.13).
The idea is to compute the entries in the linear system as if no Dirichlet

values are prescribed. Afterwards, we modify the linear system to ensure
that the known cj values are incorporated.

A potential problem arises for the boundary term [u′v]L0 from the
integration by parts: imagining no Dirichlet conditions means that we no
longer require v = 0 at Dirichlet points, and the boundary term is then
nonzero at these points. However, when we modify the linear system, we
will erase whatever the contribution from [u′v]L0 should be at the Dirichlet
points in the right-hand side of the linear system. We can therefore safely
forget [u′v]L0 at any point where a Dirichlet condition applies.

6.2 Boundary conditions: specified nonzero value 197

Computations in the physical system. Let us redo the computations
in the example in Section 6.2.1. We solve −u′′ = 2 with u(0) = 0
and u(L) = D. The expressions for Ai,j and bi are the same, but the
numbering is different as the numbering of unknowns and nodes now
coincide:

Ai,j =
∫ L

0
ϕ′i(x)ϕ′j(x) dx, bi =

∫ L

0
f(x)ϕi(x) dx,

for i, j = 0, . . . , N = Nn − 1. The integrals involving basis functions
corresponding to interior mesh nodes, i, j = 1, . . . , Nn − 2, are obviously
the same as before. We concentrate on the contributions from ϕ0 and
ϕNn−1:

A0,0 =
∫ L

0
(ϕ′0)2 dx =

∫ x1

0
= (ϕ′0)2 dx1

h
,

A0,1 =
∫ L

0
ϕ′0ϕ

′
1 dx =

∫ x1

0
ϕ′0ϕ

′
1 dx = −1

h
,

AN,N =
∫ L

0
(ϕ′N)2 dx =

∫ xNn−1

xNn−2

(ϕ′N)2 dx = 1
h
,

AN,N−1 =
∫ L

0
ϕ′Nϕ

′
N−1 dx =

∫ xNn−1

xNn−2

ϕ′Nϕ
′
N−1 dx = −1

h
.

The new terms on the right-hand side are also those involving ϕ0 and
ϕNn−1:

b0 =
∫ L

0
2ϕ0(x) dx =

∫ x1

0
2ϕ0(x) dx = h,

bN =
∫ L

0
2ϕNn−1 dx =

∫ xNn−1

xNn−2

2ϕNn−1 dx = h .

The complete matrix system, involving all degrees of freedom, takes
the form

198 6 Variational formulations with finite elements

1
h



1 −1 0 · · · · · · · · · · · · · · · 0
−1 2 −1
0 −1 2 −1
... 0

...
...
... 0 −1 2 −1
... 0
... −1
0 · · · · · · · · · · · · · · · 0 −1 1





c0
...
...
...
...
...
...
...
cN



=



h
2h
...
...
...
...
...

2h
h



(6.14)

Incorporation of Dirichlet values can now be done by replacing the
first and last equation by the very simple equations c0 = 0 and cN = D,
respectively. Note that the factor 1/h in front of the matrix then requires
a factor h to be introduce appropriately on the diagonal in the first and
last row of the matrix.

1
h



h 0 0 · · · · · · · · · · · · · · · 0
−1 2 −1
0 −1 2 −1
... 0

...
...
... 0 −1 2 −1
... 0
... −1
0 · · · · · · · · · · · · · · · 0 0 h





c0
...
...
...
...
...
...
...
cN



=



0
2h
...
...
...
...
...

2h
D



(6.15)

Note that because we do not require ϕi(0) = 0 and ϕi(L) = 0, i ∈ Is,
the boundary term [u′v]L0 , in principle, gives contributions u′(0)ϕ0(0)
to b0 and u′(L)ϕN (L) to bN (u′ϕi vanishes for x = 0 or x = L for
i = 1, . . . , N − 1). Nevertheless, we erase these contributions in b0 and
bN and insert boundary values instead. This argument shows why we
can drop computing [u′v]L0 at Dirichlet nodes when we implement the
Dirichlet values by modifying the linear system.

6.2 Boundary conditions: specified nonzero value 199

6.2.4 Symmetric modification of the linear system

The original matrix system (6.3) is symmetric, but the modifications
in (6.15) destroy this symmetry. Our described modification will in
general destroy an initial symmetry in the matrix system. This is not a
particular computational disadvantage for tridiagonal systems arising in
1D problems, but may be more serious in 2D and 3D problems when the
systems are large and exploiting symmetry can be important for halving
the storage demands and speeding up computations. Methods for solving
symmetric matrix are also usually more stable and efficient than those
for non-symmetric systems. Therefore, an alternative modification which
preserves symmetry is attractive.

One can formulate a general algorithm for incorporating a Dirichlet
condition in a symmetric way. Let ck be a coefficient corresponding to a
known value u(xk) = Uk. We want to replace equation k in the system
by ck = Uk, i.e., insert zeroes in row number k in the coefficient matrix,
set 1 on the diagonal, and replace bk by Uk. A symmetry-preserving
modification consists in first subtracting column number k in the coeffi-
cient matrix, i.e., Ai,k for i ∈ Is, times the boundary value Uk, from the
right-hand side: bi ← bi − Ai,kUk, i = 0, . . . , N . Then we put zeroes in
both row number k and column number k in the coefficient matrix, and
finally set bk = Uk. The steps in algorithmic form becomes

1. bi ← bi − Ai,kUk for i ∈ Is
2. Ai,k = Ak,i = 0 for i ∈ Is
3. Ak,k = 1
4. bi = Uk

This modification goes as follows for the specific linear system written
out in (6.14) in Section 6.2.3. First we subtract the first column in the
coefficient matrix, times the boundary value, from the right-hand side.
Because c0 = 0, this subtraction has no effect. Then we subtract the
last column, times the boundary value D, from the right-hand side. This
action results in bN−1 = 2h+D/h and bN = h− 2D/h. Thereafter, we
place zeros in the first and last row and column in the coefficient matrix
and 1 on the two corresponding diagonal entries. Finally, we set b0 = 0
and bN = D. The result becomes

200 6 Variational formulations with finite elements

1
h



h 0 0 · · · · · · · · · · · · · · · 0
0 2 −1
0 −1 2 −1
... 0

...
...
... 0 −1 2 −1
... 0
... 0
0 · · · · · · · · · · · · · · · 0 0 h





c0
...
...
...
...
...
...
...
cN



=



0
2h
...
...
...
...
...

2h+D/h
D



(6.16)

6.2.5 Modification of the element matrix and vector

The modifications of the global linear system can alternatively be done for
the element matrix and vector. Let us perform the associated calculations
in the computational example where the element matrix and vector is
given by (6.8). The modifications are needed in cells where one of the
degrees of freedom is known. In the present example, this means the first
and last cell. We compute the element matrix and vector as if there were
no Dirichlet conditions. The boundary term [u′v]L0 is simply forgotten
at nodes that have Dirichlet conditions because the modification of the
element vector will anyway erase the contribution from the boundary
term. In the first cell, local degree of freedom number 0 is known and
the modification becomes

Ã(0) = A = 1
h

(
h 0
−1 1

)
, b̃(0) =

(
0
h

)
. (6.17)

In the last cell we set

Ã(Ne) = A = 1
h

(
1 −1
0 h

)
, b̃(Ne) =

(
h
D

)
. (6.18)

We can also perform the symmetric modification. This operation affects
only the last cell with a nonzero Dirichlet condition. The algorithm is
the same as for the global linear system, resulting in

Ã(Ne) = A = 1
h

(
1 0
0 h

)
, b̃(Ne) =

(
h+D/h

D

)
. (6.19)

6.3 Boundary conditions: specified derivative 201

The reader is encouraged to assemble the element matrices and vectors
and check that the result coincides with the system (6.16).

6.3 Boundary conditions: specified derivative

Suppose our model problem −u′′(x) = f(x) features the boundary condi-
tions u′(0) = C and u(L) = D. As already indicated in Section 5.3, the
former condition can be incorporated through the boundary term that
arises from integration by parts. The details of this method will now be
illustrated in the context of finite element basis functions.

6.3.1 The variational formulation
Starting with the Galerkin method,∫ L

0
(u′′(x) + f(x))ψi(x) dx = 0, i ∈ Is,

integrating u′′ψi by parts results in

∫ L

0
u′(x)′ψ′i(x) dx−(u′(L)ψi(L)−u′(0)ψi(0)) =

∫ L

0
f(x)ψi(x) dx, i ∈ Is .

The first boundary term, u′(L)ψi(L), vanishes because u(L) = D.
The second boundary term, u′(0)ψi(0), can be used to implement the
condition u′(0) = C, provided ψi(0) 6= 0 for some i (but with finite
elements we fortunately have ψ0(0) = 1). The variational form of the
differential equation then becomes∫ L

0
u′(x)ϕ′i(x) dx+ Cϕi(0) =

∫ L

0
f(x)ϕi(x) dx, i ∈ Is .

6.3.2 Boundary term vanishes because of the test functions
At points where u is known we may require ψi to vanish. Here, u(L) = D
and then ψi(L) = 0, i ∈ Is. Obviously, the boundary term u′(L)ψi(L)
then vanishes.

The set of basis functions {ψi}i∈Is contains, in this case, all the finite
element basis functions on the mesh, except the one that is 1 at x = L.

202 6 Variational formulations with finite elements

The basis function that is left out is used in a boundary function B(x)
instead. With a left-to-right numbering, ψi = ϕi, i = 0, . . . , Nn − 2, and
B(x) = DϕNn−1:

u(x) = DϕNn−1(x) +
N=Nn−2∑
j=0

cjϕj(x) .

Inserting this expansion for u in the variational form (6.3.1) leads to
the linear system

N∑
j=0

(∫ L

0
ϕ′i(x)ϕ′j(x) dx

)
cj =

∫ L

0

(
f(x)ϕi(x)−Dϕ′Nn−1(x)ϕ′i(x)

)
dx−Cϕi(0),

(6.20)
for i = 0, . . . , N = Nn − 2.

6.3.3 Boundary term vanishes because of linear system
modifications

We may, as an alternative to the approach in the previous section, use a
basis {ψi}i∈Is which contains all the finite element functions on the mesh:
ψi = ϕi, i = 0, . . . , Nn−1 = N . In this case, u′(L)ψi(L) = u′(L)ϕi(L) 6= 0
for the i corresponding to the boundary node at x = L (where ϕi = 1).
The number of this node is i = Nn − 1 = N if a left-to-right numbering
of nodes is utilized.

However, even though u′(L)ϕNn−1(L) 6= 0, we do not need to compute
this term. For i < Nn − 1 we realize that ϕi(L) = 0. The only nonzero
contribution to the right-hand side comes from i = N (bN). Without a
boundary function we must implement the condition u(L) = D by the
equivalent statement cN = D and modify the linear system accordingly.
This modification will erase the last row and replace bN by another value.
Any attempt to compute the boundary term u′(L)ϕNn−1(L) and store it
in bN will be lost. Therefore, we can safely forget about boundary terms
corresponding to Dirichlet boundary conditions also when we use the
methods from Section 6.2.3 or Section 6.2.4.

The expansion for u reads

u(x) =
∑
j∈Is

cjϕj(x) .

6.3 Boundary conditions: specified derivative 203

Insertion in the variational form (6.3.1) leads to the linear system

∑
j∈Is

(∫ L

0
ϕ′i(x)ϕ′j(x) dx

)
cj =

∫ L

0
(f(x)ϕi(x)) dx− Cϕi(0), i ∈ Is .

(6.21)
After having computed the system, we replace the last row by cN = D,
either straightforwardly as in Section 6.2.3 or in a symmetric fashion
as in Section 6.2.4. These modifications can also be performed in the
element matrix and vector for the right-most cell.

6.3.4 Direct computation of the global linear system

We now turn to actual computations with P1 finite elements. The focus
is on how the linear system and the element matrices and vectors are
modified by the condition u′(0) = C.

Consider first the approach where Dirichlet conditions are incorporated
by a B(x) function and the known degree of freedom CNn−1 is left out of
the linear system (see Section 6.3.2). The relevant formula for the linear
system is given by (6.20). There are three differences compared to the
extensively computed case where u(0) = 0 in Sections 6.1.2 and 6.1.4.
First, because we do not have a Dirichlet condition at the left boundary,
we need to extend the linear system (6.3) with an equation associated
with the node x0 = 0. According to Section 6.2.3, this extension consists
of including A0,0 = 1/h, A0,1 = −1/h, and b0 = h. For i > 0 we have
Ai,i = 2/h, Ai−1,i = Ai,i+1 = −1/h. Second, we need to include the
extra term −Cϕi(0) on the right-hand side. Since all ϕi(0) = 0 for
i = 1, . . . , N , this term reduces to −Cϕ0(0) = −C and affects only the
first equation (i = 0). We simply add −C to b0 such that b0 = h − C.
Third, the boundary term −

∫ L
0 DϕNn−1(x)ϕi dx must be computed.

Since i = 0, . . . , N = Nn − 2, this integral can only get a nonzero
contribution with i = Nn − 2 over the last cell. The result becomes
−Dh/6. The resulting linear system can be summarized in the form

204 6 Variational formulations with finite elements

1
h



1 −1 0 · · · · · · · · · · · · · · · 0
−1 2 −1
0 −1 2 −1
... 0

...
...
... 0 −1 2 −1
... 0
... −1
0 · · · · · · · · · · · · · · · 0 −1 2





c0
...
...
...
...
...
...
...
cN



=



h− C
2h
...
...
...
...
...
...

2h−Dh/6



.

(6.22)
Next we consider the technique where we modify the linear system to

incorporate Dirichlet conditions (see Section 6.3.3). Now N = Nn−1. The
two differences from the case above is that the −

∫ L
0 DϕNn−1ϕi dx term

is left out of the right-hand side and an extra last row associated with
the node xNn−1 = L where the Dirichlet condition applies is appended
to the system. This last row is anyway replaced by the condition cN = D
or this condition can be incorporated in a symmetric fashion. Using the
simplest, former approach gives

1
h



1 −1 0 · · · · · · · · · · · · · · · 0
−1 2 −1
0 −1 2 −1
... 0

...
...
... 0 −1 2 −1
... 0
... . . . −1 2 −1
0 · · · · · · · · · · · · · · · 0 0 h





c0
...
...
...
...
...
...
...
cN



=



h− C
2h
...
...
...
...
...

2h
D



. (6.23)

6.3.5 Cellwise computations

Now we compute with one element at a time, working in the reference
coordinate system X ∈ [−1, 1]. We need to see how the u′(0) = C

6.4 Implementation of finite element algorithms 205

condition affects the element matrix and vector. The extra term −Cϕi(0)
in the variational formulation only affects the element vector in the first
cell. On the reference cell, −Cϕi(0) is transformed to −Cϕ̃r(−1), where
r counts local degrees of freedom. We have ϕ̃0(−1) = 1 and ϕ̃1(−1) = 0
so we are left with the contribution −Cϕ̃0(−1) = −C to b̃(0)

0 :

Ã(0) = A = 1
h

(
1 1
−1 1

)
, b̃(0) =

(
h− C
h

)
. (6.24)

No other element matrices or vectors are affected by the −Cϕi(0) bound-
ary term.

There are two alternative ways of incorporating the Dirichlet condition.
Following Section 6.3.2, we get a 1 × 1 element matrix in the last cell
and an element vector with an extra term containing D:

Ã(e) = 1
h

(
1
)
, b̃(e) = h

(
1−D/6

)
, (6.25)

Alternatively, we include the degree of freedom at the node with
u specified. The element matrix and vector must then be modified to
constrain the c̃1 = cN value at local node r = 1:

Ã(Ne) = A = 1
h

(
1 1
0 h

)
, b̃(Ne) =

(
h
D

)
. (6.26)

6.4 Implementation of finite element algorithms

At this point, it is sensible to create a program with symbolic calculations
to perform all the steps in the computational machinery, both for au-
tomating the work and for documenting the complete algorithms. As we
have seen, there are quite many details involved with finite element com-
putations and incorporation of boundary conditions. An implementation
will also act as a structured summary of all these details.

6.4.1 Extensions of the code for approximation

Implementation of the finite element algorithms for differential equations
follows closely the algorithm for approximation of functions. The new
additional ingredients are

206 6 Variational formulations with finite elements

1. other types of integrands (as implied by the variational formulation)
2. additional boundary terms in the variational formulation for Neumann

boundary conditions
3. modification of element matrices and vectors due to Dirichlet boundary

conditions

Point 1 and 2 can be taken care of by letting the user supply functions
defining the integrands and boundary terms on the left- and right-hand
side of the equation system:

• Integrand on the left-hand side: ilhs(e, phi, r, s, X, x, h)
• Integrand on the right-hand side: irhs(e, phi, r, X, x, h)
• Boundary term on the left-hand side: blhs (e, phi, r, s, X, x,

h)
• Boundary term on the right-hand side: brhs (e, phi, r, s, X, x,

h)

Here, phi is a dictionary where phi[q] holds a list of the derivatives of
order q of the basis functions with respect to the physical coordinate
x. The derivatives are available as Python functions of X. For example,
phi[0][r](X) means ϕ̃r(X), and phi[1][s](X, h) means dϕ̃s(X)/dx
(we refer to the file fe1D.py for details regarding the function basis
that computes the phi dictionary). The r and s arguments in the above
functions correspond to the index in the integrand contribution from an
integration point to Ã(e)

r,s and b̃(e)
r . The variables e and h are the current

element number and the length of the cell, respectively. Specific examples
below will make it clear how to construct these Python functions.

Given a mesh represented by vertices, cells, and dof_map as ex-
plained before, we can write a pseudo Python code to list all the steps in
the computational algorithm for finite element solution of a differential
equation.

<Declare global matrix and rhs: A, b>

for e in range(len(cells)):

Compute element matrix and vector
n = len(dof_map[e]) # no of dofs in this element
h = vertices[cells[e][1]] - vertices[cells[e][1]]
<Initialize element matrix and vector: A_e, b_e>

Integrate over the reference cell
points, weights = <numerical integration rule>
for X, w in zip(points, weights):

phi = <basis functions and derivatives at X>

http://tinyurl.com/znpudbt/fe1D.py

6.4 Implementation of finite element algorithms 207

detJ = h/2
dX = detJ*w

x = <affine mapping from X>
for r in range(n):

for s in range(n):
A_e[r,s] += ilhs(e, phi, r, s, X, x, h)*dX

b_e[r] += irhs(e, phi, r, X, x, h)*dX

Add boundary terms
for r in range(n):

for s in range(n):
A_e[r,s] += blhs(e, phi, r, s, X, x)*dX

b_e[r] += brhs(e, phi, r, X, x, h)*dX

Incorporate essential boundary conditions
for r in range(n):

global_dof = dof_map[e][r]
if global_dof in essbc:

local dof r is subject to an essential condition
value = essbc[global_dof]
Symmetric modification
b_e -= value*A_e[:,r]
A_e[r,:] = 0
A_e[:,r] = 0
A_e[r,r] = 1
b_e[r] = value

Assemble
for r in range(n):

for s in range(n):
A[dof_map[e][r], dof_map[e][s]] += A_e[r,s]

b[dof_map[e][r] += b_e[r]

<solve linear system>

Having implemented this function, the user only has supply the ilhs,
irhs, blhs, and brhs functions that specify the PDE and boundary
conditions. The rest of the implementation forms a generic computa-
tional engine. The big finite element packages Diffpack and FEniCS are
structured exactly the same way. A sample implementation of ilhs for
the 1D Poisson problem is:

def integrand_lhs(phi, i, j):
return phi[1][i]*phi[1][j]

which returns dϕ̃i(X)/dxdϕ̃j(X)/dx. Reducing the amount of code the
user has to supply and making the code as close as possible to the
mathematical formulation makes the software user-friendly and easy to
debug.

208 6 Variational formulations with finite elements

A complete function finite_element1D_naive for the 1D finite algo-
rithm above, is found in the file fe1D.py. The term “naive” refers to a
version of the algorithm where we use a standard dense square matrix as
global matrix A. The implementation also has a verbose mode for printing
out the element matrices and vectors as they are computed. Below is
the complete function without the print statements. You should study in
detail since it contains all the steps in the finite element algorithm.

def finite_element1D_naive(
vertices, cells, dof_map, # mesh
essbc, # essbc[globdof]=value
ilhs, # integrand left-hand side
irhs, # integrand right-hand side
blhs=lambda e, phi, r, s, X, x, h: 0,
brhs=lambda e, phi, r, X, x, h: 0,
intrule=’GaussLegendre’, # integration rule class
verbose=False, # print intermediate results?
):
N_e = len(cells)
N_n = np.array(dof_map).max() + 1

A = np.zeros((N_n, N_n))
b = np.zeros(N_n)

for e in range(N_e):
Omega_e = [vertices[cells[e][0]], vertices[cells[e][1]]]
h = Omega_e[1] - Omega_e[0]

d = len(dof_map[e]) - 1 # Polynomial degree
Compute all element basis functions and their derivatives
phi = basis(d)

Element matrix and vector
n = d+1 # No of dofs per element
A_e = np.zeros((n, n))
b_e = np.zeros(n)

Integrate over the reference cell
if intrule == ’GaussLegendre’:

points, weights = GaussLegendre(d+1)
elif intrule == ’NewtonCotes’:

points, weights = NewtonCotes(d+1)

for X, w in zip(points, weights):
detJ = h/2
x = affine_mapping(X, Omega_e)
dX = detJ*w

Compute contribution to element matrix and vector
for r in range(n):

for s in range(n):
A_e[r,s] += ilhs(phi, r, s, X, x, h)*dX

http://tinyurl.com/znpudbt/fe1D.py

6.4 Implementation of finite element algorithms 209

b_e[r] += irhs(phi, r, X, x, h)*dX

Add boundary terms
for r in range(n):

for s in range(n):
A_e[r,s] += blhs(phi, r, s, X, x, h)

b_e[r] += brhs(phi, r, X, x, h)

Incorporate essential boundary conditions
modified = False
for r in range(n):

global_dof = dof_map[e][r]
if global_dof in essbc:

dof r is subject to an essential condition
value = essbc[global_dof]
Symmetric modification
b_e -= value*A_e[:,r]
A_e[r,:] = 0
A_e[:,r] = 0
A_e[r,r] = 1
b_e[r] = value
modified = True

Assemble
for r in range(n):

for s in range(n):
A[dof_map[e][r], dof_map[e][s]] += A_e[r,s]

b[dof_map[e][r]] += b_e[r]

c = np.linalg.solve(A, b)
return c, A, b, timing

The timing object is a dictionary holding the CPU spent on computing
A and the CPU time spent on solving the linear system. (We have left
out the timing statements.)

6.4.2 Utilizing a sparse matrix
A potential efficiency problem with the finite_element1D_naive func-
tion is that it uses dense (N + 1)× (N + 1) matrices, while we know that
only 2d+ 1 diagonals around the main diagonal are different from zero.
Switching to a sparse matrix is very easy. Using the DOK (dictionary of
keys) format, we declare A as

import scipy.sparse
A = scipy.sparse.dok_matrix((N_n, N_n))

Assignments or in-place arithmetics are done as for a dense matrix,

A[i,j] += term

210 6 Variational formulations with finite elements

A[i,j] = term

but only the index pairs (i,j) we have used in assignments or in-place
arithmetics are actually stored. A tailored solution algorithm is needed.
The most reliable is sparse Gaussian elimination. SciPy gives access to
the UMFPACK algorithm for this purpose:

import scipy.sparse.linalg
c = scipy.sparse.linalg.spsolve(A.tocsr(), b, use_umfpack=True)

The declaration of A and the solve statement are the only changes needed
in the finite_element1D_naive to utilize sparse matrices. The resulting
modification is found in the function finite_element1D.

6.4.3 Application to our model problem
Let us demonstrate the finite element software on

−u′′(x) = f(x), x ∈ (0, L), u′(0) = C, u(L) = D .

This problem can be analytically solved by the model2 function from
Section 5.1.2. Let f(x) = x2. Calling model2(x**2, L, C, D) gives

u(x) = D + C(x− L) + 1
12(L4 − x4)

The variational formulation reads

(u′, v) = (x2, v)− Cv(0) .

The entries in the element matrix and vector, which we need to set up
the ilhs, irhs, blhs, and brhs functions, becomes

A(e)
r,s =

∫ 1

−1

dϕ̃r
dx

ϕ̃s
dx

(det J dX),

b(e) =
∫ 1

−1
x2ϕ̃r det J dX − Cϕ̃r(−1)I(e, 0),

where I(e) is an indicator function: I(e, q) = 1 if e = q, otherwise I(e) = 0.
We use this indicator function to formulate that the boundary term Cv(0),
which in the local element coordinate system becomes Cϕ̃r(−1), is only
included for the element e = 0.

The functions for specifying the element matrix and vector entries
must contain the integrand, but without the det J dX term as this term

https://en.wikipedia.org/wiki/UMFPACK

6.4 Implementation of finite element algorithms 211

is taken care of by the quadrature loop, and the derivatives dϕ̃r(X)/dx
with respect to the physical x coordinates are contained in phi[1][r](X),
computed by the function basis.

def ilhs(e, phi, r, s, X, x, h):
return phi[1][r](X, h)*phi[1][s](X, h)

def irhs(e, phi, r, X, x, h):
return x**2*phi[0][r](X)

def blhs(e, phi, r, s, X, x, h):
return 0

def brhs(e, phi, r, X, x, h):
return -C*phi[0][r](-1) if e == 0 else 0

We can then make the call to finite_element1D_naive or
finite_element1D to solve the problem with two P1 elements:

from fe1D import finite_element1D_naive, mesh_uniform
C = 5; D = 2; L = 4
d = 1

vertices, cells, dof_map = mesh_uniform(
N_e=2, d=d, Omega=[0,L], symbolic=False)

essbc = {}
essbc[dof_map[-1][-1]] = D

c, A, b, timing = finite_element1D(
vertices, cells, dof_map, essbc,
ilhs=ilhs, irhs=irhs, blhs=blhs, brhs=brhs,
intrule=’GaussLegendre’)

It remains to plot the solution (with high resolution in each element). To
this end, we use the u_glob function imported from fe1D, which imports
it from fe_approx1D_numit (the u_glob function in fe_approx1D.py
works with elements and nodes, while u_glob in fe_approx1D_numint
works with cells, vertices, and dof_map):

u_exact = lambda x: D + C*(x-L) + (1./6)*(L**3 - x**3)
from fe1D import u_glob
x, u, nodes = u_glob(c, cells, vertices, dof_map)
u_e = u_exact(x, C, D, L)
print(u_exact(nodes, C, D, L) - c) # difference at the nodes

import matplotlib.pyplot as plt
plt.plot(x, u, ’b-’, x, u_e, ’r--’)
plt.legend([’finite elements, d=%d’ %d, ’exact’], loc=’upper left’)
plt.show()

The result is shown in Figure 6.2. We see that the solution using P1
elements is exact at the nodes, but feature considerable discrepancy

212 6 Variational formulations with finite elements

between the nodes. Exercise 6.6 asks you to explore this problem further
using other m and d values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2

4

6

8

10

12

14

finite elements, d=1
exact

Fig. 6.2 Finite element and exact solution using two cells.

6.5 Variational formulations in 2D and 3D

The major difference between deriving variational formulations in 2D and
3D compared to 1D is the rule for integrating by parts. The cells have
shapes different from an interval, so basis functions look a bit different,
and there is a technical difference in actually calculating the integrals
over cells. Otherwise, going to 2D and 3D is not a big step from 1D. All
the fundamental ideas still apply.

6.5.1 Integration by parts

A typical second-order term in a PDE may be written in dimension-
independent notation as

∇2u or ∇ · (α(x)∇u) .

The explicit forms in a 2D problem become

6.5 Variational formulations in 2D and 3D 213

∇2u = ∇ · ∇u = ∂2u

∂x2 + ∂2u

∂y2 ,

and
∇ · (a(x)∇u) = ∂

∂x

(
α(x, y)∂u

∂x

)
+ ∂

∂y

(
α(x, y)∂u

∂y

)
.

We shall continue with the latter operator as the former arises from just
setting α = 1.

The integration by parts formula for
∫
∇ · (α∇)

The general rule for integrating by parts is often referred to as
Green’s first identity:

−
∫
Ω
∇·(α(x)∇u)v dx =

∫
Ω
α(x)∇u·∇v dx−

∫
∂Ω
a
∂u

∂n
v ds, (6.27)

where ∂Ω is the boundary of Ω and ∂u/∂n = n·∇u is the derivative
of u in the outward normal direction, n being an outward unit
normal to ∂Ω. The integrals

∫
Ω() dx are area integrals in 2D and

volume integrals in 3D, while
∫
∂Ω() ds is a line integral in 2D and a

surface integral in 3D.

It will be convenient to divide the boundary into two parts:

• ∂ΩN , where we have Neumann conditions −a ∂u∂n = g, and
• ∂ΩD, where we have Dirichlet conditions u = u0.

The test functions v are (as usual) required to vanish on ∂ΩD.

6.5.2 Example on a multi-dimensional variational problem

Here is a quite general, stationary, linear PDE arising in many problems:

v · ∇u+ βu = ∇ · (α∇u) + f, x ∈ Ω, (6.28)
u = u0, x ∈ ∂ΩD, (6.29)

−α∂u
∂n

= g, x ∈ ∂ΩN . (6.30)

http://en.wikipedia.org/wiki/Green's_identities

214 6 Variational formulations with finite elements

The vector field v and the scalar functions a, α, f , u0, and g may vary
with the spatial coordinate x and must be known.

Such a second-order PDE needs exactly one boundary condition at each
point of the boundary, so ∂ΩN ∪ ∂ΩD must be the complete boundary
∂Ω.

Assume that the boundary function u0(x) is defined for all x ∈ Ω.
The unknown function can then be expanded as

u = B +
∑
j∈Is

cjψj , B = u0 .

As long as any ψj = 0 on ∂ΩD, we realize that u = u0 on ∂ΩD.
The variational formula is obtained from Galerkin’s method, which

technically means multiplying the PDE by a test function v and inte-
grating over Ω:∫

Ω
(v · ∇u+ βu)v dx =

∫
Ω
∇ · (α∇u) dx+

∫
Ω
fv dx .

The second-order term is integrated by parts, according to the formula
(6.27): ∫

Ω
∇ · (α∇u) v dx = −

∫
Ω
α∇u · ∇v dx+

∫
∂Ω
α
∂u

∂n
v ds .

Galerkin’s method therefore leads to

∫
Ω

(v · ∇u+ βu)v dx = −
∫
Ω
α∇u · ∇v dx+

∫
∂Ω
α
∂u

∂n
v ds+

∫
Ω
fv dx .

The boundary term can be developed further by noticing that v 6= 0 only
on ∂ΩN , ∫

∂Ω
α
∂u

∂n
v ds =

∫
∂ΩN

α
∂u

∂n
v ds,

and that on ∂ΩN , we have the condition a ∂u∂n = −g, so the term becomes

−
∫
∂ΩN

gv ds .

The final variational form is then

∫
Ω

(v · ∇u+ βu)v dx = −
∫
Ω
α∇u · ∇v dx−

∫
∂ΩN

gv ds+
∫
Ω
fv dx .

6.5 Variational formulations in 2D and 3D 215

Instead of using the integral signs, we may use the inner product
notation:

(v · ∇u, v) + (βu, v) = −(α∇u,∇v)− (g, v)N + (f, v) .

The subscript N in (g, v)N is a notation for a line or surface integral over
∂ΩN , while (·, ·) is the area/volume integral over Ω.

We can derive explicit expressions for the linear system for {cj}j∈Is
that arises from the variational formulation. Inserting the u expansion
results in

∑
j∈Is

((v · ∇ψj , ψi) + (βψj , ψi) + (α∇ψj ,∇ψi))cj =

(g, ψi)N + (f, ψi)− (v · ∇u0, ψi) + (βu0, ψi) + (α∇u0,∇ψi) .

This is a linear system with matrix entries

Ai,j = (v · ∇ψj , ψi) + (βψj , ψi) + (α∇ψj ,∇ψi)

and right-hand side entries

bi = (g, ψi)N + (f, ψi)− (v · ∇u0, ψi) + (βu0, ψi) + (α∇u0,∇ψi),

for i, j ∈ Is.
In the finite element method, we usually express u0 in terms of basis

functions and restrict i and j to run over the degrees of freedom that
are not prescribed as Dirichlet conditions. However, we can also keep
all the {cj}j∈Is as unknowns, drop the u0 in the expansion for u, and
incorporate all the known cj values in the linear system. This has been
explained in detail in the 1D case, and the technique is the same for 2D
and 3D problems.

6.5.3 Transformation to a reference cell in 2D and 3D

The real power of the finite element method first becomes evident when
we want to solve partial differential equations posed on two- and three-
dimensional domains of non-trivial geometric shape. As in 1D, the domain
Ω is divided into Ne non-overlapping cells. The elements have simple
shapes: triangles and quadrilaterals are popular in 2D, while tetrahe-

216 6 Variational formulations with finite elements

dra and box-shapes elements dominate in 3D. The finite element basis
functions ϕi are, as in 1D, polynomials over each cell. The integrals in
the variational formulation are, as in 1D, split into contributions from
each cell, and these contributions are calculated by mapping a physical
cell, expressed in physical coordinates x, to a reference cell in a local
coordinate system X. This mapping will now be explained in detail.

We consider an integral of the type∫
Ω(e)

α(x)∇ϕi · ∇ϕj dx, (6.31)

where the ϕi functions are finite element basis functions in 2D or 3D,
defined in the physical domain. Suppose we want to calculate this inte-
gral over a reference cell, denoted by Ω̃r, in a coordinate system with
coordinates X = (X0, X1) (2D) or X = (X0, X1, X2) (3D). The map-
ping between a point X in the reference coordinate system and the
corresponding point x in the physical coordinate system is given by a
vector relation x(X). The corresponding Jacobian, J , of this mapping
has entries

Ji,j = ∂xj
∂Xi

.

The change of variables requires dx to be replaced by det J dX. The
derivatives in the ∇ operator in the variational form are with respect to
x, which we may denote by ∇x. The ϕi(x) functions in the integral are
replaced by local basis functions ϕ̃r(X) so the integral features ∇xϕ̃r(X).
We readily have ∇X ϕ̃r(X) from formulas for the basis functions in the
reference cell, but the desired quantity ∇xϕ̃r(X) requires some efforts
to compute. All the details are provided below.

Let i = q(e, r) and consider two space dimensions. By the chain rule,

∂ϕ̃r
∂X

= ∂ϕi
∂X

= ∂ϕi
∂x

∂x

∂X
+ ∂ϕi

∂y

∂y

∂X
,

and
∂ϕ̃r
∂Y

= ∂ϕi
∂Y

= ∂ϕi
∂x

∂x

∂Y
+ ∂ϕi

∂y

∂y

∂Y
.

We can write these two equations as a vector equation[
∂ϕ̃r
∂X
∂ϕ̃r
∂Y

]
=
[
∂x
∂X

∂y
∂X

∂x
∂Y

∂y
∂Y

] [
∂ϕi
∂x
∂ϕi
∂y

]

Identifying

6.5 Variational formulations in 2D and 3D 217

∇X ϕ̃r =
[
∂ϕ̃r
∂X
∂ϕ̃r
∂Y

]
, J =

[
∂x
∂X

∂y
∂X

∂x
∂Y

∂y
∂Y

]
, ∇xϕr =

[
∂ϕi
∂x
∂ϕi
∂y

]
,

we have the relation

∇X ϕ̃r = J · ∇xϕi,

which we can solve with respect to ∇xϕi:

∇xϕi = J−1 · ∇X ϕ̃r . (6.32)

On the reference cell, ϕi(x) = ϕ̃r(X), so

∇xϕ̃r(X) = J−1(X) · ∇X ϕ̃r(X) . (6.33)

This means that we have the following transformation of the integral
in the physical domain to its counterpart over the reference cell:

∫
Ω(e)

α(x)∇xϕi·∇xϕj dx =
∫
Ω̃r
α(x(X))(J−1·∇X ϕ̃r)·(J−1·∇ϕ̃s) det J dX

(6.34)

6.5.4 Numerical integration

Integrals are normally computed by numerical integration rules. For
multi-dimensional cells, various families of rules exist. All of them are
similar to what is shown in 1D:

∫
f dx ≈

∑
j wif(xj), where wj are

weights and xj are corresponding points.
The file numint.py contains the functions quadrature_for_triangles(n)

and quadrature_for_tetrahedra(n), which returns lists of points and
weights corresponding to integration rules with n points over the
reference triangle with vertices (0, 0), (1, 0), (0, 1), and the reference
tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively.
For example, the first two rules for integration over a triangle have 1
and 3 points:

>>> import numint
>>> x, w = numint.quadrature_for_triangles(num_points=1)
>>> x
[(0.3333333333333333, 0.3333333333333333)]
>>> w
[0.5]
>>> x, w = numint.quadrature_for_triangles(num_points=3)

http://tinyurl.com/znpudbt/numint.py

218 6 Variational formulations with finite elements

>>> x
[(0.16666666666666666, 0.16666666666666666),
(0.66666666666666666, 0.16666666666666666),
(0.16666666666666666, 0.66666666666666666)]

>>> w
[0.16666666666666666, 0.16666666666666666, 0.16666666666666666]

Rules with 1, 3, 4, and 7 points over the triangle will exactly integrate
polynomials of degree 1, 2, 3, and 4, respectively. In 3D, rules with 1, 4,
5, and 11 points over the tetrahedron will exactly integrate polynomials
of degree 1, 2, 3, and 4, respectively.

6.5.5 Convenient formulas for P1 elements in 2D

We shall now provide some formulas for piecewise linear ϕi functions and
their integrals in the physical coordinate system. These formulas make it
convenient to compute with P1 elements without the need to work in the
reference coordinate system and deal with mappings and Jacobians. A
lot of computational and algorithmic details are hidden by this approach.

Let Ω(e) be cell number e, and let the three vertices have global
vertex numbers I, J , and K. The corresponding coordinates are (xI , yI),
(xJ , yJ), and (xK , yK). The basis function ϕI over Ω(e) have the explicit
formula

ϕI(x, y) = 1
2∆ (αI + βIx+ γIy) , (6.35)

where

αI = xJyK − xKyJ , (6.36)
βI = yJ − yK , (6.37)
γI = xK − xJ , , (6.38)

and

2∆ = det

1 xI yI
1 xJ yJ
1 xK yK

 . (6.39)

The quantity ∆ is the area of the cell.
The following formula is often convenient when computing element

matrices and vectors:

6.5 Variational formulations in 2D and 3D 219

∫
Ω(e)

ϕpIϕ
q
Jϕ

r
Kdxdy = p!q!r!

(p+ q + r + 2)!2∆ . (6.40)

(Note that the q in this formula is not to be mixed with the q(e, r)
mapping of degrees of freedom.)

As an example, the element matrix entry
∫
Ω(e) ϕIϕJ dx can be com-

puted by setting p = q = 1 and r = 0, when I 6= J , yielding ∆/12, and
p = 2 and q = r = 0, when I = J , resulting in ∆/6. We collect these
numbers in a local element matrix:

∆

12

2 1 1
1 2 1
1 1 2


The common element matrix entry

∫
Ω(e) ∇ϕI · ∇ϕJ dx, arising from a

Laplace term ∇2u, can also easily be computed by the formulas above.
We have

∇ϕI · ∇ϕJ = ∆2

4 (βIβJ + γIγJ) = const,

so that the element matrix entry becomes 1
4∆

3(βIβJ + γIγJ).
From an implementational point of view, one will work with local

vertex numbers r = 0, 1, 2, parameterize the coefficients in the basis
functions by r, and look up vertex coordinates through q(e, r).

Similar formulas exist for integration of P1 elements in 3D.

6.5.6 A glimpse of the mathematical theory of the finite
element method

Almost all books on the finite element method that introduces the
abstract variational problem a(u, v) = L(v) spend considerable pages on
deriving error estimates and other properties of the approximate solution.
The machinery with function spaces and bilinear and linear forms has
the great advantage that a very large class of PDE problems can be
analyzed in a unified way. This feature is often taken as an advantage of
finite element methods over finite difference and volume methods. Since
there are so many excellent textbooks on the mathematical properties of
finite element methods [22, 5, 6, 13, 10, 26], this text will not repeat the
theory, but give a glimpse of typical assumptions and general results for
elliptic PDEs.

220 6 Variational formulations with finite elements

Remark. The mathematical theory of finite element methods is primar-
ily developed for to stationary PDE problems of elliptic nature whose
solutions are smooth. However, such problems can be solved with the
desired accuracy by most numerical methods and pose no difficulties.
Time-dependent problems, on the other hand, easily lead to non-physical
features in the numerical solutions and therefore requires more care and
knowledge by the user. Our focus on the accuracy of the finite element
method will of this reason be centered around time-dependent problems,
but then we need a different set of tools for the analysis. These tools are
based on converting finite element equations to finite difference form and
studying Fourier wave components.

Abstract variational forms. To list the main results from the mathemat-
ical theory of finite elements, we consider linear PDEs with an abstract
variational form

a(u, v) = L(v) ∀v ∈ V .

This is the discretized problem (as usual in this book) where we seek
u ∈ V . The weak formulation of the corresponding continuous problem,
fulfilled by the exact solution ue ∈ Ve is here written as

a(ue, v) = L(v) ∀v ∈ Ve .

The space V is finite dimensional (with dimension N + 1), while Ve is
infinite dimensional. Normally The hope is that u→ ue as N →∞ and
V → Ve.

Example on an abstract variational form and associated spaces. Con-
sider the problem −u′′(x) = f(x) on Ω = [0, 1], with u(0) = 0 and
u′(1) = β. The weak form is

a(u, v) =
∫ 1

0
u′v′dx, L(v) =

∫ 1

0
fvdx+ βv(1) .

The space V for the approximate solution u can be chosen in many ways
as previously described. The exact solution ue fulfills a(u, v) = L(v) for all
v in Ve, and to specify what Ve is, we need to introduce Hilbert spaces. The
Hilbert space L2(Ω) consists of all functions that are square-integrable
on Ω:

L2(Ω) =
{∫

Ω
v2dx <∞

}
.

6.5 Variational formulations in 2D and 3D 221

The space Ve is the space of all functions whose first-order derivative is
also square-integrable:

Ve = H1
0 (Ω) =

{
v ∈ L2(Ω) | dv

dx
∈ L2(Ω), and v(0) = 0

}
.

The requirements of square-integrable zeroth- and first-order derivatives
are motivated from the formula for a(u, v) where products of the first-
order derivatives are to be integrated on Ω. We remark that it is common
that H1

0 denote the space of H1 functions that are zero everywhere on
the boundary, but here we use it for functions that are zero only at x = 0.

The Sobolev space H1
0 (Ω) has an inner product

(u, v)H1 =
∫
Ω

(uv + du

dx

dv

dx
)dx,

and associated norm

||v||H1 =
√

(v, v)H1 .

Assumptions. A set of general results builds on the following assump-
tions. Let Ve be an infinite-dimensional inner-product space such that
ue ∈ Ve. The space has an associated norm ||v|| (e.g., ||v||H1 in the
example above with Ve = H1

0 (Ω)).

1. L(v) is linear in its argument.
2. a(u, v) is a bilinear in its arguments.
3. L(v) is bounded (also called continuous) if there exists a positive

constant c0 such that |L(v)| ≤ c0||v|| ∀v ∈ Ve.
4. a(u, v) is bounded (or continuous) if there exists a positive constant
c1 such that |a(u, v)| ≤ c1||u||||v|| ∀u, v ∈ Ve.

5. a(u, v) is elliptic (or coercive) if there exists a positive constant c2
such that a(v, v) ≥ c2||v||2 ∀v ∈ Ve.

6. a(u, v) is symmetric: a(u, v) = a(v, u).

Based on the above assumptions, which must be verified in each specific
problem, one can derive some general results that are listed below.

Existence and uniqueness. There exists a unique solution of the prob-
lem: find ue ∈ Ve such that

a(ue, v) = L(v) ∀v ∈ Ve .

222 6 Variational formulations with finite elements

(This result is known as the Lax-Milgram Theorem. We remark that
symmetry is not strictly needed for this theorem.)
Stability. The solution ue ∈ Ve obeys the stability estimate

||u|| ≤ c0

c2
.

Equivalent minimization problem. The solution ue ∈ Ve also fulfills
the minimization problem

min
v∈Ve

F (v), F (v) = 1
2a(v, v)− L(v) .

Best approximation principle. The energy norm is defined as

||v||a =
√
a(v, v) .

The discrete solution u ∈ V is the best approximation in energy norm,

||ue − u||a ≤ ||ue − v||a ∀v ∈ V .

This is quite remarkable: once we have V (i.e., a mesh and a finite
element), the Galerkin method finds the best approximation in this space.
In the example above, we have ||v||a =

∫ 1
0 (v′)2dx, so the derivative u′ is

closer to u′e than any other possible function in V :∫ 1

0
(u′e − u′)2dx ≤

∫ 1

0
(u′ − v′)dx ∀v ∈ V .

Best approximation property in the norm of the space. If ||v|| is the
norm associated with Ve, we have another best approximation property:

||ue − u|| ≤
(
c1

c2

) 1
2
||ue − v|| ∀v ∈ V .

Symmetric, positive definite coefficient matrix. The discrete problem
a(u, v) = L(v) ∀v ∈ V leads to a linear system Ac = b, where the
coefficient matrix A is symmetric (AT = A) and positive definite (xTAx >
0 for all vectors x 6= 0). One can then use solution methods that demand
less storage and that are faster and more reliable than solvers for general
linear systems. One is also guaranteed the existence and uniqueness of
the discrete solution u.
Equivalent matrix minimization problem. The solution c of the linear
system Ac = b also solves the minimization problem minw(1

2w
TAw−bTw

in the vector space RN+1.

6.5 Variational formulations in 2D and 3D 223

A priori error estimate for the derivative. In our sample problem,
−u′′ = f on Ω = [0, 1], u(0) = 0, u′(1) = β, one can derive the following
error estimate for Lagrange finite element approximations of degree s:

(∫ 1

0
(u′e − u′)2dx

) 1
2

≤ Chs||ue||Hs+1 ,

where ||u||Hs+1 is a norm that integrates the sum of the square of all
derivatives up to order s+ 1, C is a constant, and h is the maximum cell
length. The estimate shows that choosing elements with higher-degree
polynomials (large s) requires more smoothness in ue since higher-order
derivatives need to be square-integrable.

A consequence of the error estimate is that u′ → u′e as h→ 0, i.e., the
approximate solution converges to the exact one.

The constant C in depends on the shape of triangles in 2D and
tetrahedra in 3D: squeezed elements with a small angle lead to a large
C, and such deformed elements are not favorable for the accuracy.

One can generalize the above estimate to the general problem class
a(u, v) = L(v): the error in the derivative is proportional to hs. Note that
the expression ||ue − u|| in the example is ||ue − u||H1 so it involves the
sum of the zeroth and first derivative. The appearance of the derivative
makes the error proportional to hs - if we only look at the solution it
converges as hs+1 (see below).

The above estimate is called an a priori estimate because the bound
contains the exact solution, which is not computable. There are also
a posteriori estimates where the bound involves the approximation u,
which is available in computations.

A priori error estimate for the solution. The finite element solution of
our sample problem fulfills

||ue − u|| ≤ Chs+1||ue||Hs+1 ,

This estimate shows that the error converges as h2 for P1 elements. An
equivalent finite difference method, see Section 6.1.3, is known to have
an error proportional to h2, so the above estimate is expected. In general,
the convergence is hs+1 for elements with polynomials of degree s. Note
that the estimate for u′ is proportional to h raised to one power less.
We remark that the second estimate strictly speaking requires extra
smoothness (regularity).

224 6 Variational formulations with finite elements

6.6 Implementation in 2D and 3D via FEniCS

From a principle of view, we have seen that variational forms of the
type: find a(u, v) = L ∀v ∈ V (and even general nonlinear problems
F (u; v) = 0), can apply the computational machinery of introduced for
the approximation problem u = f . We actually need two extensions only:

1. specify Dirichlet boundary conditions as part of V
2. incorporate Neumann flux boundary conditions in the variational form

The algorithms are all the same in any space dimension, we only need to
choose the element type and associated integration rule. Once we know
how to compute things in 1D, and made the computer code sufficiently
flexible, the method and code should work for any variational form in
any number of space dimensions! This fact is exactly the idea behind the
FEniCS finite element software.

Therefore, if we know how to set up an approximation problem in any
dimension in FEniCS, and know how to derive variational forms in higher
dimensions, we are (in principle!) very close to solving a PDE problem in
FEniCS. Building on the Section 4.7, we shall now solve a quite general
1D/2D/3D Poisson problem in FEniCS. There is much more to FEniCS
than what is shown in this example, but it illustrates the fact that when
we go beyond 1D, there exists software which leverage the full power of
the finite element method as a method for solving any problem on any
mesh in any number of space dimensions.

6.6.1 Mathematical problem

The following model describes the pressure u in the flow around a bore
hole of radius a in a porous medium. If the hole is long in the vertical
direction (z-direction) then it is natural to assume that the vertical
changes are small and uz ≈ constant. Therefore, we can model it by a
2D domain in the cross section.

∇ · (α∇u) = 0, a < ||x|| < b, (6.41)
u(x) = Ua, ||x|| = a, (6.42)
u(x) = Ub ||x|| = b . (6.43)

http://fenicsproject.org

6.6 Implementation in 2D and 3D via FEniCS 225

That is, we have a hollow circular 2D domain with inner radius a and
outer radius b. The pressure is known on these two boundaries, so this is
a pure Dirichlet problem.

Symmetry. The first thing we should observe is that the problem is
radially symmetric, so we can change to polar coordinates and obtain a
1D problem in the radial direction:

(rαu′)′ = 0, u(a) = Ua, u(b) = Ub .

This is not very exciting beyond being able to find an analytical solution
and compute the true error of a finite element approximation.

However, many software packages solve problems in Cartesian coordi-
nates, and FEniCS basically do this, so we want to take advantage of
symmetry in Cartesian coordinates and reformulate the problem in a
smaller domain.

Looking at the domain as a cake with a hole, any piece of the cake
will be a candidate for a reduced-size domain. The solution is symmetric
about any line θ = const in polar coordinates, so at such lines we have the
symmetry boundary condition ∂u/∂n = 0, i.e., a homogeneous Neumann
condition. In Figure 6.3 we have plotted a possible mesh of cells as
triangles, here with dense refinement toward the bore hole, because we
know the solution will decay most rapidly toward the origin. This mesh
is a piece of the cake with four sides: Dirichlet conditions on the inner
and outer boundary, named ΓDa and ΓDb , and ∂u/∂n = 0 on the two
other sides, named ΓN . In this particular example, the arc of the piece
of the cake is 45 degrees, but any value of the arc will work.

The boundary problem can then be expressed as

∇ · (α∇u) = 0, x ∈ Ω, (6.44)
u(x) = Ua, x ∈ ΓDa , (6.45)
u(x) = Ub, x ∈ ΓDb , (6.46)
∂u

∂n
= 0, x ∈ ΓN . (6.47)

6.6.2 Variational formulation

To obtain the variational formulation, we multiply the PDE by a test
function v and integrate the second-order derivatives by part:

226 6 Variational formulations with finite elements

Fig. 6.3 Mesh of a hollow cylinder, with refinement and utilizing symmetry.

∫
Ω
∇ · (α∇u)v dx = −

∫
Ω
α∇u · ∇v dx+

∫
ΓN

α
∂u

∂n
v ds

= −
∫
Ω
α∇u · ∇v dx, ∀v ∈ V

We are left with a problem of the form: find u such that a(u, v) =
L(v) ∀v ∈ V , with

a(u, v) =
∫
Ω
α∇u · ∇v dx, (6.48)

L(v) =
∫
Ω

0v dx . (6.49)

We write the integrand as 0v dx even though L = 0, because it is necessary
in FEniCS to specify L as a linear form (i.e., a test function and some

6.6 Implementation in 2D and 3D via FEniCS 227

form of integration need to be present) and not the number zero. The
Dirichlet conditions make a nonzero solution.

6.6.3 The FEniCS solver

We suppose that we have a function make_mesh that can make the mesh
for us. More details about this function will be provided later. A next
step is then to define proper Dirichlet conditions. This might seem a bit
complicated, but we introduce markers at the boundary for marking the
Dirichlet boundaries. The inner boundary has marker 1 and the outer
has marker 2. In this way, we can recognize the nodes that are on the
boundary. It is usually a part of the mesh making process to compute
both the mesh and its markers, so make_mesh returns a Mesh object as
mesh and a MeshFunction object markers. Setting Dirichlet conditions
in the solver is then a matter of introducing DirichletBC objects, one
for each part of the boundary marked by markers, and then we collect
all such Dirichlet conditions in a list that is used by the assembly process
to incorporate the Dirichlet conditions in the linear system. The code
goes like this:

V = FunctionSpace(mesh, ’P’, degree)
bc_inner = DirichletBC(V, u_a, markers, 1)
bc_outer = DirichletBC(V, u_b, markers, 2)
bcs = [bc_inner, bc_outer]

Here, u_a and u_b are constants (floats) set by the user. In gen-
eral, anything that can be evaluated pointwise can be used, such as
Expression, Function, and Constant. The next step is to define the
variational problem and solve it:

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = alpha*dot(grad(u), grad(v))*dx
L = Constant(0)*v*dx # L = 0*v*dx = 0 does not work...

Compute solution
u = Function(V)
solve(a == L, u, bcs)

f = File("mesh.xml")
f << mesh

In order to avoid L=0 (L equal to the float zero), we have to tell FEniCS
that is a linear form, so zero must be specified as Constant(0).

228 6 Variational formulations with finite elements

Note that everything is the same as for the approximation problem in
Section 4.7, except for the Dirichlet conditions and the formulas for a
and L. FEniCS has, of course, access to very efficient solution methods,
so we could add arguments to the solve call to apply state-of-the-art
iterative methods and preconditioners for large-scale problems. However,
for this little 2D case a standard sparse Gaussian elimination, as implied
by solve(a = L, u, bcs) is a sufficient approach.

Finally, we can save the solution to file for using professional visual-
ization software and, if desired, add a quick plotting using the built-in
FEniCS tool plot:

Save solution to file in VTK format
vtkfile = File(filename + ’.pvd’)
vtkfile << u

u.rename(’u’, ’u’); plot(u); plot(mesh)
import matplotlib.pyplot as plt
plt.show()

(The u.rename call is just for getting a more readable title in the plot.)
The above statements are collected in a function solver in the file

borehole_fenics.py:

def solver(
mesh,
markers, # MeshFunctions for Dirichlet conditions
alpha, # Diffusion coefficient
u_a, # Inner pressure
u_b, # Outer pressure
degree, # Element polynomial degree
filename, # Name of VTK file
):
V = FunctionSpace(mesh, ’P’, degree)
bc_inner = DirichletBC(V, u_a, markers, 1)
bc_outer = DirichletBC(V, u_b, markers, 2)
bcs = [bc_inner, bc_outer]

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = alpha*dot(grad(u), grad(v))*dx
L = Constant(0)*v*dx # L = 0*v*dx = 0 does not work...

Compute solution
u = Function(V)
solve(a == L, u, bcs)

f = File("mesh.xml")
f << mesh

http://tinyurl.com/znpudbt/borehole_fenics.py

6.6 Implementation in 2D and 3D via FEniCS 229

Save solution to file in VTK format
vtkfile = File(filename + ’.pvd’)
vtkfile << u

u.rename(’u’, ’u’); plot(u); plot(mesh)
import matplotlib.pyplot as plt
plt.show()
return u

def problem():
mesh, markers = make_mesh(Theta=25*pi/180, a=1, b=2,

nr=20, nt=20, s=1.9)
beta = 5
solver(mesh, markers, alpha=1, u_a=1, u_b=0, degree=1, filename=’tmp’)

if __name__ == ’__main__’:
problem()

Be careful with name clashes!
It is easy when coding mathematics to use variable names that
correspond to one-letter names in the mathematics. For example,
in the mathematics of this problem there are two a variables: the
radius of the inner boundary and the bilinear form in the variational
formulation. Using a for the inner boundary in solver does not
work: it is quickly overwritten by the bilinear form. We therefore
have to introduce x_a. Long variable names are to be preferred
for safe programming, though short names corresponding to the
mathematics are often nicer.

6.6.4 Making the mesh

The hardest part of a finite element problem is very often to make
the mesh. This is particularly the case in large industrial projects, but
also often academic projects quickly lead to time-consuming work with
constructing finite element meshes. In the present example we create
the mesh for the symmetric problem by deforming an originally rect-
angular mesh. The rectangular mesh is made by the FEniCS object
RectangleMesh on [a, b]× [0, 1]. Therefore, we stretch the mesh towards
the left before we bend the rectangle onto to “a piece of cake”. Figure 6.4
shows an example on the resulting mesh. The stretching gives us refine-

230 6 Variational formulations with finite elements

ment in the radial direction because we expect the variations to be quite
large in this direction, but uniform in θ direction.

We first make the rectangle and set boundary markers here for the
inner and outer boundaries (since these are particularly simple: x = a
and x = b). Here is how we make the rectangular mesh from lower left
corner (a, 0) to upper left corner (b, 1) with nr quadrilateral cells in x
direction (later to become the radial direction) and nt quadrilateral cells
in the y direction:

mesh = RectangleMesh(Point(a, 0), Point(b, 1), nr, nt, ’crossed’)

Each quadrilateral cell is divided into two triangles with right or left
going diagonals, or four triangles using both diagonals. These choices of
producing triangles from rectangles are named right, left, and crossed.
Recall that FEniCS can only work with cells of triangular shape only and
where the sides are straight. This means that we need a good resolution in
θ direction to represent a circular boundary. With isoparametric elements,
it is easier to get a higher-order polynomial approximation of curved
boundaries.

We must then mark the boundaries for boundary conditions. Since we
do not need to do anything with the homogeneous Neumann conditions,
we can just mark the inner and outer boundary of the hole cylinder.
This is very easy to do as long as the mesh is a rectangle since then
the specifications of the boundaries are x = a and x = b. The relevant
FEniCS code requires the user to define a subclass of SubDomain and
implement a function inside for indicating whether a given point x is
on the desired boundary or not:

x=a becomes the inner borehole boundary
class Inner(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[0] - a) < tol

x=b becomes the outer borehole boundary
class Outer(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[0] - b) < tol

inner = Inner(); outer = Outer();
markers = MeshFunction(’size_t’, mesh, mesh.topology().dim() - 1)
markers.set_all(0)
inner.mark(markers, 1)
outer.mark(markers, 2)

With the instances inner and outer we fill a marker object, called
MeshFunction in FEniCS. For this purpose we must introduce our own

6.6 Implementation in 2D and 3D via FEniCS 231

Fig. 6.4 Finite element mesh for a porous medium outside a bore hole (hollow cylinder).

convention of numbering boundaries: here we use 1 for all points on the
inner boundary and 2 for the outer boundary, while all other points
are marked by 0. The solver applies the markers object to set the right
Dirichlet boundary conditions.

The next step is to deform the mesh. Given coordinates x, we can
map these onto a stretched coordinate x̄ by

x̄ = a+ (b− a)
(
x− a
b− a

)s
, (6.50)

where s is a parameter that controls the amount of stretching. The
formula above gives a stretching towards x = a, while the next one
stretches the coordinates towards x = b:

x̄ = a+ (b− a)
(
x− a
b− a

)1/s
. (6.51)

The code shown later shows the details of mapping coordinates in a
FEniCS mesh object.

The final step is to map the rectangle to a part of a hollow cylinder.
Mathematically, a point (x, y) in the rectangle is mapped onto x̄, ȳ) in
our final geometry:

x̂ = x̄ cos(Θȳ), ŷ = x̄ sin(Θȳ) .

The relevant FEniCS code becomes

232 6 Variational formulations with finite elements

--- Deform mesh ---

First make a denser mesh towards r=a
x = mesh.coordinates()[:,0]
y = mesh.coordinates()[:,1]

def denser(x, y):
return [a + (b-a)*((x-a)/(b-a))**s, y]

x_bar, y_bar = denser(x, y)
xy_bar_coor = np.array([x_bar, y_bar]).transpose()
mesh.coordinates()[:] = xy_bar_coor

Then map onto to a "piece of cake"

def cylinder(r, s):
return [r*np.cos(Theta*s), r*np.sin(Theta*s)]

x_hat, y_hat = cylinder(x_bar, y_bar)
xy_hat_coor = np.array([x_hat, y_hat]).transpose()
mesh.coordinates()[:] = xy_hat_coor
return mesh, markers

Fortunately, the solver is independent of all the details of the mesh
making. We could also have used the mesh tool mshr in FEniCS, but
with our approach here we have full control of the refinement towards
the hole.

6.6.5 Solving a problem

We assume that α is constant. Before solving such a specific problem, it
can be wise to scale the problem since it often reduces the amount of
input data in the model. Here, the variation in u is typically |ua − ub| so
we use that as characteristic pressure. The coordinates may be naturally
scaled by the bore hole radius, so we have new, scaled variables

ū = u− ua
ua − ub

, x̄ = x

a
, ȳ = y

a
.

Now, we expect ū ∈ [0, 1], which is a goal of scaling. Inserting this in the
problem gives the PDE

∇2ū = 0

in a domain with inner radius 1 and ū = 0, and outer radius

β = a

b
,

6.7 Convection-diffusion and Petrov-Galerkin methods 233

with ū = 1. Our solver can solve this problem by setting alpha=1, u_a=1,
and u_b=0. We see that the dimensionless parameter β goes to the mesh
and not to the solver. Figure 6.5 shows a solution for β = 2 on a mesh
with 4 · 20 · 20 = 1600 triangles, 25 degree opening, and P1 elements.
Switching to higher-order, say P3, is a matter of changing the degree
parameter that goes to the function V in the solver:

mesh, markers = make_mesh(Theta=25*pi/180, a=1, b=2,
nr=20, nt=20, s=1.9)

beta = 2
solver(mesh, markers,

alpha=1, u_a=1, u_b=0, degree=3, filename=’borehole1’)

The complete code is found in borehole_fenics.py. All fluids flow in
the same way as long as the geometry is the same!

Fig. 6.5 Solution for (scaled) fluid pressure around a bore hole in a porous medium.

How can we solve a 3D version of this problem? Then we would
make a long cylinder. The assumption is that nothing changes in the
third direction, so ∂/∂z = 0. This means that the cross sections at the
end of the cylinder have homogeneous Neumann conditions ∂u/∂n = 0.
Therefore, nothing changes in the variational form. Actually, all we have
to do is to a generate a 3D box and use the same stretching and mapping
to make the cylinder, and run the solver without changes!

6.7 Convection-diffusion and Petrov-Galerkin methods

Let us now return to the convection-diffusion problem introduced in
Section 6.5.2. The problem in general reads,

http://tinyurl.com/znpudbt/borehole_fenics.py

234 6 Variational formulations with finite elements

v · ∇u+ βu = ∇ · (α∇u) + f, x ∈ Ω, (6.52)
u = u0, x ∈ ∂ΩD, (6.53)

−α∂u
∂n

= g, x ∈ ∂ΩN . (6.54)

In Section 5.5 we investigated the simplified case in 1D

−ux − αuxx = 0,
u(0) = 0, u(1) = 1 .

and the analytical solution was:

ue(x) = e−x/α − 1
e−1/α − 1 .

The approximation with global functions failed when α was signifi-
cantly smaller than v. The computed solution contained non-physical
oscillations that were orders of magnitude larger than the true solution.
The approximation did however improve as the number of degrees of
freedom increased.

The variational problem is: Find u ∈ V such that

a(u, v) = L(v), ∀v ∈ V

where

a(u, v) =
∫ 1

0
−uxv + µuxvx dx,

L(v) =
∫ 1

0
0v dx = 0.

A Galerkin approximation with a finite element approximation is obtained
by letting u =

∑
j∈Is cjψj(x) and v = ψi(x) which leads to a linear system

of equations
∑
j Ai,jcj = bi where

Ai,j =
∫ 1

0
µψ′iψ

′
j + ψ′iψj dx,

bi =
∫ 1

0
0ψi dx .

6.7 Convection-diffusion and Petrov-Galerkin methods 235

Figure 6.6 shows the finite element solution on a coarse mesh of 10
elements for µ = 0.01. Clearly, the finite element method has the same
problem as was observed earlier in global functions in Section 6.5.2.

0 2 4 6 8 10
0.5

0.0

0.5

1.0

1.5

2.0

Numerical Solution
Analytical Solution

Fig. 6.6 Solution obtained with Galerkin approximation using linear elements Ne = 10
and µ = 0.01.

For finite differences, the cure for these oscillations is upwinding. That
is, instead of using a central difference scheme, we employ the following
difference scheme:

du

dx
|x=xi = 1

h
[ui+1 − ui] if v < 0,

du

dx
|x=xi = 1

h
[ui − ui−1] if v > 0 .

Using this scheme, oscillations will disappear as can be seen in Figure 6.7.
There is a relationship between upwinding and artificial diffusion. If

we discretize ux with a central difference and add diffusion as ε = h/2∆
we get

236 6 Variational formulations with finite elements

ui+1 − ui−1

2h central scheme, first order derivative

+h

2
−ui+1 + 2ui − ui−1

h2 central scheme, second order derivate

= ui − ui−1

h
upwind scheme

0 2 4 6 8 10
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Numerical Solution
Analytical Solution

Fig. 6.7 Solution obtained upwinding Ne = 10 and µ = 0.01.

Hence, upwinding is equivalent to adding artificial diffusion with
ε = h/2; that is, in both cases we actually solve the problem

−(µ+ ε)uxx + vux = f .

using a central difference scheme.
Finite difference upwinding is difficult to express using finite elements

methods, but it is closely to adding some kind of diffusion to the scheme.
A clever method of adding diffusion is the so-called Petrov-Galerkin
method. The Galerkin approximation consist of finding u ∈ V such that
for all v ∈ V the variational formulation is satisfied.

6.7 Convection-diffusion and Petrov-Galerkin methods 237

a(u, v) =
∫ 1

0
−uxv + µuxvx dx,

L(v) =
∫ 1

0
0v dx = 0.

The Petrov-Galerkin method is a seemingly innocent and straightforward
extension of Galerkin where we want to find u ∈ V such that for all
w ∈ W the variational formulation is fulfilled.

a(u,w) =
∫ 1

0
−uxw + µuxwx dx,

L(w) =
∫ 1

0
0w dx = 0.

W can in principle be chosen freely, but in general we wish to obtain a
quadratic matrix and hence the number of basis functions in V and W
should be the same. Let w = v + βhv · ∇v. In our simplified 1D case we
had v = (1, 0), h is the element size and β is a tunable parameter.

Aij = a(ψi, ψj + βv · ∇ψj)

=
∫
Ω
µ∇ψi · ∇(ψj + βv · ∇ψj) dx+

∫
Ω
v∇ψi · (ψj + βv · ∇ψj) dx

=
∫
Ω
µ∇ψi · ∇ψj dx+

∫
Ω
v · ∇ψi ψj dx︸ ︷︷ ︸

standard Galerkin

+ β

∫
Ω
µ∇ψi · ∇(v · ∇ψj) dx︸ ︷︷ ︸
=0 for linear elements

+ β

∫
Ω

(v · ∇ψi)(v · ∇ψj) dx︸ ︷︷ ︸
artificial diffusion in v direction

In general also the right hand side is altered, given a source term f then

bi = L(ψi) =
∫
Ω
f(ψi + βv · ∇ψi dx = 0.

The modification of the right-hand side is important as a strongly consis-
tent scheme is obtained. In fact, since it is a Petrov-Galerkin projection,
it can be shown that the truncation error (see 5.1.7) is zero regardless of
the mesh size h.

The corresponding FEniCS code is

from fenics import *

238 6 Variational formulations with finite elements

import matplotlib.pyplot as plt

def boundary(x):
return x[0] < 1E-15 or x[0] > 1.0 - 1E-15

u_analytical = \
Expression("(exp(-x[0]/%e) - 1)/ (exp(-1/%e) - 1)" % \
(alpha_value, alpha_value), degree=2)

mesh = UnitIntervalMesh(10)
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)

alpha_value = 1.0e-2
alpha = Constant(alpha_value)
beta_value = 0.5
beta = Constant(beta_value)

f = Constant(0)
h = mesh.hmin()
v = v - beta*h*v.dx(0) #Petrov-Galerkin

a = (-u.dx(0)*v + alpha*u.dx(0)*v.dx(0) + beta*h*u.dx(0)*v.dx(0))*dx
L = f*v*dx

bc = DirichletBC(V, u_analytical, boundary)
u = Function(V)
solve(a == L, u, bc)

Notice that the Petrov-Galerkin method is here implemented as v =
v - beta*h*v.dx(0). Furthermore, we represent α and β as constants
rather than floats in Python because we then avoid re-compilation every
time we change these parameters.

The Petrov-Galerkin method is consistent (the weighted residual is
zero) because it is a projection method. The projection is taken onto the
space W rather than V and this may in particular on coarse meshes have
a dramatic effect. On coarse meshes the numerical solutions obtained
is usually a lot better than the Galerkin approach because the method
makes the boundary layer smoother. However, on fine meshes that is able
to resolve the boundary layer, the approximation is often better with a
standard Galerkin approach. There are many extensions of the method,
but it still remains a problem to find a proper and robust method for the
convection-diffusion problem where unphysical oscillations do not show
up and the boundary layer is not artificially smoothed.

6.8 Summary 239

6.8 Summary

• When approximating f by u =
∑
j cjϕj , the least squares method

and the Galerkin/projection method give the same result. The inter-
polation/collocation method is simpler and yields different (mostly
inferior) results.

• Fourier series expansion can be viewed as a least squares or Galerkin
approximation procedure with sine and cosine functions.

• Basis functions should optimally be orthogonal or almost orthogonal,
because this makes the coefficient matrix become diagonal or sparse
and results in little round-off errors when solving the linear system.
One way to obtain almost orthogonal basis functions is to localize the
basis by making the basis functions that have local support in only a
few cells of a mesh. This is utilized in the finite element method.

• Finite element basis functions are piecewise polynomials, normally
with discontinuous derivatives at the cell boundaries. The basis func-
tions overlap very little, leading to stable and efficient numerics in-
volving sparse matrices.

• To use the finite element method for differential equations, we use the
Galerkin method or the method of weighted residuals to arrive at a
variational form. Technically, the differential equation is multiplied
by a test function and integrated over the domain. Second-order
derivatives are integrated by parts to allow for typical finite element
basis functions that have discontinuous derivatives.

• The least squares method is not much used for finite element solution
of differential equations of second order, because it then involves
second-order derivatives which cause trouble for basis functions with
discontinuous derivatives.

• We have worked with two common finite element terminologies and
associated data structures (both are much used, especially the first
one, while the other is more general):
1. elements, nodes, and mapping between local and global node num-

bers
2. an extended element concept consisting of cell, vertices, degrees

of freedom, local basis functions, geometry mapping, and mapping
between local and global degrees of freedom

• The meaning of the word "element" is multi-fold: the geometry of
a finite element (also known as a cell), the geometry and its basis
functions, or all information listed under point 2 above.

240 6 Variational formulations with finite elements

• One normally computes integrals in the finite element method element
by element (cell by cell), either in a local reference coordinate system
or directly in the physical domain.

• The advantage of working in the reference coordinate system is that the
mathematical expressions for the basis functions depend on the element
type only, not the geometry of that element in the physical domain.
The disadvantage is that a mapping must be used, and derivatives
must be transformed from reference to physical coordinates.

• Element contributions to the global linear system are collected in an
element matrix and vector, which must be assembled into the global
system using the degree of freedom mapping (dof_map) or the node
numbering mapping (elements), depending on which terminology
that is used.

• Dirichlet conditions, involving prescribed values of u at the boundary,
are mathematically taken care of via a boundary function that takes
on the right Dirichlet values, while the basis functions vanish at such
boundaries. The finite element method features a general expression
for the boundary function. In software implementations, it is easier
to drop the boundary function and the requirement that the basis
functions must vanish on Dirichlet boundaries and instead manipulate
the global matrix system (or the element matrix and vector) such
that the Dirichlet values are imposed on the unknown parameters.

• Neumann conditions, involving prescribed values of the derivative (or
flux) of u, are incorporated in boundary terms arising from integrating
terms with second-order derivatives by part. Forgetting to account
for the boundary terms implies the condition ∂u/∂n = 0 at parts of
the boundary where no Dirichlet condition is set.

6.9 Exercises

Exercise 6.1: Compute the deflection of a cable with 2 P1
elements

Solve the problem for u in Exercise 5.2 using two P1 linear elements.
Incorporate the condition u(0) = 0 by two methods: 1) excluding the
unknown at x = 0, 2) keeping the unknown at x = 0, but modifying the
linear system.
Filename: cable_2P1.

6.9 Exercises 241

Exercise 6.2: Compute the deflection of a cable with 1 P2
element

Solve the problem for u in Exercise 5.2 using one P2 element with
quadratic basis functions.
Filename: cable_1P2.

Exercise 6.3: Compute the deflection of a cable with a step
load

We consider the deflection of a tension cable as described in Exercise 5.2:
w′′ = `, w(0) = w(L) = 0. Now the load is discontinuous:

`(x) =
{
`1, x < L/2,
`2, x ≥ L/2 x ∈ [0, L] .

This load is not symmetric with respect to the midpoint x = L/2 so the
solution loses its symmetry. Scaling the problem by introducing

x̄ = x

L/2 , u = w

wc
, ¯̀= `− `1

`2 − `1
.

This leads to a scaled problem on [0, 2] (we rename x̄ as x for convenience):

u′′ = ¯̀(x) =
{

1, x < 1,
0, x ≥ 1 x ∈ (0, 1), u(0) = 0, u(2) = 0 .

a) Find the analytical solution of the problem.

Hint. Integrate the equation separately for x < 1 and x > 1. Use the
conditions that u and u′ must be continuous at x = 1.

b) Use ψi = sin((i + 1)πx2), i = 0, . . . , N and the Galerkin method to
find an approximate solution u =

∑
j cjψj . Plot how fast the coefficients

cj tend to zero (on a log scale).

c) Solve the problem with P1 finite elements. Plot the solution for
Ne = 2, 4, 8 elements.
Filename: cable_discont_load.

242 6 Variational formulations with finite elements

Exercise 6.4: Compute with a non-uniform mesh

a) Derive the linear system for the problem −u′′ = 2 on [0, 1], with
u(0) = 0 and u(1) = 1, using P1 elements and a non-uniform mesh. The
vertices have coordinates x0 = 0 < x1 < · · · < xNn−1 = 1, and the length
of cell number e is he = xe+1 − xe.

b) It is of interest to compare the discrete equations for the finite element
method in a non-uniform mesh with the corresponding discrete equations
arising from a finite difference method. Go through the derivation of
the finite difference formula u′′(xi) ≈ [DxDxu]i and modify it to find a
natural discretization of u′′(xi) on a non-uniform mesh. Compare the
finite element and difference discretizations
Filename: nonuniform_P1.

Problem 6.5: Solve a 1D finite element problem by hand

The following scaled 1D problem is a very simple, yet relevant, model
for convective transport in fluids:

u′ = εu′′, u(0) = 0, u(1) = 1, x ∈ [0, 1] . (6.55)

a) Find the analytical solution to this problem. (Introduce w = u′, solve
the first-order differential equation for w(x), and integrate once more.)

b) Derive the variational form of this problem.

c) Introduce a finite element mesh with uniform partitioning. Use P1
elements and compute the element matrix and vector for a general
element.

d) Incorporate the boundary conditions and assemble the element con-
tributions.

e) Identify the resulting linear system as a finite difference discretization
of the differential equation using

[D2xu = εDxDxu]i .

f) Compute the numerical solution and plot it together with the exact
solution for a mesh with 20 elements and ε = 10, 1, 0.1, 0.01.
Filename: convdiff1D_P1.

6.9 Exercises 243

Exercise 6.6: Investigate exact finite element solutions

Consider

−u′′(x) = xm, x ∈ (0, L), u′(0) = C, u(L) = D,

where m ≥ 0 is an integer, and L, C, and D are given numbers. Utilize
a mesh with two (non-uniform) elements: Ω(0) = [0, 3] and Ω(0) = [3, 4].
Plot the exact solution and the finite element solution for polynomial
degree d = 1, 2, 3, 4 and m = 0, 1, 2, 3, 4. Find values of d and m that
make the finite element solution exact at the nodes in the mesh.

Hint. Use the mesh_uniform, finite_element1D, and u_glob2 func-
tions from the fe1D.py module.
Filename: u_xx_xm_P1to4.

Exercise 6.7: Compare finite elements and differences for a
radially symmetric Poisson equation

We consider the Poisson problem in a disk with radius R with Dirichlet
conditions at the boundary. Given that the solution is radially symmetric
and hence dependent only on the radial coordinate (r =

√
x2 + y2), we

can reduce the problem to a 1D Poisson equation

− 1
r

d

dr

(
r
du

dr

)
= f(r), r ∈ (0, R), u′(0) = 0, u(R) = UR . (6.56)

a) Derive a variational form of (6.56) by integrating over the whole disk,
or posed equivalently: use a weighting function 2πrv(r) and integrate r
from 0 to R.

b) Use a uniform mesh partition with P1 elements and show what the
resulting set of equations becomes. Integrate the matrix entries exact by
hand, but use a Trapezoidal rule to integrate the f term.

c) Explain that an intuitive finite difference method applied to (6.56)
gives

1
ri

1
h2

(
ri+ 1

2
(ui+1 − ui)− ri− 1

2
(ui − ui−1)

)
= fi, i = rh .

For i = 0 the factor 1/ri seemingly becomes problematic. One must
always have u′(0) = 0, because of the radial symmetry, which implies

244 6 Variational formulations with finite elements

u−1 = u1, if we allow introduction of a fictitious value u−1. Using this
u−1 in the difference equation for i = 0 gives

1
r0

1
h2

(
r 1

2
(u1 − u0)− r− 1

2
(u0 − u1)

)
=

1
r0

1
2h2 ((r0 + r1)(u1 − u0)− (r−1 + r0)(u0 − u1)) ≈ 2(u1 − u0),

if we use r−1 + r1 ≈ 2r0.
Set up the complete set of equations for the finite difference method

and compare to the finite element method in case a Trapezoidal rule is
used to integrate the f term in the latter method.
Filename: radial_Poisson1D_P1.

Exercise 6.8: Compute with variable coefficients and P1
elements by hand
Consider the problem

− d

dx

(
α(x)du

dx

)
+ γu = f(x), x ∈ Ω = [0, L], u(0) = α, u′(L) = β .

(6.57)
We choose α(x) = 1 + x2. Then

u(x) = α + β(1 + L2) tan−1(x), (6.58)

is an exact solution if f(x) = γu.
Derive a variational formulation and compute general expressions for

the element matrix and vector in an arbitrary element, using P1 elements
and a uniform partitioning of [0, L]. The right-hand side integral is
challenging and can be computed by a numerical integration rule. The
Trapezoidal rule (4.50) gives particularly simple expressions. Filename:
atan1D_P1.

Exercise 6.9: Solve a 2D Poisson equation using polynomials
and sines
The classical problem of applying a torque to the ends of a rod can be
modeled by a Poisson equation defined in the cross section Ω:

6.9 Exercises 245

−∇2u = 2, (x, y) ∈ Ω,

with u = 0 on ∂Ω. Exactly the same problem arises for the deflection of
a membrane with shape Ω under a constant load.

For a circular cross section one can readily find an analytical solution.
For a rectangular cross section the analytical approach ends up with a
sine series. The idea in this exercise is to use a single basis function to
obtain an approximate answer.

We assume for simplicity that the cross section is the unit square:
Ω = [0, 1]× [0, 1].

a) We consider the basis ψp,q(x, y) = sin((p + 1)πx) sin(qπy), p, q =
0, . . . , n. These basis functions fulfill the Dirichlet condition. Use a
Galerkin method and n = 0.

b) The basis function involving sine functions are orthogonal. Use this
property in the Galerkin method to derive the coefficients cp,q in a formula
u =

∑
p

∑
q cp,qψp,q(x, y).

c) Another possible basis is ψi(x, y) = (x(1−x)y(1−y))i+1, i = 0, . . . , N .
Use the Galerkin method to compute the solution for N = 0. Which
choice of a single basis function is best, u ∼ x(1 − x)y(1 − y) or u ∼
sin(πx) sin(πy)? In order to answer the question, it is necessary to search
the web or the literature for an accurate estimate of the maximum u
value at x = y = 1/2.
Filename: torsion_sin_xy.

Exercise 6.10: Solve a 3D Laplace problem with FEniCS

Solve the problem in Section 6.6 in 3D.

Hint. Use BoxMesh as starting point. Consult the FEniCS tutorial [20]
if necessary.
Filename: borehole_fenics3D.

Exercise 6.11: Solve a 1D Laplace problem with FEniCS

Solve the problem in Section 6.6 in 1D, using the radial formulation
(ru′)′ = 0.

246 6 Variational formulations with finite elements

Hint. Use IntervalMesh for generating the mesh and introduce a stretch-
ing if desired. Consult the FEniCS tutorial [20] so you can extract the
solution in an array and make your own curve plot of it.

This problem can be solved without markers, see the section on multiple
Dirichlet conditions in the tutorial [20] (it is even easier to solve by saying
that the solution at the boundary obeys a linear function from ua to ub
and use this as the only Dirichlet condition).
Filename: borehole_fenics1D.

Time-dependent variational forms 7

There are at least three different strategies for performing a discretization
in time:

1. Use finite differences for time derivatives to arrive at a recursive set of
spatial problems that can be discretized by the finite element method.

2. Discretize in space by finite elements first, and then solve the resulting
system of ordinary differential equations (ODEs) by some standard
library for ODEs.

3. Discretize in space and time simultaneously by space-time finite ele-
ments.

With the first strategy, we discretize in time prior to the space discretiza-
tion, while the second strategy consists of doing exactly the opposite. It
should come as no surprise that in many situations these two strategies
end up in exactly the same systems to be solved, but this is not always
the case. Also the third approach often reproduces standard finite dif-
ference schemes such as the Backward Euler and the Crank-Nicolson
schemes for lower-order elements, but offers an interesting framework
for deriving higher-order methods. In this chapter we shall be concerned
with the first strategy, which is the most common strategy as it turns the
time-dependent PDE problem to a sequence of stationary problems for
which efficient finite element solution strategies often are available. The
second strategy would naturally employ well-known ODE software, which
are available as user-friendly routines in Python. However, these routines
are presently not efficient enough for PDE problems in 2D and 3D. The

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

248 7 Time-dependent variational forms

first strategy gives complete hands-on control of the implementation and
the computational efficiency in time and space.

We shall use a simple diffusion problem to illustrate the basic principles
of how a time-dependent PDE is solved by finite differences in time and
finite elements in space. Of course, instead of finite elements, we may
employ other types of basis functions, such as global polynomials. Our
model problem reads

∂u

∂t
= α∇2u+ f(x, t), x ∈ Ω, t ∈ (0, T], (7.1)

u(x, 0) = I(x), x ∈ Ω, (7.2)
∂u

∂n
= 0, x ∈ ∂Ω, t ∈ (0, T] . (7.3)

Here, u(x, t) is the unknown function, α is a constant, and f(x, t) and
I(x) are given functions. We have assigned the particular boundary
condition (7.3) to minimize the details on handling boundary conditions
in the finite element method.
Remark. For systems of PDEs the strategy for discretization in time may
have great impact on overall efficiency and accuracy. The Navier-Stokes
equations for an incompressible Newtonian fluid is a prime example
where many methods have been proposed and where there are notable
differences between the different methods. Furthermore, the differences
often depend significantly on the application. Discretization in time before
discretization in space allows for manipulations of the equations and
schemes that are very efficient compared to schemes based on discretizing
in space first. The schemes are so-called operator-splitting schemes or
projection based schemes. These schemes do, however, suffer from loss of
accuracy particularly in terms of errors associated with the boundaries.
The numerical error is caused by the splitting of the equations which
leads to non-trivial splitting of the boundary conditions. It is beyond the
scope to discuss these schemes and their differences in this text, but we
mentioned that this is the topic of the review article [21] and the more
comprehensive books [11, 31].

7.1 Discretization in time by a Forward Euler scheme

The discretization strategy is to first apply a simple finite difference
scheme in time and derive a recursive set of spatially continuous PDE

7.1 Discretization in time by a Forward Euler scheme 249

problems, one at each time level. For each spatial PDE problem we can
set up a variational formulation and employ the finite element method
for solution.

7.1.1 Time discretization

We can apply a finite difference method in time to (7.1). First we need
’a mesh’ in time, here taken as uniform with mesh points tn = n∆t,
n = 0, 1, . . . , Nt. A Forward Euler scheme consists of sampling (7.1)
at tn and approximating the time derivative by a forward difference
[D+

t u]n ≈ (un+1 − un)/∆t. A list of finite difference formulas can be
found in A.1. This approximation turns (7.1) into a differential equation
that is discrete in time, but still continuous in space. With a finite
difference operator notation we can write the time-discrete problem as

[D+
t u = α∇2u+ f]n, (7.4)

for n = 1, 2, . . . , Nt − 1. Writing this equation out in detail and isolating
the unknown un+1 on the left-hand side, demonstrates that the time-
discrete problem is a recursive set of problems that are continuous in
space:

un+1 = un +∆t
(
α∇2un + f(x, tn)

)
. (7.5)

Given u0 = I, we can use (7.5) to compute u1, u2, . . . , uNt .

More precise notation

For absolute clarity in the various stages of the discretizations,
we introduce ue(x, t) as the exact solution of the space-and time-
continuous partial differential equation (7.1) and une (x) as the time-
discrete approximation, arising from the finite difference method in
time (7.4). More precisely, ue fulfills

∂ue
∂t

= α∇2ue + f(x, t), (7.6)

while un+1
e , with a superscript, is the solution of the time-discrete

equations

250 7 Time-dependent variational forms

un+1
e = une +∆t

(
α∇2une + f(x, tn)

)
. (7.7)

The un+1
e quantity is then discretized in space and approximated

by un+1.

7.1.2 Space discretization

We now introduce a finite element approximation to une and un+1
e in (7.7),

where the coefficients depend on the time level:

une ≈ un =
N∑
j=0

cnj ψj(x), (7.8)

un+1
e ≈ un+1 =

N∑
j=0

cn+1
j ψj(x) . (7.9)

Note that, as before, N denotes the number of degrees of freedom in the
spatial domain. The number of time points is denoted by Nt. We define
a space V spanned by the basis functions {ψi}i∈Is .

7.1.3 Variational forms

A Galerkin method or a weighted residual method with weighting func-
tions wi can now be formulated. We insert (7.8) and (7.9) in (7.7) to
obtain the residual

R = un+1 − un −∆t
(
α∇2un + f(x, tn)

)
.

The weighted residual principle,∫
Ω
Rw dx = 0, ∀w ∈ W,

results in

∫
Ω

[
un+1 − un −∆t

(
α∇2un + f(x, tn)

)]
w dx = 0, ∀w ∈ W .

7.1 Discretization in time by a Forward Euler scheme 251

From now on we use the Galerkin method so W = V . Isolating the
unknown un+1 on the left-hand side gives

∫
Ω
un+1v dx =

∫
Ω

[
un +∆t

(
α∇2un + f(x, tn)

)]
v dx, ∀v ∈ V .

As usual in spatial finite element problems involving second-order
derivatives, we apply integration by parts on the term

∫
(∇2un)v dx:∫

Ω
α(∇2un)v dx = −

∫
Ω
α∇un · ∇v dx+

∫
∂Ω
α
∂un

∂n
v dx .

The last term vanishes because we have the Neumann condition ∂un/∂n =
0 for all n. Our discrete problem in space and time then reads

∫
Ω
un+1v dx =

∫
Ω
unv dx−∆t

∫
Ω
α∇un·∇v dx+∆t

∫
Ω
fnv dx, ∀v ∈ V .

(7.10)
This is the variational formulation of our recursive set of spatial problems.

Nonzero Dirichlet boundary conditions

As in stationary problems, we can introduce a boundary function
B(x, t) to take care of nonzero Dirichlet conditions:

une ≈ un = B(x, tn) +
N∑
j=0

cnj ψj(x), (7.11)

un+1
e ≈ un+1 = B(x, tn+1) +

N∑
j=0

cn+1
j ψj(x) . (7.12)

7.1.4 Notation for the solution at recent time levels

In a program it is only necessary to have the two variables un+1 and un
at the same time at a given time step. It is therefore unnatural to use
the index n in computer code. Instead a natural variable naming is u for
un+1, the new unknown, and u_n for un, the solution at the previous time
level. When we have several preceding (already computed) time levels,

252 7 Time-dependent variational forms

it is natural to number them like u_nm1, u_nm2, u_nm3, etc., backwards
in time, corresponding to un−1, un−2, and un−3. Essentially, this means
a one-to-one mapping of notation in mathematics and software, except
for un+1. We shall therefore, to make the distance between mathematics
and code as small as possible, often introduce just u for un+1 in the
mathematical notation. Equation (7.10) with this new naming convention
is consequently expressed as

∫
Ω
uv dx =

∫
Ω
unv dx−∆t

∫
Ω
α∇un · ∇v dx+∆t

∫
Ω
fnv dx . (7.13)

This variational form can alternatively be expressed by the inner product
notation:

(u, v) = (un, v)−∆t(α∇un,∇v) +∆t(fn, v) . (7.14)

To simplify the notation for the solution at recent previous time steps
and avoid notation like u_nm1, u_nm2, u_nm3, etc., we will let u1 denote
the solution at previous time step, u2 is the solution two time steps ago,
etc.

7.1.5 Deriving the linear systems

In the following, we adopt the previously introduced convention that the
unknowns cn+1

j are written as cj , while the known cnj from the previous
time level is simply written as cnj . To derive the equations for the new
unknown coefficients cj , we insert

u =
N∑
j=0

cjψj(x), un =
N∑
j=0

cnj ψj(x)

in (7.13) or (7.14), let the equation hold for all v = ψi, i = 0, . . . , N , and
order the terms as matrix-vector products:

N∑
j=0

(ψi, ψj)cj =
N∑
j=0

(ψi, ψj)cnj−∆t
N∑
j=0

(∇ψi, α∇ψj)cnj +∆t(fn, ψi), i = 0, . . . , N .

(7.15)
This is a linear system

∑
j Ai,jcj = bi with

7.1 Discretization in time by a Forward Euler scheme 253

Ai,j = (ψi, ψj)

and

bi =
N∑
j=0

(ψi, ψj)cnj −∆t
N∑
j=0

(∇ψi, α∇ψj)cnj +∆t(fn, ψi) .

It is instructive and convenient for implementations to write the linear
system on the form

Mc = Mc1 −∆tKc1 +∆tf, (7.16)

where

M = {Mi,j}, Mi,j = (ψi, ψj), i, j ∈ Is,
K = {Ki,j}, Ki,j = (∇ψi, α∇ψj), i, j ∈ Is,
f = {fi}, fi = (f(x, tn), ψi), i ∈ Is,
c = {ci}, i ∈ Is,
c1 = {cni }, i ∈ Is .

We realize that M is the matrix arising from a term with the zero-
th derivative of u, and called the mass matrix, while K is the matrix
arising from a Laplace term ∇2u. The K matrix is often known as the
stiffness matrix. (The terms mass and stiffness stem from the early days of
finite elements when applications to vibrating structures dominated. The
mass matrix arises from the mass times acceleration term in Newton’s
second law, while the stiffness matrix arises from the elastic forces (the
“stiffness”) in that law. The mass and stiffness matrix appearing in a
diffusion have slightly different mathematical formulas compared to the
classic structure problem.)

Remark. The mathematical symbol f has two meanings, either the
function f(x, t) in the PDE or the f vector in the linear system to be
solved at each time level.

7.1.6 Computational algorithm

We observe that M and K can be precomputed so that we can avoid
computing the matrix entries at every time level. Instead, some matrix-

254 7 Time-dependent variational forms

vector multiplications will produce the linear system to be solved. The
computational algorithm has the following steps:

1. Compute M and K.
2. Initialize u0 by interpolation or projection
3. For n = 1, 2, . . . , Nt:

a. compute b = Mc1 −∆tKc1 +∆tf
b. solve Mc = b
c. set c1 = c

In case of finite element basis functions, interpolation of the initial
condition at the nodes means cnj = I(xj). Otherwise one has to solve the
linear system ∑

j

ψj(xi)cnj = I(xi),

where xi denotes an interpolation point. Projection (or Galerkin’s
method) implies solving a linear system with M as coefficient matrix:∑

j

Mi,jc
n
j = (I, ψi), i ∈ Is .

7.1.7 Example using cosinusoidal basis functions

Let us go through a computational example and demonstrate the algo-
rithm from the previous section. We consider a 1D problem

∂u

∂t
= α

∂2u

∂x2 , x ∈ (0, L), t ∈ (0, T],
(7.17)

u(x, 0) = A cos(πx/L) +B cos(10πx/L), x ∈ [0, L],
(7.18)

∂u

∂x
= 0, x = 0, L, t ∈ (0, T] .

(7.19)

We use a Galerkin method with basis functions

ψi = cos(iπx/L) .

7.1 Discretization in time by a Forward Euler scheme 255

These basis functions fulfill (7.19), which is not a requirement (there
are no Dirichlet conditions in this problem), but helps to make the
approximation good.

Since the initial condition (7.18) lies in the space V where we seek the
approximation, we know that a Galerkin or least squares approximation
of the initial condition becomes exact. Therefore, the initial condition
can be expressed as

cn1 = A, cn10 = B,

while cni = 0 for i 6= 1, 10.
The M and K matrices are easy to compute since the basis functions

are orthogonal on [0, L]. Hence, we only need to compute the diagonal
entries. We get

Mi,i =
∫ L

0
cos2(ixπ/L) dx,

which is computed as

>>> import sympy as sym
>>> x, L = sym.symbols(’x L’)
>>> i = sym.symbols(’i’, integer=True)
>>> sym.integrate(sym.cos(i*x*sym.pi/L)**2, (x,0,L))
Piecewise((L, Eq(pi*i/L, 0)), (L/2, True))

which means L if i = 0 and L/2 otherwise. Similarly, the diagonal entries
of the K matrix are computed as

>>> sym.integrate(sym.diff(cos(i*x*sym.pi/L),x)**2, (x,0,L))
pi**2*i**2*Piecewise((0, Eq(pi*i/L, 0)), (L/2, True))/L**2

so

M0,0 = L, Mi,i = L/2, i > 0, K0,0 = 0, Ki,i = π2i2

2L , i > 0 .

The equation system becomes

Lc0 = Lc0
0 −∆t · 0 · c0

0,

L

2 ci = L

2 c
n
i −∆t

π2i2

2L cni , i > 0 .

The first equation leads to c0 = 0 for any n since we start with c0
0 = 0

and K0,0 = 0. The others imply

256 7 Time-dependent variational forms

ci = (1−∆t(πi
L

)2)cni .

With the notation cni for ci at the n-th time level, we can apply the
relation above recursively and get

cni = (1−∆t(πi
L

)2)nc0
i .

Since only two of the coefficients are nonzero at time t = 0, we have the
closed-form discrete solution

uni = A(1−∆t(π
L

)2)n cos(πx/L) +B(1−∆t(10π
L

)2)n cos(10πx/L) .

7.1.8 Comparing P1 elements with the finite difference
method

We can compute the M and K matrices using P1 elements in 1D. A
uniform mesh on [0, L] is introduced for this purpose. Since the boundary
conditions are solely of Neumann type in this sample problem, we have
no restrictions on the basis functions ψi and can simply choose ψi = ϕi,
i = 0, . . . , N = Nn − 1.

From Section 6.1.2 or 6.1.4 we have that the K matrix is the same
as we get from the finite difference method: h[DxDxu]ni , while from
Section 4.3.2 we know that M can be interpreted as the finite difference
approximation h[u+ 1

6h
2DxDxu]ni . The equation system Mc = b in the

algorithm is therefore equivalent to the finite difference scheme

[D+
t (u+ 1

6h
2DxDxu) = αDxDxu+ f]ni . (7.20)

(More precisely, Mc = b divided by h gives the equation above.)

Lumping the mass matrix. As explained in Section 4.3.3, one can turn
theM matrix into a diagonal matrix diag(h/2, h, . . . , h, h/2) by applying
the Trapezoidal rule for integration. Then there is no need to solve a
linear system at each time level, and the finite element scheme becomes
identical to a standard finite difference method

[D+
t u = αDxDxu+ f]ni . (7.21)

7.2 Discretization in time by a Backward Euler scheme 257

The Trapezoidal integration is not as accurate as exact integration
and introduces an error. Normally, one thinks of any error as an overall
decrease of the accuracy. Nevertheless, errors may cancel each other, and
the error introduced by numerical integration may in certain problems
lead to improved overall accuracy in the finite element method. The
interplay of the errors in the current problem is analyzed in detail in
Section 7.4. The effect of the error is at least not more severe than what
is produced by the finite difference method and both are of the same
order (O(h2)).

Making M diagonal is usually referred to as lumping the mass matrix.
There is an alternative method to using an integration rule based on
the node points: one can sum the entries in each row, place the sum on
the diagonal, and set all other entries in the row equal to zero. For P1
elements both methods of lumping the mass matrix give the same result,
but this is in general not true for higher order elements.

7.2 Discretization in time by a Backward Euler scheme

7.2.1 Time discretization

The Backward Euler scheme in time applied to our diffusion problem
can be expressed as follows using the finite difference operator notation:

[D−t u = α∇2u+ f(x, t)]n .

Here [D−t u]n ≈ (un−un−1)/∆t. Written out, and collecting the unknown
un on the left-hand side and all the known terms on the right-hand side,
the time-discrete differential equation becomes

un −∆tα∇2un = un−1 +∆tf(x, tn) . (7.22)

From equation (7.22) we can compute u1, u2, . . . , uNt , if we have a start
u0 = I from the initial condition. However, (7.22) is a partial differential
equation in space and needs a solution method based on discretization
in space. For this purpose we use an expansion as in (7.8)-(7.9).

258 7 Time-dependent variational forms

7.2.2 Variational forms
Inserting (7.8)-(7.9) in (7.22), multiplying by any v ∈ V (or ψi ∈ V),
and integrating by parts, as we did in the Forward Euler case, results in
the variational form

∫
Ω

(unv +∆tα∇un · ∇v) dx =
∫
Ω
un−1v dx+∆t

∫
Ω
fnv dx, ∀v ∈ V .

(7.23)
Expressed with u for the unknown un and un for the previous time level,
as we have done before, the variational form becomes

∫
Ω

(uv +∆tα∇u · ∇v) dx =
∫
Ω
unv dx+∆t

∫
Ω
fnv dx, (7.24)

or with the more compact inner product notation,

(u, v) +∆t(α∇u,∇v) = (un, v) +∆t(fn, v) . (7.25)

7.2.3 Linear systems
Inserting u =

∑
j cjψi and un =

∑
j c

n
j ψi, and choosing v to be the basis

functions ψi ∈ V , i = 0, . . . , N , together with doing some algebra, lead
to the following linear system to be solved at each time level:

(M +∆tK)c = Mc1 +∆tf, (7.26)

where M , K, and f are as in the Forward Euler case and we use the
previously introduced notation c = {ci} and c1 = {cni }.

This time we really have to solve a linear system at each time level.
The computational algorithm goes as follows.

1. Compute M , K, and A = M +∆tK
2. Initialize u0 by interpolation or projection
3. For n = 1, 2, . . . , Nt:

a. compute b = Mc1 +∆tf
b. solve Ac = b
c. set c1 = c

In case of finite element basis functions, interpolation of the initial
condition at the nodes means cnj = I(xj). Otherwise one has to solve the

7.3 Dirichlet boundary conditions 259

linear system
∑
j ψj(xi)cj = I(xi), where xi denotes an interpolation

point. Projection (or Galerkin’s method) implies solving a linear system
with M as coefficient matrix:

∑
jMi,jc

n
j = (I, ψi), i ∈ Is.

Finite difference operators corresponding to P1 elements. We know
what kind of finite difference operators theM and K matrices correspond
to (after dividing by h), so (7.26) can be interpreted as the following
finite difference method:

[D−t (u+ 1
6h

2DxDxu) = αDxDxu+ f]ni . (7.27)

The mass matrix M can be lumped, as explained in Section 7.1.8, and
then the linear system arising from the finite element method with P1
elements corresponds to a plain Backward Euler finite difference method
for the diffusion equation:

[D−t u = αDxDxu+ f]ni . (7.28)

7.3 Dirichlet boundary conditions

Suppose now that the boundary condition (7.3) is replaced by a mixed
Neumann and Dirichlet condition,

u(x, t) = u0(x, t), x ∈ ∂ΩD, (7.29)

−α ∂

∂n
u(x, t) = g(x, t), x ∈ ∂ΩN . (7.30)

Using a Forward Euler discretization in time, the variational form at
a time level becomes

∫
Ω

un+1v dx =
∫
Ω

(un−∆tα∇un·∇v) dx+∆t
∫
Ω

fv dx−∆t
∫

∂ΩN

gv ds, ∀v ∈ V .

(7.31)

260 7 Time-dependent variational forms

7.3.1 Boundary function

The Dirichlet condition u = u0 at ∂ΩD can be incorporated through a
boundary function B(x) = u0(x) and demanding that the basis functions
ψj = 0 at ∂ΩD. The expansion for un is written as

un(x) = u0(x, tn) +
∑
j∈Is

cnj ψj(x) .

Inserting this expansion in the variational formulation and letting it hold
for all test functions v ∈ V , i.e., all basis functions ψi leads to the linear
system

∑
j∈Is

∫
Ω

ψiψj dx

 cn+1
j =

∑
j∈Is

∫
Ω

(ψiψj −∆tα∇ψi · ∇ψj) dx

 cnj−∫
Ω

(u0(x, tn+1)− u0(x, tn) +∆tα∇u0(x, tn) · ∇ψi) dx

+∆t

∫
Ω

fψi dx−∆t
∫

∂ΩN

gψi ds, i ∈ Is .

7.3.2 Finite element basis functions

When using finite elements, each basis function ϕi is associated with
a node xi. We have a collection of nodes {xi}i∈Ib on the boundary
∂ΩD. Suppose Un

k is the known Dirichlet value at xk at time tn (Un
k =

u0(xk, tn)). The appropriate boundary function is then

B(x, tn) =
∑
j∈Ib

Un
j ϕj .

The unknown coefficients cj are associated with the rest of the nodes,
which have numbers ν(i), i ∈ Is = {0, . . . , N}. The basis functions of V
are chosen as ψi = ϕν(i), i ∈ Is, and all of these vanish at the boundary
nodes as they should. The expansion for un+1 and un become

7.3 Dirichlet boundary conditions 261

un =
∑
j∈Ib

Un
j ϕj +

∑
j∈Is

cnj ϕν(j),

un+1 =
∑
j∈Ib

Un+1
j ϕj +

∑
j∈Is

cjϕν(j) .

The equations for the unknown coefficients {cj}j∈Is become

∑
j∈Is

∫
Ω

ϕiϕj dx

 cj =
∑
j∈Is

∫
Ω

(ϕiϕj −∆tα∇ϕi · ∇ϕj) dx

 cnj−
∑
j∈Ib

∫
Ω

(
ϕiϕj(Un+1

j − Un
j) +∆tα∇ϕi · ∇ϕjUn

j

)
dx

+∆t

∫
Ω

fϕi dx−∆t
∫

∂ΩN

gϕi ds, i ∈ Is .

7.3.3 Modification of the linear system

Instead of introducing a boundary function B we can work with basis
functions associated with all the nodes and incorporate the Dirichlet
conditions by modifying the linear system. Let Is be the index set that
counts all the nodes: {0, 1, . . . , N = Nn − 1}. The expansion for un is
then

∑
j∈Is c

n
j ϕj and the variational form becomes

∑
j∈Is

∫
Ω

ϕiϕj dx

 cj =
∑
j∈Is

∫
Ω

(ϕiϕj −∆tα∇ϕi · ∇ϕj) dx

 c1,j

+∆t

∫
Ω

fϕi dx−∆t
∫

∂ΩN

gϕi ds .

We introduce the matrices M and K with entries Mi,j =
∫
Ω

ϕiϕj dx and

Ki,j =
∫
Ω

α∇ϕi · ∇ϕj dx, respectively. In addition, we define the vectors

c, c1, and f with entries ci, c1,i, and
∫
Ω

fϕi dx−
∫

∂ΩN

gϕi ds, respectively.

The equation system can then be written as

Mc = Mc1 −∆tKc1 +∆tf . (7.32)

262 7 Time-dependent variational forms

When M , K, and f are assembled without paying attention to Dirichlet
boundary conditions, we need to replace equation k by ck = Uk for k
corresponding to all boundary nodes (k ∈ Ib). The modification of M
consists in setting Mk,j = 0, j ∈ Is, and the Mk,k = 1. Alternatively,
a modification that preserves the symmetry of M can be applied. At
each time level one forms b = Mc1 −∆tKc1 +∆tf and sets bk = Un+1

k ,
k ∈ Ib, and solves the system Mc = b.

In case of a Backward Euler method, the system becomes (7.26). We
can write the system as Ac = b, with A = M +∆tK and b = Mc1 + f .
Both M and K needs to be modified because of Dirichlet boundary
conditions, but the diagonal entries in K should be set to zero and those
in M to unity. In this way, for k ∈ Ib we have Ak,k = 1. The right-hand
side must read bk = Un

k for k ∈ Ib (assuming the unknown is sought at
time level tn).

7.3.4 Example: Oscillating Dirichlet boundary condition

We shall address the one-dimensional initial-boundary value problem

ut = (αux)x + f, x ∈ Ω = [0, L], t ∈ (0, T], (7.33)
u(x, 0) = 0, x ∈ Ω, (7.34)
u(0, t) = a sinωt, t ∈ (0, T], (7.35)

ux(L, t) = 0, t ∈ (0, T] . (7.36)

A physical interpretation may be that u is the temperature deviation
from a constant mean temperature in a body Ω that is subject to an
oscillating temperature (e.g., day and night, or seasonal, variations) at
x = 0.

We use a Backward Euler scheme in time and P1 elements of constant
length h in space. Incorporation of the Dirichlet condition at x = 0
through modifying the linear system at each time level means that we
carry out the computations as explained in Section 7.2 and get a system
(7.26). The M and K matrices computed without paying attention to
Dirichlet boundary conditions become

7.3 Dirichlet boundary conditions 263

M = h

6



2 1 0 · · · · · · · · · · · · · · · 0
1 4 1
0 1 4 1
... 0

...
...
... 0 1 4 1
... 0
... . . . 1 4 1
0 · · · · · · · · · · · · · · · 0 1 2



(7.37)

and

K = α

h



1 −1 0 · · · · · · · · · · · · · · · 0
−1 2 −1
0 −1 2 −1
... 0

...
...
... 0 −1 2 −1
... 0
... . . . −1 2 −1
0 · · · · · · · · · · · · · · · 0 −1 1



(7.38)

The right-hand side of the variational form contains no source term
(f) and no boundary term from the integration by parts (ux = 0 at
x = L and we compute as if ux = 0 at x = 0 too) and we are therefore
left with Mc1. However, we must incorporate the Dirichlet boundary
condition c0 = a sinωtn. Let us assume that our numbering of nodes is
such that Is = {0, 1, . . . , N = Nn − 1}. The Dirichlet condition can then
be incorporated by ensuring that this is the first equation in the linear
system. To this end, the first row in K and M is set to zero, but the
diagonal entry M0,0 is set to 1. The right-hand side is b = Mc1, and we
set b0 = a sinωtn. We can write the complete linear system as

264 7 Time-dependent variational forms

c0 = a sinωtn, (7.39)
h

6 (ci−1 + 4ci + ci+1) +∆t
α

h
(−ci−1 + 2ci − ci+1) = h

6 (c1,i−1 + 4c1,i + c1,i+1),
(7.40)

i = 1, . . . , Nn − 2,
h

6 (ci−1 + 2ci) +∆t
α

h
(−ci−1 + ci) = h

6 (c1,i−1 + 2c1,i),
(7.41)

i = Nn − 1 .

The Dirichlet boundary condition can alternatively be implemented
through a boundary function B(x, t) = a sinωtϕ0(x):

un(x) = a sinωtn ϕ0(x) +
∑
j∈Is

cjϕν(j)(x), ν(j) = j + 1 .

Now, N = Nn − 2 and the c vector contains values of u at nodes
1, 2, . . . , Nn − 1. The right-hand side gets a contribution

L∫
0

(a(sinωtn − sinωtn−1)ϕ0ϕi −∆tαa sinωtn∇ϕ0 · ∇ϕi) dx . (7.42)

7.4 Accuracy of the finite element solution

7.4.1 Methods of analysis

There are three major tools for analyzing the accuracy of time-dependent
finite element problems:

• Truncation error
• Finite element error analysis framework
• Amplification factor analysis

The truncation error is the dominating tool used to analyze finite differ-
ence schemes. As we saw in Section 5.1.7 the truncation error analysis
is closely related to the method of weighted residuals. A mathematical
analysis in terms of the finite difference methods and truncation errors
can be found in [32], while the finite elements for parabolic problems
using Galerkin is analyzed in [29].

7.4 Accuracy of the finite element solution 265

To explain the numerical artifacts from the previous section and
highlight the difference between the finite difference and the finite element
methods, we turn to the method based on analyzing amplification factors.
For wave equations, the counterpart is often referred to as analysis of
dispersion relations.

The idea of the method of analyzing amplification factors is to see how
sinusoidal waves are amplified in time. For example, if high frequency
components are damped much less than the analytical damping, we may
see this as ripples or noise in the solution.

Let us address the diffusion equation in 1D, ut = αuxx for x ∈ Ω =
(0, π) and t ∈ (0, T]. For the case where we have homogeneous Dirichlet
conditions and the initial condition is u(x, 0) = u0(x), the solution to
the problem can be expressed as

u(x, t) =
∞∑
k=1

Bke
−αk2t sin(kx),

where Bk =
∫
Ω u0 sin(kx). This is the well-known Fourier decomposition

of a signal in sine waves (one can also use cosine functions or a combination
of sines and cosines). For a given wave sin(kx) with wave length λ = 2π/k,
this part of the signal will in time develop as e−αk2t. Smooth signals will
need only a few long waves (Bk decays rapidly with k), while discontinuous
or noisy signals will have an amount of short waves with significant
amplitude (Bk decays slowly with k).

The amplification factor is defined as Ae = e−αk
2∆t and expresses how

much a wave with frequency k is damped over a time step. The corre-
sponding numerical amplification factor will vary with the discretization
method and also discretization parameters in space.

From the analytical expression for the amplification factor, we see that
e−αk

2 is always less than 1. Further, we notice that the amplification factor
has a strong dependency on the frequency of the Fourier component.
For low frequency components (when k is small), the amplification
factor is relatively large although always less than 1. For high frequency
components, when k approaches ∞, the amplification factor goes to 0.
Hence, high frequency components (rapid changes such as discontinuities
or noise) present in the initial condition will be quickly dampened, while
low frequency components stay for a longer time interval.

The purpose of this section is to discuss the amplification factor of
numerical schemes and compare the amplification factor of the scheme
with the known analytical amplification factor.

266 7 Time-dependent variational forms

7.4.2 Fourier components and dispersion relations

Let us again consider the diffusion equation in 1D, ut = αuxx. To allow
for general boundary conditions, we include both the sin(kx) and cos(kx),
or for convenience we expand the Fourier series in terms of {eikx}∞k=−∞.
Hence, we perform a separation in terms of the (Fourier) wave component

u = eβt+ikx

where β = −αk2 and i =
√
−1 is the imaginary unit.

Discretizing in time such that t = n∆t, this exact wave component
can alternatively be written as

u = Ane e
ikx, Ae = e−αk

2∆t . (7.43)

We remark that Ae is a function of the parameter k, but to avoid to
clutter the notation here we write Ae instead of Ae,k. This convention
will be used also for the discrete case.

As we will show, many numerical schemes for the diffusion equation
also have a similar wave component as solution:

un = Aneikx, (7.44)

where A is an amplification factor to be calculated by inserting (7.44)
in the discrete equations. Normally A 6= Ae, and the difference in the
amplification factor is what introduces (visible) numerical errors. To
compute A, we need explicit expressions for the discrete equations for
{cj}j∈Is in the finite element method. That is, we need to assemble
the linear system and look at a general row in the system. This row
can be written as a finite difference scheme, and the analysis of the
finite element solution is therefore performed in the same way as for
finite difference methods. Expressing the discrete finite element equations
as finite difference operators turns out to be very convenient for the
calculations.

We introduce xq = qh, or xq = q∆x, for the node coordinates, to align
the notation with that frequently used in finite difference methods. A
convenient start of the calculations is to establish some results for various
finite difference operators acting on the wave component

unq = Aneikq∆x . (7.45)

The forward Euler scheme (see A.1) is

7.4 Accuracy of the finite element solution 267

u′q(tn) ≈ [D+
t uq]n =

un+1
q − unq
∆t

= An+1 − An

∆t
eikq∆x

= Aneikq∆x
A− 1
∆t

.

Similarly, the actions of the most common operators of relevance for the
model problem at hand are listed below.

[D+
t A

neikq∆x]n = Aneikq∆x
A− 1
∆t

, (7.46)

[D−t Aneikq∆x]n = Aneikq∆x
1− A−1

∆t
, (7.47)

[DtA
neikq∆x]n+ 1

2 = An+ 1
2 eikq∆x

A
1
2 − A− 1

2

∆t
= Aneikq∆x

A− 1
∆t

, (7.48)

[DxDxA
neikq∆x]q = −An 4

∆x2 sin2
(
k∆x

2

)
. (7.49)

7.4.3 Forward Euler discretization

We insert (7.45) in the Forward Euler scheme with P1 elements in space
and f = 0 (note that this type of analysis can only be carried out if
f = 0))

[D+
t (u+ 1

6h
2DxDxu)]nq = α[DxDxu]nq . (7.50)

We have (using (7.46) and (7.49)):

[D+
t DxDxAe

ikx]nq = −Aneikp∆xA− 1
∆t

4
∆x2 sin2(k∆x2) .

The term then reduces to

A− 1
∆t

− 1
6∆x

2A− 1
∆t

4
∆x2 sin2(k∆x2),

or
A− 1
∆t

(
1− 2

3 sin2(k∆x/2)
)
.

Introducing p = k∆x/2 and F = α∆t/∆x2, the complete scheme becomes

268 7 Time-dependent variational forms

(A− 1)
(

1− 2
3 sin2 p

)
= −4F sin2 p,

from which we find A to be

A = 1− 4F sin2 p

1− 2
3 sin2 p

. (7.51)

How does this A change the stability criterion compared to the Forward
Euler finite difference scheme and centered differences in space? The
stability criterion is |A| ≤ 1, which here implies A ≤ 1 and A ≥ −1. The
former is always fulfilled, while the latter leads to

4F sin2 p

1− 2
3 sin2 p

≤ 2 .

The factor sin2 p/(1− 2
3 sin2 p) can be plotted for p ∈ [0, π/2], and the

maximum value goes to 3 as p → π/2. The worst case for stability
therefore occurs for the shortest possible wave, p = π/2, and the stability
criterion becomes

F ≤ 1
6 ⇒ ∆t ≤ ∆x2

6α , (7.52)

which is a factor 1/3 worse than for the standard Forward Euler finite
difference method for the diffusion equation, which demands F ≤ 1/2.
Lumping the mass matrix will, however, recover the finite difference
method and therefore imply F ≤ 1/2 for stability. In other words, intro-
ducing an error in the integration (while keeping the order of accuracy)
improves the stability by a factor of 3.

7.4.4 Backward Euler discretization

We can use the same approach of analysis and insert (7.45) in the
Backward Euler scheme with P1 elements in space and f = 0:

[D−t (u+ 1
6h

2DxDxu) = αDxDxu]ni . (7.53)

Similar calculations as in the Forward Euler case lead to

(1− A−1)
(

1− 2
3 sin2 p

)
= −4F sin2 p,

and hence

7.4 Accuracy of the finite element solution 269

A =
(

1 + 4F sin2 p

1− 2
3 sin2 p

)−1

.

The quantity in the parentheses is always greater than unity, so |A| ≤ 1
regardless of the size of F and p. As expected, the Backward Euler
scheme is unconditionally stable.

7.4.5 Comparing amplification factors

It is of interest to compare A and Ae as functions of p for some F values.
Figure 7.2 displays the amplification factors for the Backward Euler
scheme corresponding to a coarse mesh with F = 2 and a mesh at the
stability limit of the Forward Euler scheme in the finite difference method,
F = 1/2. Figures 7.1 and 7.2 shows how the accuracy increases with lower
F values for both the Forward and Backward Euler schemes, respectively.
Figure 7.1 clearly shows that p = π/2 is the worst case. Accuracy
increases with smaller ∆t for F = 1

6 to F = 1
12 as the distance between

the exact and appropriate amplitudes decreases for all p. Backward Euler
is stable for all ∆t which means that we can employ larger F than the
forward Euler scheme. Figure 7.2 shows the amplification factors for
F = 1/2 and F = 2 for a coarse discretization, while Figure 7.3 shows
the improvements on a finer mesh. Corresponding figures for the second
order Crank-Nicolson method are 7.4 and 7.5. The striking fact, however,
is that the accuracy of the finite element method is significantly less
than the finite difference method for the same value of F . Lumping the
mass matrix to recover the numerical amplification factor A of the finite
difference method is therefore a good idea in this problem.

The difference between the exact and the numerical amplification
factors gives insight into the order of the approximation. Considering
for example the forward Euler scheme, the difference Ae − A, where
Ae and A are given in (7.43) and (7.51) is a complicated expression.
However, performing a Taylor expansion in terms of ∆t using sympy is
straightforward:

>>> import sympy as sym
>>> k, dt, dx, alpha = sym.symbols("k dt dx alpha")
>>> p = k*dx/2
>>> F = alpha*dt/(dx*dx)
>>> Ae = sym.exp(-alpha*k**2*dt) # exact
>>> Af = 1 - 4*F*sym.sin(p)**2/(1 - 2.0/3.0*sym.sin(p)**2) # FE
>>> (Ae - Af).series(dt, n=2)

270 7 Time-dependent variational forms

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
p

1.0

0.5

0.0

0.5

1.0

A
,A

e

Method: FE

F=1/6, FEM
F=1/6, FDM
F=1/12, FEM
F=1/12, FDM
exact

Fig. 7.1 Comparison of fine-mesh amplification factors for Forward Euler discretization
of a 1D diffusion equation.

dt*(-alpha*k**2 + 4*alpha*sin(dx*k/2)**2/
(-0.666666666666667*dx**2*sin(dx*k/2)**2 + dx**2)) + O(dt**2)

Hence, the differences between the numerical and exact amplification
factor is first order in time, as expected.

The L2 error of the numerical solution at time step n is

‖u− ue‖L2 =
√∫ 1

0
(u− ue)2 dx =

√∫ 1

0
((Ane − An)eikx)2 dx

Again this yields a complicated expression for hand-calculations, but the
following sympy commands provides the estimate:

>>> n, i, x = sym.symbols("n i x")
>>> e = (Ae**n - Af**n)*sym.exp(i*k*x)
>>> L2_error_squared = sym.integrate(e**2, (x, 0, 1))
>>> sym.sqrt(L2_error_squared.series(dt, n=2))
O(dt)

We remark here that it is an advantage to take the square-root after the
deriving the Taylor-series.

7.4 Accuracy of the finite element solution 271

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
p

0.0

0.2

0.4

0.6

0.8

1.0

A
,A

e

Method: BE

F=2, FEM
F=2, FDM
F=1/2, FEM
F=1/2, FDM
exact

Fig. 7.2 Comparison of coarse-mesh amplification factors for Backward Euler discretiza-
tion of a 1D diffusion equation.

We may also compute the expansion in terms of k and ∆x for both
the amplification factor or the L2 error of the error in the amplification
factor and we find that both are first order in ∆t, fourth order in k, and
zeroth order in ∆x.

>>> (Ae-Af).series(k, n=4)
O(k**4)
>>> (Ae-Af).series(dt, n=1)
O(dt)
>>> (Ae-Af).series(dx, n=1)
exp(-alpha*dt*k**2) - 1 + alpha*dt*k**2 + O(dx)

Hence, if the error obtained by our numerical scheme is dominated by
the error in the amplification factor, we may expect it to die out quite
quickly in terms of k. To improve the error, we must decrease ∆t as
decreasing the ∆x will not improve the error in the amplification factor.
In general, for a time-dependent problem with an appropriate scheme
we expect an error estimate in the asymptotic regime of the form

‖ue − u‖ ≤ C(∆t)α +Dhβ (7.54)

272 7 Time-dependent variational forms

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
p

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
,A

e

Method: BE

F=1/6, FEM
F=1/6, FDM
F=1/12, FEM
F=1/12, FDM
exact

Fig. 7.3 Comparison of fine-mesh amplification factors for Backward Euler discretization
of a 1D diffusion equation.

where C,D, α, β depend on the discretization scheme. However, this
estimate only holds in the asymptotic regime. As the amplification factor
analysis shows, we cannot remove the error in the amplification factor by
decreasing h. Similarly, we cannot remove spatial error by decreasing ∆t.
As such, the common way of determining the order of convergence is to
first choose a very small h such that the Dhβ term is negligible compared
to C(∆t)α and then determine C, α. When C, α are determined then
D, β is found in the same way by choosing small ∆t.

7.4 Accuracy of the finite element solution 273

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
p

1.0

0.5

0.0

0.5

1.0

A
,A

e

Method: CN

F=2, FEM
F=2, FDM
F=1/2, FEM
F=1/2, FDM
exact

Fig. 7.4 Comparison of coarse-mesh amplification factors for Crank-Nicolson discretiza-
tion of a 1D diffusion equation.

274 7 Time-dependent variational forms

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
p

0.0

0.2

0.4

0.6

0.8

1.0

A
,A

e

Method: CN

F=1/6, FEM
F=1/6, FDM
F=1/12, FEM
F=1/12, FDM
exact

Fig. 7.5 Comparison of fine-mesh amplification factors for Backward Euler discretization
of a 1D diffusion equation.

7.5 Exercises 275

7.5 Exercises

Exercise 7.1: Analyze a Crank-Nicolson scheme for the
diffusion equation

Perform the analysis in Section 7.4 for a 1D diffusion equation ut = αuxx
discretized by the Crank-Nicolson scheme in time:

un+1 − un

∆t
= α

1
2

(
∂un+1

∂x2 + ∂un

∂x2

)
,

or written compactly with finite difference operators,

[Dtu = αDxDxu
t]n+ 1

2 .

(From a strict mathematical point of view, the un and un+1 in these
equations should be replaced by une and un+1

e to indicate that the unknown
is the exact solution of the PDE discretized in time, but not yet in space,
see Section 7.1.) Filename: fe_diffusion.

Variational forms for systems of
PDEs 8

Many mathematical models involve m+ 1 unknown functions governed
by a system of m + 1 differential equations. In abstract form we may
denote the unknowns by u(0), . . . , u(m) and write the governing equations
as

L0(u(0), . . . , u(m)) = 0,
...

Lm(u(0), . . . , u(m)) = 0,

where Li is some differential operator defining differential equation num-
ber i.

8.1 Variational forms

There are basically two ways of formulating a variational form for a
system of differential equations. The first method treats each equation
independently as a scalar equation, while the other method views the
total system as a vector equation with a vector function as unknown.

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

278 8 Variational forms for systems of PDEs

8.1.1 Sequence of scalar PDEs formulation

Let us start with the approach that treats one equation at a time. We
multiply equation number i by some test function v(i) ∈ V (i) and integrate
over the domain:

∫
Ω
L(0)(u(0), . . . , u(m))v(0) dx = 0, (8.1)

... (8.2)∫
Ω
L(m)(u(0), . . . , u(m))v(m) dx = 0 . (8.3)

Terms with second-order derivatives may be integrated by parts, with
Neumann conditions inserted in boundary integrals. Let

V (i) = span{ψ(i)
0 , . . . , ψ

(i)
Ni
},

such that

u(i) = B(i)(x) +
Ni∑
j=0

c
(i)
j ψ

(i)
j (x),

where B(i) is a boundary function to handle nonzero Dirichlet conditions.
Observe that different unknowns may live in different spaces with different
basis functions and numbers of degrees of freedom.

From them equations in the variational forms we can derivem coupled
systems of algebraic equations for the Πm

i=0Ni unknown coefficients c(i)
j ,

j = 0, . . . , Ni, i = 0, . . . ,m.

8.1.2 Vector PDE formulation

The alternative method for deriving a variational form for a system of
differential equations introduces a vector of unknown functions

u = (u(0), . . . , u(m)),

a vector of test functions

v = (v(0), . . . , v(m)),

with

8.2 A worked example 279

u,v ∈ V = V (0) × · · · × V (m) .

With nonzero Dirichlet conditions, we have a vectorB = (B(0), . . . , B(m))
with boundary functions and then it is u−B that lies in V , not u itself.

The governing system of differential equations is written

L(u) = 0,

where

L(u) = (L(0)(u), . . . ,L(m)(u)) .

The variational form is derived by taking the inner product of the vector
of equations and the test function vector:∫

Ω
L(u) · v = 0 ∀v ∈ V . (8.4)

Observe that (8.4) is one scalar equation. To derive systems of alge-
braic equations for the unknown coefficients in the expansions of the
unknown functions, one chooses m linearly independent v vectors to gen-
erate m independent variational forms from (8.4). The particular choice
v = (v(0), 0, . . . , 0) recovers (8.1), v = (0, . . . , 0, v(m)) recovers (8.3),
and v = (0, . . . , 0, v(i), 0, . . . , 0) recovers the variational form number i,∫
Ω L(i)v(i) dx = 0, in (8.1)-(8.3).

8.2 A worked example

We now consider a specific system of two partial differential equations in
two space dimensions:

µ∇2w = −β, (8.5)
κ∇2T = −µ||∇w||2 . (8.6)

The unknown functions w(x, y) and T (x, y) are defined in a domain Ω,
while µ, β, and κ are given constants. The norm in (8.6) is the standard
Euclidean norm:

||∇w||2 = ∇w · ∇w = w2
x + w2

y .

280 8 Variational forms for systems of PDEs

The boundary conditions associated with (8.5)-(8.6) are w = 0 on
∂Ω and T = T0 on ∂Ω. Each of the equations (8.5) and (8.6) needs one
condition at each point on the boundary.

The system (8.5)-(8.6) arises from fluid flow in a straight pipe, with the
z axis in the direction of the pipe. The domain Ω is a cross section of the
pipe, w is the velocity in the z direction, µ is the viscosity of the fluid, β
is the pressure gradient along the pipe, T is the temperature, and κ is the
heat conduction coefficient of the fluid. The equation (8.5) comes from
the Navier-Stokes equations, and (8.6) follows from the energy equation.
The term −µ||∇w||2 models heating of the fluid due to internal friction.

Observe that the system (8.5)-(8.6) has only a one-way coupling: T
depends on w, but w does not depend on T . Hence, we can solve (8.5)
with respect to w and then (8.6) with respect to T . Some may argue that
this is not a real system of PDEs, but just two scalar PDEs. Nevertheless,
the one-way coupling is convenient when comparing different variational
forms and different implementations.

8.3 Identical function spaces for the unknowns

Let us first apply the same function space V for w and T (or more
precisely, w ∈ V and T − T0 ∈ V). With

V = span{ψ0(x, y), . . . , ψN (x, y)},

we write

w =
N∑
j=0

c
(w)
j ψj , T = T0 +

N∑
j=0

c
(T)
j ψj . (8.7)

Note that w and T in (8.5)-(8.6) denote the exact solution of the PDEs,
while w and T in (8.7) are the discrete functions that approximate the
exact solution. It should be clear from the context whether a symbol
means the exact or approximate solution, but when we need both at the
same time, we use a subscript e to denote the exact solution.

8.3.1 Variational form of each individual PDE

Inserting the expansions (8.7) in the governing PDEs, results in a residual
in each equation,

8.3 Identical function spaces for the unknowns 281

Rw = µ∇2w + β, (8.8)
RT = κ∇2T + µ||∇w||2 . (8.9)

A Galerkin method demands Rw and RT do be orthogonal to V :

∫
Ω
Rwv dx = 0 ∀v ∈ V,∫

Ω
RT v dx = 0 ∀v ∈ V .

Because of the Dirichlet conditions, v = 0 on ∂Ω. We integrate the
Laplace terms by parts and note that the boundary terms vanish since
v = 0 on ∂Ω:

∫
Ω
µ∇w · ∇v dx =

∫
Ω
βv dx ∀v ∈ V, (8.10)∫

Ω
κ∇T · ∇v dx =

∫
Ω
µ∇w · ∇w v dx ∀v ∈ V . (8.11)

The equation Rw in (8.8) is linear in w, while the equation RT in (8.9)
is linear in T and nonlinear in w.

8.3.2 Compound scalar variational form

The alternative way of deriving the variational from is to introduce a
test vector function v ∈ V = V × V and take the inner product of v
and the residuals, integrated over the domain:∫

Ω
(Rw, RT) · v dx = 0 ∀v ∈ V .

With v = (v0, v1) we get∫
Ω

(Rwv0 +RT v1) dx = 0 ∀v ∈ V .

Integrating the Laplace terms by parts results in

282 8 Variational forms for systems of PDEs∫
Ω

(µ∇w ·∇v0 +κ∇T ·∇v1) dx =
∫
Ω

(βv0 +µ∇w ·∇w v1) dx, ∀v ∈ V .

(8.12)
Choosing v0 = v and v1 = 0 gives the variational form (8.10), while
v0 = 0 and v1 = v gives (8.11).

With the inner product notation, (p, q) =
∫
Ω pq dx, we can alternatively

write (8.10) and (8.11) as

(µ∇w,∇v) = (β, v) ∀v ∈ V,
(κ∇T,∇v) = (µ∇w · ∇w, v) ∀v ∈ V,

or since µ and κ are considered constant,

µ(∇w,∇v) = (β, v) ∀v ∈ V, (8.13)
κ(∇T,∇v) = µ(∇w · ∇w, v) ∀v ∈ V . (8.14)

Note that the left-hand side of (8.13) is again linear in w, the left-hand
side of (8.14) is linear in T and the nonlinearity of w appears in the
right-hand side of (8.14)

8.3.3 Decoupled linear systems

The linear systems governing the coefficients c(w)
j and c(T)

j , j = 0, . . . , N ,
are derived by inserting the expansions (8.7) in (8.10) and (8.11), and
choosing v = ψi for i = 0, . . . , N . The result becomes

N∑
j=0

A
(w)
i,j c

(w)
j = b

(w)
i , i = 0, . . . , N, (8.15)

N∑
j=0

A
(T)
i,j c

(T)
j = b

(T)
i , i = 0, . . . , N, (8.16)

A
(w)
i,j = µ(∇ψj ,∇ψi), (8.17)

b
(w)
i = (β, ψi), (8.18)

A
(T)
i,j = κ(∇ψj ,∇ψi), (8.19)

b
(T)
i = µ((

∑
j

c
(w)
j ∇ψj) · (

∑
k

c
(w)
k ∇ψk), ψi) . (8.20)

8.3 Identical function spaces for the unknowns 283

It can also be instructive to write the linear systems using matrices and
vectors. Define K as the matrix corresponding to the Laplace operator
∇2. That is, Ki,j = (∇ψj ,∇ψi). Let us introduce the vectors

b(w) = (b(w)
0 , . . . , b

(w)
N),

b(T) = (b(T)
0 , . . . , b

(T)
N),

c(w) = (c(w)
0 , . . . , c

(w)
N),

c(T) = (c(T)
0 , . . . , c

(T)
N) .

The system (8.15)-(8.16) can now be expressed in matrix-vector form as

µKc(w) = b(w), (8.21)
κKc(T) = b(T) . (8.22)

We can solve the first system for c(w), and then the right-hand side
b(T) is known such that we can solve the second system for c(T). Hence,
the decoupling of the unknowns w and T reduces the system of nonlinear
PDEs to two linear PDEs.

8.3.4 Coupled linear systems

Despite the fact that w can be computed first, without knowing T , we
shall now pretend that w and T enter a two-way coupling such that we
need to derive the algebraic equations as one system for all the unknowns
c

(w)
j and c(T)

j , j = 0, . . . , N . This system is nonlinear in c(w)
j because of the

∇w ·∇w product. To remove this nonlinearity, imagine that we introduce
an iteration method where we replace ∇w · ∇w by ∇w− · ∇w, w− being
the w computed in the previous iteration. Then the term ∇w− · ∇w is
linear in w since w− is known. The total linear system becomes

284 8 Variational forms for systems of PDEs

N∑
j=0

A
(w,w)
i,j c

(w)
j +

N∑
j=0

A
(w,T)
i,j c

(T)
j = b

(w)
i , i = 0, . . . , N, (8.23)

N∑
j=0

A
(T,w)
i,j c

(w)
j +

N∑
j=0

A
(T,T)
i,j c

(T)
j = b

(T)
i , i = 0, . . . , N, (8.24)

A
(w,w)
i,j = µ(∇ψj ,∇ψi), (8.25)

A
(w,T)
i,j = 0, (8.26)

b
(w)
i = (β, ψi), (8.27)

A
(w,T)
i,j = µ((∇w−) · ∇ψj), ψi), (8.28)

A
(T,T)
i,j = κ(∇ψj ,∇ψi), (8.29)

b
(T)
i = 0 . (8.30)

This system can alternatively be written in matrix-vector form as

µKc(w) = b(w), (8.31)
Lc(w) + κKc(T) = 0, (8.32)

with L as the matrix from the ∇w− · ∇ operator: Li,j = A
(w,T)
i,j . The

matrix K is Ki,j = A
(w,w)
i,j = A

(T,T)
i,j .

The matrix-vector equations are often conveniently written in block
form: (

µK 0
L κK

)(
c(w)

c(T)

)
=
(
b(w)

0

)
,

Note that in the general case where all unknowns enter all equations,
we have to solve the compound system (8.23)-(8.24) since then we cannot
utilize the special property that (8.15) does not involve T and can be
solved first.

When the viscosity depends on the temperature, the µ∇2w term
must be replaced by ∇ · (µ(T)∇w), and then T enters the equation
for w. Now we have a two-way coupling since both equations contain
w and T and therefore must be solved simultaneously. The equation
∇ · (µ(T)∇w) = −β is nonlinear, and if some iteration procedure is
invoked, where we use a previously computed T− in the viscosity (µ(T−)),

8.4 Different function spaces for the unknowns 285

the coefficient is known, and the equation involves only one unknown, w.
In that case we are back to the one-way coupled set of PDEs.

We may also formulate our PDE system as a vector equation. To
this end, we introduce the vector of unknowns u = (u(0), u(1)), where
u(0) = w and u(1) = T . We then have

∇2u =
(

−µ−1β

−κ−1µ∇u(0) · ∇u(0)

)
.

8.4 Different function spaces for the unknowns

It is easy to generalize the previous formulation to the case where
w ∈ V (w) and T ∈ V (T), where V (w) and V (T) can be different spaces
with different numbers of degrees of freedom. For example, we may use
quadratic basis functions for w and linear for T . Approximation of the
unknowns by different finite element spaces is known as mixed finite
element methods.

We write

V (w) = span{ψ(w)
0 , . . . , ψ

(w)
Nw
},

V (T) = span{ψ(T)
0 , . . . , ψ

(T)
NT
} .

The next step is to multiply (8.5) by a test function v(w) ∈ V (w) and
(8.6) by a v(T) ∈ V (T), integrate by parts and arrive at

∫
Ω
µ∇w · ∇v(w) dx =

∫
Ω
βv(w) dx ∀v(w) ∈ V (w), (8.33)∫

Ω
κ∇T · ∇v(T) dx =

∫
Ω
µ∇w · ∇w v(T) dx ∀v(T) ∈ V (T) . (8.34)

The compound scalar variational formulation applies a test vector
function v = (v(w), v(T)) and reads

∫
Ω

(µ∇w · ∇v(w) + κ∇T · ∇v(T)) dx =
∫
Ω

(βv(w) + µ∇w · ∇w v(T)) dx,
(8.35)

valid ∀v ∈ V = V (w) × V (T).

286 8 Variational forms for systems of PDEs

As earlier, we may decoupled the system in terms of two linear PDEs
as we did with (8.15)-(8.16) or linearize the coupled system by intro-
ducing the previous iterate w− as in (8.23)-(8.24). However, we need to
distinguish between ψ

(w)
i and ψ

(T)
i , and the range in the sums over j

must match the number of degrees of freedom in the spaces V (w) and
V (T). The formulas become

Nw∑
j=0

A
(w)
i,j c

(w)
j = b

(w)
i , i = 0, . . . , Nw, (8.36)

NT∑
j=0

A
(T)
i,j c

(T)
j = b

(T)
i , i = 0, . . . , NT , (8.37)

A
(w)
i,j = µ(∇ψ(w)

j ,∇ψ(w)
i), (8.38)

b
(w)
i = (β, ψ(w)

i), (8.39)

A
(T)
i,j = κ(∇ψ(T)

j ,∇ψ(T)
i), (8.40)

b
(T)
i = µ(

Nw∑
j=0

c
(w)
j ∇ψ

(w)
j) · (

Nw∑
k=0

c
(w)
k ∇ψ

(w)
k), ψ(T)

i) . (8.41)

In the case we formulate one compound linear system involving both
c

(w)
j , j = 0, . . . , Nw, and c(T)

j , j = 0, . . . , NT , (8.23)-(8.24) becomes

Nw∑
j=0

A
(w,w)
i,j c

(w)
j +

NT∑
j=0

A
(w,T)
i,j c

(T)
j = b

(w)
i , i = 0, . . . , Nw, (8.42)

Nw∑
j=0

A
(T,w)
i,j c

(w)
j +

NT∑
j=0

A
(T,T)
i,j c

(T)
j = b

(T)
i , i = 0, . . . , NT , (8.43)

A
(w,w)
i,j = µ(∇ψ(w)

j ,∇ψ(w)
i), (8.44)

A
(w,T)
i,j = 0, (8.45)

b
(w)
i = (β, ψ(w)

i), (8.46)

A
(w,T)
i,j = µ(∇w− · ∇ψ(w)

j), ψ(T)
i), (8.47)

A
(T,T)
i,j = κ(∇ψ(T)

j ,∇ψ(T)
i), (8.48)

b
(T)
i = 0 . (8.49)

8.5 Computations in 1D 287

Here, we have again performed a linearization by employing a previous
iterate w−. The corresponding block form(

µK(w) 0
L κK(T)

)(
c(w)

c(T)

)
=
(
b(w)

0

)
,

has square and rectangular block matrices: K(w) is Nw × Nw, K(T) is
NT ×NT , while L is NT ×Nw,

8.5 Computations in 1D

We can reduce the system (8.5)-(8.6) to one space dimension, which
corresponds to flow in a channel between two flat plates. Alternatively, one
may consider flow in a circular pipe, introduce cylindrical coordinates, and
utilize the radial symmetry to reduce the equations to a one-dimensional
problem in the radial coordinate. The former model becomes

µwxx = −β, (8.50)
κTxx = −µw2

x, (8.51)

while the model in the radial coordinate r reads

µ
1
r

d

dr

(
r
dw

dr

)
= −β, (8.52)

κ
1
r

d

dr

(
r
dT

dr

)
= −µ

(
dw

dr

)2
. (8.53)

The domain for (8.50)-(8.51) is Ω = [0, H], with boundary conditions
w(0) = w(H) = 0 and T (0) = T (H) = T0. For (8.52)-(8.53) the domain
is [0, R] (R being the radius of the pipe) and the boundary conditions
are du/dr = dT/dr = 0 for r = 0, u(R) = 0, and T (R) = T0.

The exact solutions, we and Te, to (8.50) and (8.51) are computed as

288 8 Variational forms for systems of PDEs

we,x = −
∫
β

µ
dx+ Cw,

we =
∫
we,x dx+Dw,

Te,x = −
∫
µw2

e,x dx+ CT ,

Te =
∫
Te,x dx+DT ,

where we determine the constants Cw, Dw, CT , and DT by the boundary
conditions w(0) = w(H) = 0 and T (0) = T (H) = T0. The calculations
may be performed in sympy as

import sympy as sym

x, mu, beta, k, H, C, D, T0 = sym.symbols("x mu beta k H C D T0")
wx = sym.integrate(-beta/mu, (x, 0, x)) + C
w = sym.integrate(wx, x) + D
s = sym.solve([w.subs(x, 0)-0, # x=0 condition

w.subs(x,H)-0], # x=H condition
[C, D]) # unknowns

w = w.subs(C, s[C]).subs(D, s[D])
w = sym.simplify(sym.expand(w))

Tx = sym.integrate(-mu*sym.diff(w,x)**2, x) + C
T = sym.integrate(Tx, x) + D
s = sym.solve([T.subs(x, 0)-T0, # x=0 condition

T.subs(x, H)-T0], # x=H condition
[C, D]) # unknowns

T = T.subs(C, s[C]).subs(D, s[D])
T = sym.simplify(sym.expand(T))

We find that the solutions are

we(x) = βx

2µ (H − x) ,

Te(x) = β2

µ

(
H3x

24 −
H2

8 x2 + H

6 x
3 − x4

12

)
+ T0 .

The figure 8.1 shows w computed by the finite element method using
the decoupled approach with P1 elements, that is; implementing (8.15).
The analytical solution we is a quadratic polynomial. The linear finite
elements result in a poor approximation on the coarse meshes, N = 2 and
N = 4, but the approximation improves fast and already at N = 8 the
approximation appears adequate. The figure 8.1 shows the approximation

8.5 Computations in 1D 289

of T and also here we see that the fourth order polynomial is poorly
approximated at coarse resolution, but that the approximation quickly
improves.

Fig. 8.1 The solution w of (8.50) with β = µ = 1 for different mesh resolutions.

The figure 8.2 shows T for different resolutions. The same tendency is
apparent although the coarse grid solutions are worse for T than for w.
The solutions at N = 16 and N = 32, however, appear almost identical.

Below we include the code used to solve this problem in FEniCS and
plot it using matplotlib.

def boundary(x):
return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS

from dolfin import *
import matplotlib.pyplot as plt

Ns = [2, 4, 8, 16, 32]
for N in Ns:

mesh = UnitIntervalMesh(N)
V = FunctionSpace(mesh, "Lagrange", 1)
u = TrialFunction(V)
v = TestFunction(V)

beta = Constant(1)
mu = Constant(1)

290 8 Variational forms for systems of PDEs

Fig. 8.2 The solution T of (8.51) for κ = H = 1.

bc = DirichletBC(V, Constant(0), boundary)
a = mu*inner(grad(u), grad(v))*dx
L = -beta*v*dx

w = Function(V)
solve(a == L, w, bc)

T0 = Constant(1)
kappa = Constant(1)
bc = DirichletBC(V, T0, boundary)
a = kappa*inner(grad(u), grad(v))*dx
L = -mu*inner(grad(w), grad(w))*v*dx

T = Function(V)
solve(a == L, T, bc)

x = V.tabulate_dof_coordinates()
plt.plot(x, T.vector().get_local())
plt.legend(["N=%d"%N for N in Ns], loc="upper left")

plt.show()

Most of the FEniCS code should be familiar to the reader, but we
remark that we use the function V.tabulate_dof_coordinates() to
obtain the coordinates of the nodal points. This is a general function

8.5 Computations in 1D 291

that works for any finite element implemented in FEniCS and also in a
parallel setting.

The calculations for (8.52) and (8.53) are similar. The sympy code

import sympy as sym

r, R, mu, beta, C, D, T0 = sym.symbols("r R mu beta C D T0")
rwr = sym.integrate(-(beta/mu)*r, r) + C
w = sym.integrate(rwr/r, r) + D
s = sym.solve([sym.diff(w,r).subs(r, 0)-0, # r=0 condition

w.subs(r,R)-0], # r=R condition
[C, D]) # unknowns

w = w.subs(C, s[C]).subs(D, s[D])
w = sym.simplify(sym.expand(w))

rTr = sym.integrate(-mu*sym.diff(w,r)**2*r, r) + C
T = sym.integrate(rTr/r, r) + D
s = sym.solve([sym.diff(T,r).subs(r, 0)-T0, # r=0 condition

T.subs(r, R)-T0], # r=R condition
[C, D]) # unknowns

T = T.subs(C, s[C]).subs(D, s[D])
T = sym.simplify(sym.expand(T))

and we obtain the solutions

w(r) = β
(
R2 − r2)

4µ ,

T (r) = 1
64µ

(
R4β2 + 64T0µ− β2r4

)
.

The radial solution corresponds to the analytical solution in 3D and
is very useful for the purpose of verifying the code of multi-physics flow
problems.

8.5.1 Another example in 1D

Consider the problem

−(au′)′ = 0, (8.54)
u(0) = 0, (8.55)
u(1) = 1 . (8.56)

For any scalar a (larger than 0), we may easily verify that the solution is
u(x) = x. In many applications, such as for example porous media flow
or heat conduction, the parameter a contains a jump that represents
the transition from one material to another. Hence, let us consider the

292 8 Variational forms for systems of PDEs

problem where a is on the following form

a(x) =
{

1 if x ≤ 1
2 ,

a0 if x > 1
2 .

Notice that for such an a(x), the equation (8.54) does not necessarily
make sense because we cannot differentiate a(x). Strictly speaking a′(x)
would be a Dirac’s delta function in x = 1

2 , that is; a
′(x) is ∞ at x = 1

2
and zero everywhere else.

Hand-calculations do however show that we may be able to compute
the solution. Integrating (8.54) yields the expression

−(au′) = C

A trick now is to divide by a(x) on both sides to obtain

−u′ = C

a

and since a is a piecewise constant

u(x) = C

a(x)x+D

The boundary conditions demand that u(0) = 0, which means that D = 0.
In order to obtain an expression for u(1) = 1 we note that u is a piecewise
linear function with u′ = C for x ∈ (0, 0.5) and u′ = C

a0
for x ∈ (0.5, 1).

We may therefore express u(1) in terms of u(0) plus the derivatives at the
midpoints of the two intervals, i.e., u(1) = u(0) + 1

2u
′(0.25) + 1

2u
′(0.75) =

0.5(C + C
a0

) = 1. In other words, C = 2a0
a0+1 and the analytical solution

becomes
ue(x) =

{
2a0
a0+1x for 0 < x ≤ 0.5

2
a0+1x+ a0−1

a0+1 for 0.5 < x ≤ 1 (8.57)

The variational problem derived from a standard Galerkin method
reads: Find u such that∫

Ω
au′v′ dx =

∫
Ω
fvdx+

∫
∂Ω
au′v ds

We observe that in this variational formulation, the discontinuity of a
does not cause any problem as the differentiation is moved from a (and
u′) to v by using integration by parts (or Green’s lemma). As earlier, to
include the boundary conditions, we may use a boundary function such

8.5 Computations in 1D 293

that
u(x) = B(x) +

∑
j∈Is

cjψj(x)

and further letting v = ψi(x), the corresponding linear system is∑
j Ai,jcj = bi with

Ai,j = (aψ′j , ψ′i) =
∫
Ω
a(x)ψ′j(x)ψ′i(x) dx,

bi = −
∫
Ω
aB′v′ dx+

∫
∂Ω
a
∂B′

∂n
v ds .

In FEniCS, the linear algebra approach is used and the boundary con-
ditions are inserted in the element matrix as described in Section 6.2.5.
The solution of the problem is shown in Figure 8.3 at different mesh reso-
lutions. The analytical solution in (8.57) is a piecewise polynomial, linear
for x in [0, 1

2) and (1
2 , 1] and it seems that the numerical strategy gives a

good approximation of the solution. The FEniCS program generating
the plot is

from fenics import *

class uExact(UserExpression):
def __init__(self, **kwargs):

super().__init__(degree=kwargs["degree"])
self.a0 = kwargs["a0"]
self.a = 1

def eval(self, value, x):
if x[0] < 0.5:

value[0] = (2.0*self.a0 / (self.a0 +1)) / self.a * x[0]
else:

value[0] = ((2.0*self.a0 / (self.a0 +1)) / self.a0) * x[0] \
+ (self.a0-1)/(self.a0+1)

class A(UserExpression):
def __init__(self, **kwargs):

super().__init__(degree=kwargs["degree"])
self.a0 = kwargs["a0"]

def eval(self, value, x):
value[0] = 1
if x[0] >= 0.5: value[0] = self.a0

class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary

p_bc = f = Expression("x[0]", degree=2)
Ns = [2, 8, 32]

294 8 Variational forms for systems of PDEs

a0 = 0.1
for N in Ns:

mesh = UnitIntervalMesh(N)
V = FunctionSpace(mesh, "CG", 1)
Q = FunctionSpace(mesh, "DG", 0)
u = TrialFunction(V)
v = TestFunction(V)
a_coeff = A(degree=2, a0=a0)
a = a_coeff*inner(grad(u), grad(v))*dx
f = Constant(0)
L = f*v*dx
bc = DirichletBC(V, p_bc, DirichletBoundary())
u = Function(V)
solve(a == L, u, bc)

plot solution on the various meshes
plt.plot(V.tabulate_dof_coordinates(), u.vector().get_local())

create plot for analytical solution, plot, save
u_exact = project(uExact(a0=a0, degree=1), V)
plt.plot(V.tabulate_dof_coordinates(), u_exact.vector().get_local())
legend = ["N=%d"%N for N in Ns]
legend.append("analytical solution")
plt.legend(legend, loc="upper left")
plt.savefig(’darcy_a1D.png’); plt.savefig(’darcy_a1D.pdf’)

Figure 8.3 shows the solution u. Clearly we have a good approximation
already on a mesh with just two elements as the solution is piecewise
linear as found in (8.57).

The flux au′ is often a quantity of interest. Because the flux involves
differentiation with respect to x we do not have an direct access to it
and have to compute it. A natural approach is to take the Galerkin
approximation, that is we seek a w ≈ au′ on the form w =

∑
j∈Is djψj

and require Galerkin orthogonality. In other words, we require that
w − au′ is orthogonal to {ψi}. This is done by solving the linear system∑
jMi,jdj = bi with

Mi,j = (aψj , ψi) =
∫
Ω
a(x)ψj(x)ψi(x) dx,

bi = (au′, ψi) =
∫
Ω
a(x)

∑
j

cjψ
′
j(x) dx .

Computing the flux by taking the Galerkin projection as described in
Section 4.7.1 is implemented in the project method in FEniCS and is
obtained as

aux = project(-a_coeff*u.dx(0), V)

8.5 Computations in 1D 295

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
N=2
N=8
N=32
analytical solution

Fig. 8.3 Solution of the Darcy problem with discontinuous coefficient for different number
of elements N .

As shown in Figure 8.4 this approach does not produce a good approxi-
mation of the flux. Moreover, the approximate solution does not seem to
improve close to the jump as the mesh is refined. The problem is that we
try to approximate a discontinuous function with a continuous basis and
this may often cause spurious oscillations. In this case, we may fix the
problem by alternative post-processing methods for calculating the flux.
For instance, we may project onto piecewise constant functions instead.
However, in general, we would still loose accuracy as the first order
derivative involved in the flux calculation lower the order of accuracy by
one.

An alternative method that makes the flux approximation w more
accurate than the underlying u is an equivalent form of (8.54) where the
flux is one of the unknowns. This formulation is usually called the mixed
formulation. The equations reads:

∂w

∂x
= 0, (8.58)

w = −a∂u
∂x

. (8.59)

296 8 Variational forms for systems of PDEs

0.0 0.2 0.4 0.6 0.8 1.0
0.40

0.35

0.30

0.25

0.20

0.15

0.10
N=2
N=8
N=32

Fig. 8.4 The corresponding flux au′ for the Darcy problem with discontinuous coefficient
for different number of elements N .

Equation (8.59) is Darcy’s law for a porous media. A straightforward
calculation shows that inserting (8.59) into (8.58) yields the equation
(8.54). We also note that we have replaced the second order differential
equation with a system of two first order differential equations.

It is common to swap the order of the equations and also divide
equation (8.59) by a. Then variational formulation of the problem, having
the two unknowns w and u and corresponding test functions v(w) and
v(u), becomes ∫

Ω

1
a
wv(w) + ∂u

∂x
v(w) dx = 0, (8.60)∫

Ω

∂w

∂x
v(u) dx = 0 . (8.61)

To obtain a suitable variation formulation we perform integration by
parts on the last term of (8.60) to obtain∫

Ω

∂u

∂x
v(w) dx = −

∫
Ω
u
∂v(w)

∂x
dx+

∫
∂Ω
uv(w) dx

8.5 Computations in 1D 297

Notice that the Dirichlet conditions of (8.54) becomes a Neumann con-
dition in this mixed formulation. Vice versa, a Neumann condition in
(8.54) becomes a Dirichlet condition in the mixed case.

To obtain a linear system of equation, let u =
∑
j∈Is cjψ

(u)
j , w =∑

j∈Is cjψ
(w)
j , v(u) = ψ

(u)
i , and v(w) = ψ

(w)
i . We obtain the following

system of linear equations

Ac =
[
A(w,w) A(w,u)

A(u,w) 0

] [
c(w)

c(u)

]
=
[
b(w)

b(u)

]
= b,

where

A
(w,w)
i,j =

∫
Ω

1
a(x)ψ

(w)
j (x)ψ(w)

i (x) dx i, j = 0 . . . N (w) − 1,

A
(w,u)
i,j = −

∫
Ω

∂

∂x
ψ

(w)
j (x)ψ(u)

i (x) dx i = 0 . . . N (w) − 1, j = 0, . . . N (u) − 1,

A
(u,w)
i,j = −A(w,u)

j,i ,

b
(w)
i =

∫
Ω
aB

∂

∂x
ψ

(w)
i)− [aBψ(w)

i]10,

b
(u)
i = (0, ψ(u)

i) = 0 .

In Figure 8.5 the solution u obtained by solving the of system (8.59)
using piecewise linear elements for w and piecewise constants for u.
Clearly, u converges towards the analytical solution as the mesh is
refined, although in a staggered way. In Figure 8.6 we display the flux
au′. The flux appears to be a constant as predicted by our analytical
solution (8.57) and in our case a0 = 0.1 which makes C = 2a0

a0+1 ≈ 0.18,
which is quite close to the estimate provided in Figure 8.6.

It is interesting to note that the standard Galerkin formulation of the
problem results in a perfect approximation of u, while the flux −au′ is
badly represented. On the other hand, for the mixed formulation, the flux
is well approximated but u is approximated only to first order yielding
a staircase approximation. These observations naturally suggest that
we should employ P1 approximation of both u and its flux. We should
then get a perfect approximation of both unknowns. This is however
not possible. The linear system we obtain with P1 elements for both
variables is singular.

This example shows that when we are solving systems of PDEs with
several unknowns, we can not choose the approximation arbitrary. The
polynomial spaces of the different unknowns have to be compatible and

298 8 Variational forms for systems of PDEs

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
N=2
N=8
N=32
analytical solution

Fig. 8.5 Solution of the mixed Darcy problem with discontinuous coefficient for different
number of elements N .

0.0 0.2 0.4 0.6 0.8 1.0
0.40

0.35

0.30

0.25

0.20

0.15

0.10
N=2
N=8
N=32

Fig. 8.6 The corresponding flux au′ for the mixed Darcy problem with discontinuous
coefficient for different number of elements N .

8.5 Computations in 1D 299

the accuracy of the different unknowns depend on each other. We will
not discuss the reasons for the need of compatibility here as it is rather
theoretical and beyond the scope of this book. Instead we refer the
interested reader to [7, 6, 5, 9].

The complete code for the mixed Darcy example is

for N in Ns:
mesh = UnitIntervalMesh(N)
P1 = FiniteElement("CG", mesh.ufl_cell(), 1)
P2 = FiniteElement("DG", mesh.ufl_cell(), 0)
P1xP2 = P1 * P2
W = FunctionSpace(mesh, P1xP2)
u, p = TrialFunctions(W)
v, q = TestFunctions(W)

f = Constant(0)
n = FacetNormal(mesh)
a_coeff = A(degree=1, a0=a0)

a = (1/a_coeff)*u*v*dx + u.dx(0)*q*dx - v.dx(0)*p*dx
L = f*q*dx - p_bc*v*n[0]*ds

up = Function(W)
solve(a == L, up)

u, p = up.split()

import numpy
a = numpy.array([0.0])
b = numpy.array([0.0])
xs = numpy.arange(0.0, 1.0, 0.001)
ps = numpy.arange(0.0, 1.0, 0.001)
for i in range(0,len(xs)):

a[0] = xs[i]
p.eval(b, a)
ps[i] = b

plt.plot(xs, ps)

CG1 = FunctionSpace(mesh, "CG", 1)
p_exact = project(uExact(a0=a0, degree=1), CG1)
p_exact4plot = numpy.array([p_exact(x) for x in xs])
plt.plot(xs, p_exact4plot)
legend = ["N=%d"%N for N in Ns]
legend.append("analytical solution")

plt.legend(legend, loc="upper left")
plt.savefig(’darcy_a1D_mx.png’); plt.savefig(’darcy_a1D_mx.pdf’);

Here, we remark that we in order to plot the discontinuous solution
properly we re-sampled the solution on a fine mesh. In general for

300 8 Variational forms for systems of PDEs

discontinuous elements one should be careful with the way the solution
is plotted. Interpolating into a continuous field may not be desirable.

8.6 Exercises

Problem 8.1: Estimate order of convergence for the Cooling
law

Consider the 1D Example of the fluid flow in a straight pipe coupled
to heat conduction in Section 8.5. The example demonstrated fast con-
vergence when using linear elements for both variables w and T . In this
exercise we quantify the order of convergence. That is, we expect that

‖w − we‖L2 ≤ Cwh
βw ,

‖T − Te‖L2 ≤ CTh
βT ,

for some Cw, CT , βw and βT . Assume therefore that

‖w − we‖L2 = Cwh
βw ,

‖T − Te‖L2 = CTh
βT ,

and estimate Cw, CT , βw and βT .

Problem 8.2: Estimate order of convergence for the Cooling
law

Repeat Exercise 8.1 with quadratic finite elements for both w and T .
Calculations to be continued...

Flexible implementations of
boundary conditions 9

One quickly gets the impression that variational forms can handle only
two types of boundary conditions: essential conditions where the unknown
is prescribed, and natural conditions where flux terms integrated by parts
allow specification of flux conditions. However, it is possible to treat
much more general boundary conditions by adding their weak form.
That is, one simply adds the variational formulation of some boundary
condition B(u) = 0:

∫
ΩB
B(u)v dx, where ΩB is some boundary, to the

variational formulation of the PDE problem. Or using the terminology
from Chapter 3: the residual of the boundary condition when the discrete
solution is inserted is added to the residual of the entire problem. The
present chapter shows underlying mathematical details.

9.1 Optimization with constraint

Suppose we have a function

f(x, y) = x2 + y2 .

and want to optimize its values, i.e., find minima and maxima. The
condition for an optimum is that the derivatives vanish in all directions,
which implies

n · ∇f = 0 ∀n ∈ R2,

which further implies

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

302 9 Flexible implementations of boundary conditions

∂f

∂x
= 0, ∂f

∂y
= 0 .

These two equations are in general nonlinear and can have many solutions,
one unique solution, or none. In our specific example, there is only one
solution: x = 0, y = 0.

Now we want to optimize f(x, y) under the constraint y = 2− x. This
means that only f values along the line y = 2− x are relevant, and we
can imagine we view f(x, y) along this line and want to find the optimum
value.

9.1.1 Elimination of variables

Our f is obviously a function of one variable along the line. Inserting
y = 2− x in f(x, y) eliminates y and leads to f as function of x alone:

f(x, y = 2− x) = 4− 4x+ 2x2 .

The condition for an optimum is

d

dx
(4− 4x+ 2x2) = −4 + 4x = 0,

so x = 1 and y = 2− x = 1.
In the general case we have a scalar function f(x), x = (x0, . . . , xm)

with n+ 1 constraints gi(x) = 0, i = 0, . . . , n. In theory, we could use the
constraints to express n+ 1 variables in terms of the remaining m− n
variables, but this is very seldom possible, because it requires us to solve
the gi = 0 symbolically with respect to n+ 1 different variables.

9.1.2 Lagrange multiplier method

When we cannot easily eliminate variables using the constraint(s), the
Lagrange multiplier method come to aid. Optimization of f(x, y) under
the constraint g(x, y) = 0 then consists in formulating the Lagrangian

`(x, y, λ) = f(x, y) + λg(x, y),

where λ is the Lagrange multiplier, which is unknown. The conditions
for an optimum is that

9.1 Optimization with constraint 303

∂`

∂x
= 0, ∂`

∂y
= 0, ∂`

∂λ
= 0 .

In our example, we have

`(x, y, λ) = x2 + y2 + λ(y − 2 + x),

leading to the conditions

2x+ λ = 0, 2y + λ = 0, y − 2 + x = 0 .

This is a system of three linear equations in three unknowns with the
solution

x = 1, y = 1, λ = 2 .

In the general case with optimizing f(x) subject to the constraints
gi(x) = 0, i = 0, . . . , n, the Lagrangian becomes

`(x,λ) = f(x) +
n∑
j=0

λjgj(x),

with x = (x0, . . . , xm) and λ = (λ0, . . . , λn). The conditions for an
optimum are

∂f

∂x
= 0, ∂f

∂λ
= 0 .,

where
∂f

∂x
= 0⇒ ∂f

∂xi
= 0, i = 0, . . . ,m .

Similarly, ∂f/∂λ = 0 leads to n+ 1 equations ∂f/∂λi = 0, i = 0, . . . , n.

9.1.3 Penalty method

Instead of incorporating the constraint exactly, as in the Lagrange mul-
tiplier method, the penalty method employs an approximation at the
benefit of avoiding the extra Lagrange multiplier as unknown. The idea
is to add the constraint squared, multiplied by a large prescribed number
λ, called the penalty parameter,

`λ(x, y) = f(x, y) + 1
2λ(y − 2 + x)2 .

304 9 Flexible implementations of boundary conditions

Note that λ is now a given (chosen) number. The `λ function is just a
function of two variables, so the optimum is found by solving

∂`λ
∂x

= 0, ∂`λ
∂y

= 0 .

Here we get

2x+ λ(y − 2 + x) = 0, 2y + λ(y − 2 + x) = 0 .

The solution becomes

x = y = 1
1− 1

2λ
−1 ,

which we see approaches the correct solution x = y = 1 as λ→∞.
The penalty method for optimization of a multi-variate function f(x)

with constraints gi(x) = 0, i = 0, . . . , n, can be formulated as optimiza-
tion of the unconstrained function

`λ(x) = f(x) + 1
2λ

n∑
j=0

(gi(x))2 .

Sometimes the symbol ε−1 is used for λ in the penalty method.

9.2 Optimization of functionals

The methods above for optimization of scalar functions of a finite number
of variables can be generalized to optimization of functionals (functions
of functions). We start with the specific example of optimizing

F (u) =
∫
Ω

||∇u||2 dx−
∫
Ω

fu dx−
∫

∂ΩN

gu ds, u ∈ V, (9.1)

where Ω ⊂ R2, and u and f are functions of x and y in Ω. The norm
||∇u||2 is defined as u2

x+u2
y, with ux denoting the derivative with respect

to x. The vector space V contains the relevant functions for this problem,
and more specifically, V is the Hilbert space H1

0 consisting of all functions
for which

∫
Ω

(u2 + ||∇u||2) dx is finite and u = 0 on ∂ΩD, which is some

part of the boundary ∂Ω of Ω. The remaining part of the boundary is
denoted by ∂ΩN (∂ΩN ∪ ∂ΩD = ∂Ω, ∂ΩN ∩ ∂ΩD = ∅), over which F (u)

9.2 Optimization of functionals 305

involves a line integral. Note that F is a mapping from any u ∈ V to a
real number in R.

9.2.1 Classical calculus of variations
Optimization of the functional F makes use of the machinery from varia-
tional calculus. The essence is to demand that the functional derivative
of F with respect to u is zero. Technically, this is carried out by writing
a general function ũ ∈ V as ũ = u + εv, where u is the exact solution
of the optimization problem, v is an arbitrary function in V , and ε is a
scalar parameter. The functional derivative in the direction of v (also
known as the Gateaux derivative) is defined as

δF

δu
= lim

ε→0

d

dε
F (u+ εv) . (9.2)

As an example, the functional derivative to the term
∫
Ω

fu dx in F (u)
is computed by finding

d

dε

∫
Ω

f · (u+ εv) dx =
∫
Ω

fv dx, (9.3)

and then let ε go to zero (not strictly needed in this case because the term
is linear in ε), which just results in

∫
Ω

fv dx. The functional derivative of
the other area integral becomes

d

dε

∫
Ω

((ux+εvx)2 +(uy+εvy)2) dx =
∫
Ω

(2(ux+εvx)vx+2(uv+εvy)vy) dx,

which leads to ∫
Ω

(uxvx + uyvy) dx =
∫
Ω

∇u · ∇v dx, (9.4)

as ε→ 0.
The functional derivative of the boundary term becomes

d

dε

∫
∂ΩN

g · (u+ εv) ds =
∫

∂ΩN

gv ds, (9.5)

for any ε. From (9.3)-(9.5) we then get the result

http://en.wikipedia.org/wiki/Variational_calculus
http://en.wikipedia.org/wiki/Variational_calculus
http://en.wikipedia.org/wiki/G%C3%A2teaux_derivative

306 9 Flexible implementations of boundary conditions

δF

δu
=
∫
Ω

∇u · ∇v dx−
∫
Ω

fv dx−
∫

∂ΩN

gv ds = 0 . (9.6)

Since v is arbitrary, this equation must hold ∀v ∈ V . Many will recognize
(9.6) as the variational formulation of a Poisson problem, which can be
directly discretized and solved by a finite element method.

Variational calculus goes one more step and derives a partial differential
equation problem from (9.6), known as the Euler-Lagrange equation
corresponding to optimization of F (u). To find the differential equation,
one manipulates the variational form (9.6) such that no derivatives of v
appear and the equation (9.6) can be written as

∫
Ω

Lv dx = 0, ∀v ∈, from
which it follows that L = 0 is the differential equation.

Performing integration by parts of the term
∫
Ω

∇u · ∇v dx in (9.6)
moves the derivatives of v over to u:

∫
Ω

∇u · ∇v dx = −
∫
Ω

(∇2u)v dx+
∫
∂Ω

∂u

∂n
v ds

= −
∫
Ω

(∇2u)v dx+
∫

∂ΩD

∂u

∂n
v ds+

∫
∂ΩN

∂u

∂n
v ds

= −
∫
Ω

(∇2u)v dx+
∫

∂ΩD

∂u

∂n
0 ds+

∫
∂ΩN

∂u

∂n
v ds

= −
∫
Ω

(∇2u)v dx+
∫

∂ΩN

∂u

∂n
v ds .

Using this rewrite in (9.6) gives

−
∫
Ω

(∇2u)v dx+
∫

∂ΩN

∂u

∂n
v ds−

∫
Ω

fv dx−
∫

∂ΩN

gv ds,

which equals ∫
Ω

(∇2u+ f)v dx+
∫

∂ΩN

(
∂u

∂n
− g

)
v ds = 0 .

This is to hold for any v ∈ V , which means that the integrands must
vanish, and we get the famous Poisson problem

http://en.wikipedia.org/wiki/Euler-Lagrange_equation

9.2 Optimization of functionals 307

−∇2u = f, (x, y) ∈ Ω,
u = 0, (x, y) ∈ ∂ΩD,

∂u

∂n
= g, (x, y) ∈ ∂ΩN .

Some remarks.
• Specifying u on some part of the boundary (∂ΩD) implies a

specification of ∂u/∂n on the rest of the boundary. In particular,
if such a specification is not explicitly done, the mathematics
above implies ∂u/∂n = 0 on ∂ΩN .

• If a non-zero condition on u = u0 on ∂ΩD is wanted, one can
write u = u0 + ū and express the functional F in terms of ū,
which obviously must vanish on ∂ΩD since u is the exact solution
that is u0 on ∂ΩD.

• The boundary conditions on u must be implemented in the
space V , i.e., we can only work with functions that must be zero
on ∂ΩD (so-called essential boundary condition). The condition
involving ∂u/∂n is easier to implement since it is just a matter
of computing a line integral.

• The solution is not unique if ∂ΩD = ∅ (any solution u+ const is
also a solution).

9.2.2 Penalty and Nitsche’s methods for optimization with
constraints

The attention is now on optimization of a functional F (u) with a given
constraint that u = uN on ∂ΩN . That is, we want to set Dirichlet
conditions weakly on the Neumann part of the boundary. We could, of
course, just extend the Dirichlet condition on u in the previous set-up
by saying that ∂ΩD is the complete boundary ∂Ω and that u takes on
the values of 0 and uN at the different parts of the boundary. However,
this also implies that all the functions in V must vanish on the entire
boundary. We want to relax this condition (and by relaxing it, we will
derive a method that can be used for many other types of boundary
conditions!). The goal is, therefore, to incorporate u = uN on ∂ΩN

308 9 Flexible implementations of boundary conditions

without demanding anything from the functions in V . We can achieve
this by enforcing the constraint∫

∂ΩN

|u− uN | ds = 0 . (9.7)

However, this constraint is cumbersome to implement. Note that the
absolute sign here is needed as in general there are many functions u
such that

∫
∂ΩN

u− uN ds = 0.

A penalty method. The idea is to add a penalization term 1
2λ(u−uN)2,

integrated over the boundary ∂ΩN , to the functional F (u), just as we
do in the penalty method (the factor 1

2 can be incorporated in λ, but we
keep it because it makes the final result look nicer).

The condition ∂u/∂n = g on ∂ΩN is no longer relevant, so we replace
the g by the unknown ∂u/∂n in the boundary integral term in (9.1). The
new functional becomes

F (u) =
∫
Ω

||∇u||2 dx−
∫
Ω

fu dx− 1
2

∫
∂ΩN

λ(u− uN)2 ds, u ∈ V, (9.8)

In F (ũ), insert ũ = u+ εv, differentiate with respect to ε, and let ε→ 0.
The result becomes

δF

δu
=
∫
Ω

∇u · ∇v dx−
∫
Ω

fv dx−
∫

∂ΩN

λ(u− uN)v ds = 0 . (9.9)

We may then ask ourselves which equation and which boundary con-
ditions is solved for when minimizing this functional. We therefore do
integration by parts in order to obtain the strong formulation. We re-
member the Gauss-Green’s lemma:∫

Ω

(∇2u)v dx = −
∫
Ω

∇u · ∇v dx+
∫

∂ΩN

∂u

∂n
v ds .

Hence, from (9.9) and using Gauss-Green’s lemma, we obtain:

δF

δu
=
∫
Ω

−∆uv dx−
∫
Ω

fv dx−
∫

∂ΩN

λ(u− uN)v ds+
∫
∂Ω

∂u

∂n
v ds = 0 .

(9.10)
In other words, our problem on strong form reads:

9.2 Optimization of functionals 309

−∆u = f, x ∈ Ω,
∂u

∂n
= λ(u− uN), x ∈ ∂ΩN .

This means that the minimizing problem corresponds to solving a problem
with Robin conditions.

Nitsche’s method consists of changing the above functional in order
to obtain the true Dirichlet conditions. As we saw in the previous cal-
culations, integration by parts introduced the term ∂u

∂n in the strong
formulations. Hence, a natural idea is to subtract such a term from the
functional.

F (u) =
∫
Ω

||∇u||2 dx−
∫
Ω

fu dx−
∫

∂ΩN

∂u

∂n
(u−uN) ds+ 1

2

∫
∂ΩN

λ(u−uN)2 ds .

(9.11)
In F (ũ), insert ũ = u+ εv, differentiate with respect to ε, and let ε→ 0.
The result becomes

δF

δu
=
∫
Ω

∇u · ∇v dx−
∫
Ω

fv dx

−
∫

∂ΩN

∂u

∂n
v ds+

∫
∂ΩN

∂v

∂n
(u− uN) ds+

∫
∂ΩN

λ(u− uN)v ds = 0 .

If we again perform integration by parts to obtain the strong form
and boundary conditions, we get

δF

δu
=
∫
Ω

−∆uv dx−
∫
Ω

fv dx−
∫

∂ΩN

∂v

∂n
(u− uN) ds+

∫
∂ΩN

λ(u− uN)v ds = 0 .

In other words, our problem on strong form reads:

−∆u = f, x ∈ Ω,
u = uN , x ∈ ∂ΩN .

and the condition u = uN is enforced both in terms of the penalty
parameter λ by the term

∫
∂ΩN

λ(u− uN)v ds and in terms of equations

involving the derivatives of the test function v,
∫

∂ΩN

∂v
∂n(u− uN) ds.

310 9 Flexible implementations of boundary conditions

One may question why two terms are needed in order to enforce the
boundary condition. In general this may not be needed and the penalty
term may sometimes be dropped. However, the advantage of including
the penalty term is that it keeps the functional convex and the bilinear
form becomes both positive and symmetric.

We summarize the final formulation in terms of a weak formulation:

a(u, v) =
∫
Ω

∇u · ∇v dx−
∫

∂ΩN

∂u

∂n
v ds−

∫
∂ΩN

∂v

∂n
u ds+

∫
∂ΩN

λuv ds,

(9.12)

L(v) =
∫
Ω

fv dx−
∫

∂ΩN

∂v

∂n
uN ds+

∫
∂ΩN

λuNv ds . (9.13)

9.2.3 Lagrange multiplier method for optimization with
constraints

We consider the same problem as in Section 9.2.2, but this time we want
to apply a Lagrange multiplier method so we can solve for a multiplier
function rather than specifying a large number for a penalty parameter
and getting an approximate result.

The functional to be optimized reads

F (u) =
∫
Ω

||∇u||2 dx−
∫
Ω

fu dx−
∫

∂ΩN

uN ds+
∫

∂ΩN

λ(u−uN) ds, u ∈ V .

Here we have two unknown functions: u ∈ V in Ω and λ ∈ Q on ∂ΩN .
The optimization criteria are

δF

δu
= 0, δF

δλ
= 0 .

We write ũ = u+ εuv and λ̃ = λ+ ελp, where v is an arbitrary function
in V and p is an arbitrary function in Q. Notice that V is here a usual
function space with functions defined on Ω, while on the other hand is a
function space defined only on the surface ΩN . We insert the expressions
for ũ and λ̃ for u and λ and compute

9.2 Optimization of functionals 311

δF

δu
= lim

εu→0

dF

dεu
=
∫
Ω

∇u · ∇v dx−
∫
Ω

fv dx−
∫

∂ΩN

∂u

∂n
v ds+

∫
∂ΩN

λ(u− uN) ds = 0,

δF

δλ
= lim

ελ→0

dF

dελ
=
∫

∂ΩN

(u− uN)p ds = 0 .

These equations can be written as a linear system of equations: Find
u, λ ∈ V ×Q such that

a(u, v) + b(λ, v) = Lu(v),
b(u, p) = Lλ(λ),

for all test functions v ∈ V and p ∈ Q and

a(u, v) =
∫
Ω

∇u · ∇v dx−
∫

∂ΩN

∂u

∂n
v ds,

b(λ, v) =
∫

∂ΩN

λv ds,

Lu(v) =
∫
Ω

fv dx,

Lλ(λ) =
∫

∂ΩN

uNλ ds.

Letting u =
∑
j∈Is cjψ

(u)
j , λ =

∑
j∈Is cjψ

(λ)
j , v = ψ

(v)
i , and p = ψ

(p)
i ,

we obtain the following system of linear equations

Ac =
[
A(u,u) A(λ,u)

A(u,λ) 0

] [
c(u)

c(λ)

]
=
[
b(u)

b(λ)

]
= b,

where

A
(u,u)
i,j = a(ψ(u)

j , ψ
(u)
i),

A
(u,λ)
i,j = b(ψ(u)

j , ψ
(λ)
i),

A
(λ,u)
i,j = A

(u,λ)
j,i ,

b
(u)
i = Lu(ψ(u)

i),

b
(λ)
i = Lλ(ψ(λ)

i), .

312 9 Flexible implementations of boundary conditions

9.2.4 Example: 1D problem

Nitsche method. Let us do hand calculations to demonstrate weakly
enforced boundary conditions via a Nitsche’s method and via the La-
grange multiplier method. We study the simple problem −u′′ = 2 on
[0, 1], c.f. (9.12)-(9.13), with boundary conditions u(0) = 0 and u(1) = 1.

a(u, v) =
∫ 1

0
ux vx dx− [uxv]10 − [vxu]10 + [λuv]10

L(v) =
∫ 1

0
fv dx− [vxuN]10 + [λuNv]10 .

A uniform mesh with nodes xi = i∆x is introduced, numbered from
left to right: i = 0, . . . , Nx. The approximate value of u at xi is denoted
by ci, and in general the approximation to u is

∑Nx
i=0 ϕi(x)ci.

The elements at the boundaries needs special attention. Let us consider
the element 0 defined on [0, h]. The basis functions are ϕ0(x) = 1− x/h
and ϕ1(x) = x/h. Hence, ϕ0|x=0 = 1, ϕ′0|x=0 = −1/h, ϕ1|x=0 = 0, and
ϕ′1|x=0 = 1/h. Therefore, for element 0 we obtain the element matrix

A
(0)
0,0 = λ+ 3

h
,

A
(0)
0,1 = −2

h
,

A
(0)
1,0 = −2

h
,

A
(0)
1,1 = 1

h
.

The interior elements (e = 1 . . . Ne − 2) result in the following element
matrices

A
(e)
0,0 = 1

h
, A

(e)
0,1 = −1

h
,

A
(e)
1,0 = −1

h
, A

(e)
1,1 = 1

h
.

While the element at the boundary x = 1 result in a element matrix
similar to A0 except that 0 and 1 are swapped. The calculations are
straightforward in sympy

import sympy as sym
x, h, lam = sym.symbols("x h \lambda")
basis = [1 - x/h, x/h]

9.2 Optimization of functionals 313

for i in range(len(basis)):
phi_i = basis[i]
for j in range(len(basis)):

phi_j = basis[j]
a = sym.integrate(sym.diff(phi_i, x)*sym.diff(phi_j, x), (x, 0, h))
a -= (sym.diff(phi_i, x)*phi_j).subs(x,0)
a -= (sym.diff(phi_j, x)*phi_i).subs(x,0)
a += (lam*phi_j*phi_i).subs(x,0)

In the symmetric variant of Nitsche’s method that we have presented
here, there is a need for a positive penalty parameter λ in order for the
method to work. A natural question is therefore how sensitive the results
are to this penalty parameter. The following code implements Nitsche’s
method in FEniCS and tests various penalty parameters.

import matplotlib.pyplot as plt
from dolfin import *

mesh = UnitIntervalMesh(100)
V = FunctionSpace(mesh, "Lagrange", 1)
u = TrialFunction(V)
v = TestFunction(V)

lams = [1.001, 1.01, 1.1, 2, 10, 100]
for lam in lams:

lam = Constant(lam)
h = CellDiameter(mesh)
n = FacetNormal(mesh)
f = Expression("-12*pow(x[0], 2)", degree=2)
u0 = Expression("pow(x[0],4)", degree=4)

a = dot(grad(v), grad(u))*dx \
- dot(grad(v), u*n)*ds \
- dot(v*n, grad(u))*ds \
+ (lam/h)*v*u*ds

L = v*f*dx - u0*dot(grad(v), n)*ds + (lam/h)*u0*v*ds

U = Function(V)
solve(a == L, U)

plt.plot(V.tabulate_dof_coordinates(), U.vector().get_local())

plt.legend(["lam=%4.3f" %lam for lam in lams], loc=2)
plt.show()

Figure 9.1 displays the results obtained by running the above script.
As we see in Figure 9.1 and the zoom in Figure 9.2, Nitsche’s method is
not very sensitive to the value of the penalty parameter as long as it is
above a certain threshold. In our 1D example, the threshold seems to be
1/h. Setting the parameter to 1/h or lower makes the solution blow up

314 9 Flexible implementations of boundary conditions

and there are some artifacts when setting the parameter very close to
1/h but we see that 2/h, 10/h and 100/h gives produce visually identical
solutions. This is generally, the case with Nitsche’s method although the
threshold may depend on the application.

Fig. 9.1 Solution of the Poisson problem using Nitsche’s method for various penalty
parameters.

Lagrange multiplier method. For the Lagrange multiplier method we
need a function space Q defined on the boundary of the domain. In 1D
with Ω = (0, 1) the boundary is x = 0 and x = 1. Hence, Q can be
spanned by two basis functions λ0 and λ1. These functions should be
such that λ0 = 1 for x = 0 and zero everywhere else, while λ1 = 1 for
x = 1 and zero everywhere else. Hence, we may use the following function

λ(x) = λ0ϕ0(x) + λNxϕNx(x) .

9.2.5 Example: adding a constraint in a Neumann problem

The Poisson Neumann problem reads:

9.2 Optimization of functionals 315

Fig. 9.2 A zoom towards the right boundary of the figure in 9.1.

−∆u = f, x ∈ Ω ,

∂u

∂n
= 0, x ∈ ∂Ω ,

It is a singular problem with a one-dimensional kernel. To see this, we
remark that if u is a solution to the problem then û = u+C, where C is
any number, is also a solution since −∆û = −∆u−∆C = −∆u = f and
∂û
∂n = ∂u

∂n + ∂C
∂n = ∂u

∂n = 0. As the PDE is singular, also the corresponding
finite element matrix will be singular and this frequently (but not always)
cause problems when solving the linear system.

There are two main remedies for this problem 1) to add an equation
that fixates the solution in one point to the linear system, i.e., set u(x) = 0
in some point x either at the boundary or in the interior and 2) to enforce
that

∫
Ω u dx = 0 by using a Lagrange multiplier. The first method is the

most used method as it is easy to implement. The method often works
well but it is not a bullet-proof procedure, as we will illustrate.

The following code implements the Poisson Neumann problem in
FEniCS and fixates the solution in one point.

from dolfin import *

def boundary(x, on_boundary):

316 9 Flexible implementations of boundary conditions

if near(x[0],0.3) and near(x[1],0): return True
return False

mesh = UnitSquareMesh(10,10)
V = FunctionSpace(mesh, "Lagrange", 1)
u = TrialFunction(V)
v = TestFunction(V)

n = FacetNormal(mesh)
f = Expression("pow(3.14,2)*cos(3.14*x[0])+1", degree=4)
ue = Expression("cos(3.14*x[0])-1", degree=4)
du = Expression(["3.14*sin(3.14*x[0])", "0"], degree=4)

a = dot(grad(v), grad(u))*dx
L = v*f*dx + inner(du,n)*v*ds

point_condition = DirichletBC(V, ue, boundary, "pointwise")
u = Function(V, name="u")
solve(a == L, u, point_condition)

We remark that we fixate the solution in one point here by using
DirichletBC where we specify pointwise application and further that
we in this example know that (0.3, 0) is a vertex in the mesh.

Fig. 9.3 The exact solution of the Poisson Neumann problem.

Figure 9.3 displays the exact solution the Poisson problem while
Figure 9.4 shows the resulting solution of the problem implemented in

9.2 Optimization of functionals 317

Fig. 9.4 The computed solution of the Poisson Neumann problem with u being fixated
at (0.3, 0).

the FEniCS code listed above. Clearly, the numerical solution is wrong
and our approach of fixating the solution in (0.3,0) has destroyed the
solution in large parts of the domain. In our case the problem is however
easily fixed by ensuring that the true solution u and right-hand side f
satisfy

∫
Ω u dx = 0 and

∫
Ω f dx = 0, respectively, and that the fixation

is compatible with this. While ensuring compatibility is quite easy for
scalar PDE problems, it may be more difficult for systems of PDEs where
determining the appropriate conditions is more involved.

A more general strategy is to remove the kernel by a Lagrange multi-
plier, requiring that

∫
Ω u dx = 0. The resulting equations can be written

as a linear system of equations: Find u, λ ∈ V × R such that

a(u, v) + b(v, c) = Lu(v),
b(u, d) = Lc(d),

for all test functions v ∈ V and d ∈ R and

318 9 Flexible implementations of boundary conditions

a(u, v) =
∫
Ω

∇u · ∇v dx

b(v, c) =
∫
Ω

cv dx,

Lu(v) =
∫
Ω

fv dx,

Lc(d) = 0.

Letting u =
∑
j∈Is cjψ

(u)
j , v = ψ

(v)
i , and c, d be two arbitrary constants,

we obtain the following system of linear equations

Ac =
[
A(u,u) A(c,u)

A(u,c) 0

] [
c(u)

c

]
=
[
b(u)

0

]
= b,

where

A
(u,u)
i,j = a(ψ(u)

j , ψ
(u)
i),

A
(u,c)
i,j = b(ψ(u)

j , c),

A
(c,u)
i,j = A

(u,c)
j,i ,

b
(u)
i = Lu(ψ(u)

i) .

The corresponding code in FEniCS resembles the mathematical prob-
lem:

from dolfin import *

mesh = UnitSquareMesh(10,10)
L = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
R = FiniteElement("R", mesh.ufl_cell(), 0)
W = FunctionSpace(mesh, L*R)

(u,c) = TrialFunction(W)
(v,d) = TestFunction(W)

n = FacetNormal(mesh)

f = Expression("pow(3.14,2)*cos(3.14*x[0])+1", degree=4)
ue = Expression("cos(3.14*x[0])-1", degree=4)
du = Expression(["3.14*sin(3.14*x[0])", "0"], degree=4)

a = dot(grad(v), grad(u))*dx + c*v*dx + d*u*dx
L = v*f*dx + inner(du,n)*v*ds

9.2 Optimization of functionals 319

w = Function(W)
solve(a == L, w)
(u,c) = w.split()

The solution produced by running this script is visually identical to
the exact solution.

Nonlinear problems 10

10.1 Introduction of basic concepts

10.1.1 Linear versus nonlinear equations

Algebraic equations. A linear, scalar, algebraic equation in x has the
form

ax+ b = 0,

for arbitrary real constants a and b. The unknown is a number x. All
other algebraic equations, e.g., x2 +ax+ b = 0, are nonlinear. The typical
feature in a nonlinear algebraic equation is that the unknown appears
in products with itself, like x2 or in functions that are infinite sums of
products, like ex = 1 + x+ 1

2x
2 + 1

3!x
3 + · · · .

We know how to solve a linear algebraic equation, x = −b/a, but
there are no general closed formulas for finding the exact solutions of
nonlinear algebraic equations, except for very special cases (quadratic
equations constitute a primary example). A nonlinear algebraic equation
may have no solution, one solution, or many solutions. The tools for
solving nonlinear algebraic equations are iterative methods, where we
construct a series of linear equations, which we know how to solve, and
hope that the solutions of the linear equations converge to a solution of
the nonlinear equation we want to solve. Typical methods for nonlinear
algebraic equation equations are Newton’s method, the Bisection method,
and the Secant method.

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

322 10 Nonlinear problems

Differential equations. The unknown in a differential equation is a
function and not a number. In a linear differential equation, all terms
involving the unknown function are linear in the unknown function or its
derivatives. Linear here means that the unknown function, or a derivative
of it, is multiplied by a number or a known function. All other differential
equations are non-linear.

The easiest way to see if an equation is nonlinear, is to spot nonlinear
terms where the unknown function or its derivatives are multiplied by
each other. For example, in

u′(t) = −a(t)u(t) + b(t),

the terms involving the unknown function u are linear: u′ contains the
derivative of the unknown function multiplied by unity, and au contains
the unknown function multiplied by a known function. However,

u′(t) = u(t)(1− u(t)),

is nonlinear because of the term −u2 where the unknown function is
multiplied by itself. Also

∂u

∂t
+ u

∂u

∂x
= 0,

is nonlinear because of the term uux where the unknown function appears
in a product with its derivative. (Note here that we use different notations
for derivatives: u′ or du/dt for a function u(t) of one variable, ∂u∂t or ut
for a function of more than one variable.)

Another example of a nonlinear equation is

u′′ + sin(u) = 0,

because sin(u) contains products of u, which becomes clear if we expand
the function in a Taylor series:

sin(u) = u− 1
3u

3 + . . .

Mathematical proof of linearity

10.1 Introduction of basic concepts 323

To really prove mathematically that some differential equation in an
unknown u is linear, show for each term T (u) that with u = au1+bu2
for constants a and b,

T (au1 + bu2) = aT (u1) + bT (u2) .

For example, the term T (u) = (sin2 t)u′(t) is linear because

T (au1 + bu2) = (sin2 t)(au1(t) + bu2(t))′

= a(sin2 t)u′1(t) + b(sin2 t)u′2(t)
= aT (u1) + bT (u2) .

However, T (u) = sin u is nonlinear because

T (au1 + bu2) = sin(au1 + bu2) 6= a sin u1 + b sin u2 .

10.1.2 A simple model problem

A series of forthcoming examples will explain how to tackle nonlinear
differential equations with various techniques. We start with the (scaled)
logistic equation as model problem:

u′(t) = u(t)(1− u(t)) . (10.1)

This is a nonlinear ordinary differential equation (ODE) which will be
solved by different strategies in the following. Depending on the chosen
time discretization of (10.1), the mathematical problem to be solved at
every time level will either be a linear algebraic equation or a nonlinear
algebraic equation. In the former case, the time discretization method
transforms the nonlinear ODE into linear subproblems at each time
level, and the solution is straightforward to find since linear algebraic
equations are easy to solve. However, when the time discretization leads
to nonlinear algebraic equations, we cannot (except in very rare cases)
solve these without turning to approximate, iterative solution methods.

The next subsections introduce various methods for solving nonlinear
differential equations, using (10.1) as model. We shall go through the
following set of cases:

324 10 Nonlinear problems

• explicit time discretization methods (with no need to solve nonlinear
algebraic equations)

• implicit Backward Euler time discretization, leading to nonlinear
algebraic equations solved by
– an exact analytical technique
– Picard iteration based on manual linearization
– a single Picard step
– Newton’s method

• implicit Crank-Nicolson time discretization and linearization via a
geometric mean formula

Thereafter, we compare the performance of the various approaches. De-
spite the simplicity of (10.1), the conclusions reveal typical features of
the various methods in much more complicated nonlinear PDE problems.

10.1.3 Linearization by explicit time discretization

Time discretization methods are divided into explicit and implicit meth-
ods. Explicit methods lead to a closed-form formula for finding new values
of the unknowns, while implicit methods give a linear or nonlinear system
of equations that couples (all) the unknowns at a new time level. Here
we shall demonstrate that explicit methods may constitute an efficient
way to deal with nonlinear differential equations.

The Forward Euler method is an explicit method. When applied to
(10.1), sampled at t = tn, it results in

un+1 − un

∆t
= un(1− un),

which is a linear algebraic equation for the unknown value un+1 that we
can easily solve:

un+1 = un +∆tun(1− un) .

The nonlinearity in the original equation poses in this case no difficulty
in the discrete algebraic equation. Any other explicit scheme in time
will also give only linear algebraic equations to solve. For example, a
typical 2nd-order Runge-Kutta method for (10.1) leads to the following
formulas:

10.1 Introduction of basic concepts 325

u∗ = un +∆tun(1− un),

un+1 = un +∆t
1
2 (un(1− un) + u∗(1− u∗))) .

The first step is linear in the unknown u∗. Then u∗ is known in the next
step, which is linear in the unknown un+1 . For this scheme we have an
explicit formula for the unknown and the scheme is therefore called an
explicit scheme.

10.1.4 Exact solution of nonlinear algebraic equations

Switching to a Backward Euler scheme for (10.1),

un − un−1

∆t
= un(1− un), (10.2)

results in a nonlinear algebraic equation for the unknown value un. The
equation is of quadratic type:

∆t(un)2 + (1−∆t)un − un−1 = 0,

and may be solved exactly by the well-known formula for such equations.
Before we do so, however, we will introduce a shorter, and often cleaner,
notation for nonlinear algebraic equations at a given time level. The
notation is inspired by the natural notation (i.e., variable names) used
in a program, especially in more advanced partial differential equation
problems. The unknown in the algebraic equation is denoted by u, while
u(1) is the value of the unknown at the previous time level (in general, u(`)

is the value of the unknown ` levels back in time). The notation will be
frequently used in later sections. What is meant by u should be evident
from the context: u may be 1) the exact solution of the ODE/PDE
problem, 2) the numerical approximation to the exact solution, or 3) the
unknown solution at a certain time level.

The quadratic equation for the unknown un in (10.2) can, with the
new notation, be written

F (u) = ∆tu2 + (1−∆t)u− u(1) = 0 . (10.3)

The solution is readily found to be

u = 1
2∆t

(
−1 +∆t±

√
(1−∆t)2 − 4∆tu(1)

)
. (10.4)

326 10 Nonlinear problems

Now we encounter a fundamental challenge with nonlinear algebraic
equations: the equation may have more than one solution. How do we
pick the right solution? This is in general a hard problem. In the present
simple case, however, we can analyze the roots mathematically and
provide an answer. The idea is to expand the roots in a series in ∆t
and truncate after the linear term since the Backward Euler scheme will
introduce an error proportional to ∆t anyway. Using sympy we find the
following Taylor series expansions of the roots:

>>> import sympy as sym
>>> dt, u_1, u = sym.symbols(’dt u_1 u’)
>>> r1, r2 = sym.solve(dt*u**2 + (1-dt)*u - u_1, u) # find roots
>>> r1
(dt - sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> r2
(dt + sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> print(r1.series(dt, 0, 2)) # 2 terms in dt, around dt=0
-1/dt + 1 - u_1 + dt*(u_1**2 - u_1) + O(dt**2)
>>> print(r2.series(dt, 0, 2))
u_1 + dt*(-u_1**2 + u_1) + O(dt**2)

We see that the r1 root, corresponding to a minus sign in front of the
square root in (10.4), behaves as 1/∆t and will therefore blow up as
∆t→ 0! Since we know that u takes on finite values, actually it is less
than or equal to 1, only the r2 root is of relevance in this case: as ∆t→ 0,
u→ u(1), which is the expected result.

For those who are not well experienced with approximating mathemat-
ical formulas by series expansion, an alternative method of investigation
is simply to compute the limits of the two roots as ∆t→ 0 and see if a
limit unreasonable:

>>> print(r1.limit(dt, 0))
-oo
>>> print(r2.limit(dt, 0))
u_1

10.1.5 Linearization

When the time integration of an ODE results in a nonlinear algebraic
equation, we must normally find its solution by defining a sequence of
linear equations and hope that the solutions of these linear equations con-
verge to the desired solution of the nonlinear algebraic equation. Usually,
this means solving the linear equation repeatedly in an iterative fashion.

10.1 Introduction of basic concepts 327

Alternatively, the nonlinear equation can sometimes be approximated by
one linear equation, and consequently there is no need for iteration.

Constructing a linear equation from a nonlinear one requires lineariza-
tion of each nonlinear term. This can be done manually as in Picard
iteration, or fully algorithmically as in Newton’s method. Examples will
best illustrate how to linearize nonlinear problems.

10.1.6 Picard iteration

Let us write (10.3) in a more compact form

F (u) = au2 + bu+ c = 0,

with a = ∆t, b = 1 − ∆t, and c = −u(1). Let u− be an available
approximation of the unknown u.

Then we can linearize the term u2 simply by writing u−u. The resulting
equation, F̂ (u) = 0, is now linear and hence easy to solve:

F (u) ≈ F̂ (u) = au−u+ bu+ c = 0 .

Since the equation F̂ = 0 is only approximate, the solution u does not
equal the exact solution ue of the exact equation F (ue) = 0, but we can
hope that u is closer to ue than u− is, and hence it makes sense to repeat
the procedure, i.e., set u− = u and solve F̂ (u) = 0 again. There is no
guarantee that u is closer to ue than u−, but this approach has proven
to be effective in a wide range of applications.

The idea of turning a nonlinear equation into a linear one by using an
approximation u− of u in the nonlinear terms is a widely used approach
that goes under many names: fixed-point iteration, the method of succes-
sive substitutions, nonlinear Richardson iteration, and Picard iteration.
We will stick to the latter name.

Picard iteration for solving the nonlinear equation arising from the
Backward Euler discretization of the logistic equation can be written as

u = − c

au− + b
, u− ← u .

The ← symbols means assignment (we set u− equal to the value of u).
The iteration is started with the value of the unknown at the previous
time level: u− = u(1).

328 10 Nonlinear problems

Some prefer an explicit iteration counter as superscript in the mathe-
matical notation. Let uk be the computed approximation to the solution
in iteration k. In iteration k + 1 we want to solve

aukuk+1 + buk+1 + c = 0 ⇒ uk+1 = − c

auk + b
, k = 0, 1, . . .

Since we need to perform the iteration at every time level, the time level
counter is often also included:

aun,kun,k+1+bun,k+1−un−1 = 0 ⇒ un,k+1 = un−1

aun,k + b
, k = 0, 1, . . . ,

with the start value un,0 = un−1 and the final converged value un = un,k

for sufficiently large k.
However, we will normally apply a mathematical notation in our final

formulas that is as close as possible to what we aim to write in a computer
code and then it becomes natural to use u and u− instead of uk+1 and
uk or un,k+1 and un,k.
Stopping criteria. The iteration method can typically be terminated
when the change in the solution is smaller than a tolerance εu:

|u− u−| ≤ εu,

or when the residual in the equation is sufficiently small (< εr),

|F (u)| = |au2 + bu+ c| < εr .

A single Picard iteration. Instead of iterating until a stopping criterion
is fulfilled, one may iterate a specific number of times. Just one Picard
iteration is popular as this corresponds to the intuitive idea of approx-
imating a nonlinear term like (un)2 by un−1un. This follows from the
linearization u−un and the initial choice of u− = un−1 at time level tn. In
other words, a single Picard iteration corresponds to using the solution
at the previous time level to linearize nonlinear terms. The resulting
discretization becomes (using proper values for a, b, and c)

un − un−1

∆t
= un(1− un−1), (10.5)

which is a linear algebraic equation in the unknown un, making it easy
to solve for un without any need for any alternative notation.

10.1 Introduction of basic concepts 329

We shall later refer to the strategy of taking one Picard step, or
equivalently, linearizing terms with use of the solution at the previous
time step, as the Picard1 method. It is a widely used approach in science
and technology, but with some limitations if ∆t is not sufficiently small
(as will be illustrated later).

Notice
Equation (10.5) does not correspond to a “pure” finite difference
method where the equation is sampled at a point and derivatives
replaced by differences (because the un−1 term on the right-hand
side must then be un). The best interpretation of the scheme (10.5)
is a Backward Euler difference combined with a single (perhaps
insufficient) Picard iteration at each time level, with the value at
the previous time level as start for the Picard iteration.

10.1.7 Linearization by a geometric mean

We consider now a Crank-Nicolson discretization of (10.1). This means
that the time derivative is approximated by a centered difference,

[Dtu = u(1− u)]n+ 1
2 ,

written out as

un+1 − un

∆t
= un+ 1

2 − (un+ 1
2)2 . (10.6)

The first term un+ 1
2 is normally approximated by an arithmetic mean,

un+ 1
2 ≈ 1

2(un + un+1),

such that the scheme involves the unknown function only at the time
levels where we actually compute it. The same arithmetic mean applied
to the second term gives

(un+ 1
2)2 ≈ 1

4(un + un+1)2,

which is nonlinear in the unknown un+1. However, using a geometric
mean for (un+ 1

2)2 is a way of linearizing the nonlinear term in (10.6):

330 10 Nonlinear problems

(un+ 1
2)2 ≈ unun+1 .

Using an arithmetic mean on the linear un+ 1
2 term in (10.6) and a

geometric mean for the second term, results in a linearized equation for
the unknown un+1:

un+1 − un

∆t
= 1

2(un + un+1)− unun+1,

which can readily be solved:

un+1 =
1 + 1

2∆t

1 +∆tun − 1
2∆t

un .

This scheme can be coded directly, and since there is no nonlinear
algebraic equation to iterate over, we skip the simplified notation with u
for un+1 and u(1) for un. The technique with using a geometric average
is an example of transforming a nonlinear algebraic equation to a linear
one, without any need for iterations.

The geometric mean approximation is often very effective for lineariz-
ing quadratic nonlinearities. Both the arithmetic and geometric mean
approximations have truncation errors of order ∆t2 and are therefore
compatible with the truncation error O(∆t2) of the centered difference
approximation for u′ in the Crank-Nicolson method.

Applying the operator notation for the means and finite differences,
the linearized Crank-Nicolson scheme for the logistic equation can be
compactly expressed as

[Dtu = ut + u2t,g]n+ 1
2 .

Remark
If we use an arithmetic instead of a geometric mean for the nonlinear
term in (10.6), we end up with a nonlinear term (un+1)2. This term
can be linearized as u−un+1 in a Picard iteration approach and in
particular as unun+1 in a Picard1 iteration approach. The latter
gives a scheme almost identical to the one arising from a geometric
mean (the difference in un+1 being 1

4∆tu
n(un+1 − un) ≈ 1

4∆t
2u′u,

i.e., a difference of size ∆t2).

10.1 Introduction of basic concepts 331

10.1.8 Newton’s method

The Backward Euler scheme (10.2) for the logistic equation leads to a
nonlinear algebraic equation (10.3). Now we write any nonlinear algebraic
equation in the general and compact form

F (u) = 0 .

Newton’s method linearizes this equation by approximating F (u) by its
Taylor series expansion around a computed value u− and keeping only
the linear part:

F (u) = F (u−) + F ′(u−)(u− u−) + 1
2F
′′(u−)(u− u−)2 + · · ·

≈ F (u−) + F ′(u−)(u− u−) = F̂ (u) .

The linear equation F̂ (u) = 0 has the solution

u = u− − F (u−)
F ′(u−) .

Expressed with an iteration index in the unknown, Newton’s method
takes on the more familiar mathematical form

uk+1 = uk − F (uk)
F ′(uk) , k = 0, 1, . . .

When the method converges, it can be shown that the error in iteration
k + 1 of Newton’s method is proportional to the square of the error in
iteration k, a result referred to as quadratic convergence. This means that
for small errors the method converges very fast, and in particular much
faster than Picard iteration and other iteration methods. (The proof of
this result is found in most textbooks on numerical analysis.) However,
the quadratic convergence appears only if uk is sufficiently close to the
solution. Further away from the solution the method can easily converge
very slowly or diverge. The reader is encouraged to do Exercise 10.3 to
get a better understanding for the behavior of the method.

Application of Newton’s method to the logistic equation discretized
by the Backward Euler method is straightforward as we have

F (u) = au2 + bu+ c, a = ∆t, b = 1−∆t, c = −u(1),

and then

332 10 Nonlinear problems

F ′(u) = 2au+ b .

The iteration method becomes

u = u− + a(u−)2 + bu− + c

2au− + b
, u− ← u . (10.7)

At each time level, we start the iteration by setting u− = u(1). Stopping
criteria as listed for the Picard iteration can be used also for Newton’s
method.

An alternative mathematical form, where we write out a, b, and c, and
use a time level counter n and an iteration counter k, takes the form

un,k+1 = un,k+∆t(un,k)2 + (1−∆t)un,k − un−1

2∆tun,k + 1−∆t , un,0 = un−1, (10.8)

for k = 0, 1, A program implementation is much closer to (10.7)
than to (10.8), but the latter is better aligned with the established
mathematical notation used in the literature.

10.1.9 Relaxation

One iteration in Newton’s method or Picard iteration consists of solving a
linear problem F̂ (u) = 0. Sometimes convergence problems arise because
the new solution u of F̂ (u) = 0 is “too far away” from the previously
computed solution u−. A remedy is to introduce a relaxation, meaning
that we first solve F̂ (u∗) = 0 for a suggested value u∗ and then we take u
as a weighted mean of what we had, u−, and what our linearized equation
F̂ = 0 suggests, u∗:

u = ωu∗ + (1− ω)u− .

The parameter ω is known as a relaxation parameter, and a choice ω < 1
may prevent divergent iterations.

Relaxation in Newton’s method can be directly incorporated in the
basic iteration formula:

u = u− − ω F (u−)
F ′(u−) . (10.9)

10.1 Introduction of basic concepts 333

10.1.10 Implementation and experiments
The program logistic.py contains implementations of all the methods
described above. Below is an extract of the file showing how the Picard and
Newton methods are implemented for a Backward Euler discretization
of the logistic equation.

def BE_logistic(u0, dt, Nt, choice=’Picard’,
eps_r=1E-3, omega=1, max_iter=1000):

if choice == ’Picard1’:
choice = ’Picard’
max_iter = 1

u = np.zeros(Nt+1)
iterations = []
u[0] = u0
for n in range(1, Nt+1):

a = dt
b = 1 - dt
c = -u[n-1]

if choice == ’Picard’:

def F(u):
return a*u**2 + b*u + c

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = omega*(-c/(a*u_ + b)) + (1-omega)*u_
k += 1

u[n] = u_
iterations.append(k)

elif choice == ’Newton’:

def F(u):
return a*u**2 + b*u + c

def dF(u):
return 2*a*u + b

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = u_ - F(u_)/dF(u_)
k += 1

u[n] = u_
iterations.append(k)

return u, iterations

The Crank-Nicolson method utilizing a linearization based on the
geometric mean gives a simpler algorithm:

http://tinyurl.com/znpudbt/logistic.py

334 10 Nonlinear problems

def CN_logistic(u0, dt, Nt):
u = np.zeros(Nt+1)
u[0] = u0
for n in range(0, Nt):

u[n+1] = (1 + 0.5*dt)/(1 + dt*u[n] - 0.5*dt)*u[n]
return u

We may run experiments with the model problem (10.1) and the
different strategies for dealing with nonlinearities as described above. For
a quite coarse time resolution, ∆t = 0.9, use of a tolerance εr = 0.05
in the stopping criterion introduces an iteration error, especially in the
Picard iterations, that is visibly much larger than the time discretization
error due to a large ∆t. This is illustrated by comparing the upper
two plots in Figure 10.1. The one to the right has a stricter tolerance
ε = 10−3, which leads to all the curves involving backward Euler, using
iterative solution by either Picard or Newton iterations, to be on top
of each other (and no changes can be visually observed by reducing
εr further). The reason why Newton’s method does much better than
Picard iteration in the upper left plot is that Newton’s method with one
step comes far below the εr tolerance, while the Picard iteration needs
on average 7 iterations to bring the residual down to εr = 10−1, which
gives insufficient accuracy in the solution of the nonlinear equation. It is
obvious that the Picard1 method gives significant errors in addition to
the time discretization unless the time step is as small as in the lower
right plot.

The BE exact curve corresponds to using the exact solution of the
quadratic equation at each time level, so this curve is only affected by the
Backward Euler time discretization. The CN gm curve corresponds to
the theoretically more accurate Crank-Nicolson discretization, combined
with a geometric mean for linearization. Visually, this curve appears
more accurate in all the plots, especially if we take the plot in the lower
right with a small ∆t and an appropriately small εr value as the reference
curve.

When it comes to the need for iterations, Figure 10.2 displays the
number of iterations required at each time level for Newton’s method
and Picard iteration. The smaller ∆t is, the better starting value we
have for the iteration, and the faster the convergence is. With ∆t = 0.9
Picard iteration requires on average 32 iterations per time step for the
stricter convergence criterion, but this number is dramatically reduced
as ∆t is reduced.

However, introducing relaxation and a parameter ω = 0.8 immediately
reduces the average of 32 to 7, indicating that for the large ∆t = 0.9,

10.1 Introduction of basic concepts 335

Picard iteration takes too long steps. An approximately optimal value for
ω in this case is 0.5, which results in an average of only 2 iterations! An
even more dramatic impact of ω appears when ∆t = 1: Picard iteration
does not convergence in 1000 iterations, but ω = 0.5 again brings the
average number of iterations down to 2.

0 1 2 3 4 5 6 7 8 9
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

dt=0.9, eps=5E-02

FE
BE exact
BE Picard
BE Picard1
BE Newton
CN gm

0 1 2 3 4 5 6 7 8 9
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

dt=0.9, eps=1E-03

FE
BE exact
BE Picard
BE Picard1
BE Newton
CN gm

0 1 2 3 4 5 6 7 8 9
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

dt=0.45, eps=1E-03

FE
BE exact
BE Picard
BE Picard1
BE Newton
CN gm

0 1 2 3 4 5 6 7 8 9
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

dt=0.09, eps=1E-04

FE
BE exact
BE Picard
BE Picard1
BE Newton
CN gm

Fig. 10.1 Impact of solution strategy and time step length on the solution.

10.1.11 Generalization to a general nonlinear ODE

Let us see how the various methods in the previous sections can be
applied to the more generic model

u′ = f(u, t), (10.10)

where f is a nonlinear function of u.

Explicit time discretization. Explicit ODE methods like the Forward
Euler scheme, various Runge-Kutta methods, Adams-Bashforth methods

336 10 Nonlinear problems

2 4 6 8 10
Time level

0

2

4

6

8

10

12

No
 o

f i
te

ra
tio

ns

dt=0.9, eps=5E-02

Picard
Newton

2 4 6 8 10
Time level

0

5

10

15

20

25

30

35

40

No
 o

f i
te

ra
tio

ns

dt=0.9, eps=1E-03

Picard
Newton

5 10 15 20
Time level

0

1

2

3

4

5

6

No
 o

f i
te

ra
tio

ns

dt=0.45, eps=1E-03

Picard
Newton

20 40 60 80 100
Time level

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
 o

f i
te

ra
tio

ns

dt=0.09, eps=1E-04

Picard
Newton

Fig. 10.2 Comparison of the number of iterations at various time levels for Picard and
Newton iteration.

all evaluate f at time levels where u is already computed, so nonlinearities
in f do not pose any difficulties.

Backward Euler discretization. Approximating u′ by a backward dif-
ference leads to a Backward Euler scheme, which can be written as

F (un) = un −∆t f(un, tn)− un−1 = 0,

or alternatively

F (u) = u−∆t f(u, tn)− u(1) = 0 .

A simple Picard iteration, not knowing anything about the nonlinear
structure of f , must approximate f(u, tn) by f(u−, tn):

F̂ (u) = u−∆t f(u−, tn)− u(1) .

The iteration starts with u− = u(1) and proceeds with repeating

10.1 Introduction of basic concepts 337

u∗ = ∆t f(u−, tn) + u(1), u = ωu∗ + (1− ω)u−, u− ← u,

until a stopping criterion is fulfilled.

Explicit vs implicit treatment of nonlinear terms

Evaluating f for a known u− is referred to as explicit treatment of f ,
while if f(u, t) has some structure, say f(u, t) = u3, parts of f can
involve the unknown u, as in the manual linearization like (u−)2u,
and then the treatment of f is “more implicit” and “less explicit”.
This terminology is inspired by time discretization of u′ = f(u, t),
where evaluating f for known u values gives explicit formulas for
the unknown and hence explicit schemes, while treating f or parts
of f implicitly, meaning that equations must be solved in terms
of the unknown, makes f contribute to the unknown terms in the
equation at the new time level.

Explicit treatment of f usually means stricter conditions on ∆t
to achieve stability of time discretization schemes. The same applies
to iteration techniques for nonlinear algebraic equations: the “less”
we linearize f (i.e., the more we keep of u in the original formula),
the faster the convergence may be.

We may say that f(u, t) = u3 is treated explicitly if we evaluate
f as (u−)3, semi or partially implicit if we linearize as (u−)2u
and fully implicit if we represent f by u3. (Of course, the fully
implicit representation will require further linearization, but with
f(u, t) = u2 a fully implicit treatment is possible if the resulting
quadratic equation is solved with a formula.)

For the ODE u′ = −u3 with f(u, t) = −u3 and coarse time
resolution ∆t = 0.4, Picard iteration with (u−)2u requires 8 itera-
tions with εr = 10−3 for the first time step, while (u−)3 leads to 22
iterations. After about 10 time steps both approaches are down to
about 2 iterations per time step, but this example shows a potential
of treating f more implicitly.

A trick to treat f implicitly in Picard iteration is to evaluate it as
f(u−, t)u/u−. For a polynomial f , f(u, t) = um, this corresponds to
(u−)mu/u− = (u−)m−1u. Sometimes this more implicit treatment
has no effect, as with f(u, t) = exp(−u) and f(u, t) = ln(1 + u),
but with f(u, t) = sin(2(u + 1)), the f(u−, t)u/u− trick leads to
7, 9, and 11 iterations during the first three steps, while f(u−, t)

338 10 Nonlinear problems

demands 17, 21, and 20 iterations. (Experiments can be done with
the code ODE_Picard_tricks.py.)

Newton’s method applied to a Backward Euler discretization of u′ =
f(u, t) requires the computation of the derivative

F ′(u) = 1−∆t∂f
∂u

(u, tn) .

Starting with the solution at the previous time level, u− = u(1), we can
just use the standard formula

u = u− − ω F (u−)
F ′(u−) = u− − ωu

− −∆t f(u−, tn)− u(1)

1−∆t ∂∂uf(u−, tn)
. (10.11)

Crank-Nicolson discretization. The standard Crank-Nicolson scheme
with arithmetic mean approximation of f takes the form

un+1 − un

∆t
= 1

2(f(un+1, tn+1) + f(un, tn)) .

We can write the scheme as a nonlinear algebraic equation

F (u) = u− u(1) −∆t12f(u, tn+1)−∆t12f(u(1), tn) = 0 . (10.12)

A Picard iteration scheme must in general employ the linearization

F̂ (u) = u− u(1) −∆t12f(u−, tn+1)−∆t12f(u(1), tn),

while Newton’s method can apply the general formula (10.11) with F (u)
given in (10.12) and

F ′(u) = 1− 1
2∆t

∂f

∂u
(u, tn+1) .

10.1.12 Systems of ODEs

We may write a system of ODEs

http://tinyurl.com/znpudbt/ODE_Picard_tricks.py

10.1 Introduction of basic concepts 339

d

dt
u0(t) = f0(u0(t), u1(t), . . . , uN (t), t),

d

dt
u1(t) = f1(u0(t), u1(t), . . . , uN (t), t),

...
d

dt
um(t) = fm(u0(t), u1(t), . . . , uN (t), t),

as

u′ = f(u, t), u(0) = U0, (10.13)

if we interpret u as a vector u = (u0(t), u1(t), . . . , uN (t)) and f as a
vector function with components (f0(u, t), f1(u, t), . . . , fN (u, t)).

Most solution methods for scalar ODEs, including the Forward and
Backward Euler schemes and the Crank-Nicolson method, generalize
in a straightforward way to systems of ODEs simply by using vector
arithmetics instead of scalar arithmetics, which corresponds to applying
the scalar scheme to each component of the system. For example, here is
a backward difference scheme applied to each component,

un0 − un−1
0

∆t
= f0(un, tn),

un1 − un−1
1

∆t
= f1(un, tn),
...

unN − un−1
N

∆t
= fN (un, tn),

which can be written more compactly in vector form as

un − un−1

∆t
= f(un, tn) .

This is a system of algebraic equations,

un −∆t f(un, tn)− un−1 = 0,

or written out

340 10 Nonlinear problems

un0 −∆t f0(un, tn)− un−1
0 = 0,

...
unN −∆t fN (un, tn)− un−1

N = 0 .

Example. We shall address the 2× 2 ODE system for oscillations of a
pendulum subject to gravity and air drag. The system can be written as

ω̇ = − sin θ − βω|ω|, (10.14)
θ̇ = ω, (10.15)

where β is a dimensionless parameter (this is the scaled, dimensionless
version of the original, physical model). The unknown components of the
system are the angle θ(t) and the angular velocity ω(t). We introduce
u0 = ω and u1 = θ, which leads to

u′0 = f0(u, t) = − sin u1 − βu0|u0|,
u′1 = f1(u, t) = u0 .

A Crank-Nicolson scheme reads

un+1
0 − un0
∆t

= − sin un+ 1
2

1 − βun+ 1
2

0 |un+ 1
2

0 |

≈ − sin
(1

2(un+1
1 + un1)

)
− β 1

4(un+1
0 + un0)|un+1

0 + un0 |,

(10.16)
un+1

1 − un1
∆t

= u
n+ 1

2
0 ≈ 1

2(un+1
0 + un0) . (10.17)

This is a coupled system of two nonlinear algebraic equations in two
unknowns un+1

0 and un+1
1 .

Using the notation u0 and u1 for the unknowns un+1
0 and un+1

1 in
this system, writing u

(1)
0 and u

(1)
1 for the previous values un0 and un1 ,

multiplying by ∆t and moving the terms to the left-hand sides, gives

10.2 Systems of nonlinear algebraic equations 341

u0 − u(1)
0 +∆t sin

(1
2(u1 + u

(1)
1)
)

+ 1
4∆tβ(u0 + u

(1)
0)|u0 + u

(1)
0 | = 0,

(10.18)

u1 − u(1)
1 −

1
2∆t(u0 + u

(1)
0) = 0 .

(10.19)

Obviously, we have a need for solving systems of nonlinear algebraic
equations, which is the topic of the next section.

10.2 Systems of nonlinear algebraic equations

Implicit time discretization methods for a system of ODEs, or a PDE,
lead to systems of nonlinear algebraic equations, written compactly as

F (u) = 0,

where u is a vector of unknowns u = (u0, . . . , uN), and F is a vector
function: F = (F0, . . . , FN). The system at the end of Section 10.1.12 fits
this notation with N = 2, F0(u) given by the left-hand side of (10.18),
while F1(u) is the left-hand side of (10.19).

Sometimes the equation system has a special structure because of the
underlying problem, e.g.,

A(u)u = b(u),

with A(u) as an (N + 1)× (N + 1) matrix function of u and b as a vector
function: b = (b0, . . . , bN).

We shall next explain how Picard iteration and Newton’s method can
be applied to systems like F (u) = 0 and A(u)u = b(u). The exposition
has a focus on ideas and practical computations. More theoretical con-
siderations, including quite general results on convergence properties of
these methods, can be found in Kelley [14].

10.2.1 Picard iteration

We cannot apply Picard iteration to nonlinear equations unless there is
some special structure. For the commonly arising case A(u)u = b(u) we
can linearize the product A(u)u to A(u−)u and b(u) as b(u−). That is,

342 10 Nonlinear problems

we use the most previously computed approximation in A and b to arrive
at a linear system for u:

A(u−)u = b(u−) .

A relaxed iteration takes the form

A(u−)u∗ = b(u−), u = ωu∗ + (1− ω)u− .

In other words, we solve a system of nonlinear algebraic equations as a
sequence of linear systems.

Algorithm for relaxed Picard iteration

Given A(u)u = b(u) and an initial guess u−, iterate until conver-
gence:

1. solve A(u−)u∗ = b(u−) with respect to u∗
2. u = ωu∗ + (1− ω)u−
3. u− ← u

“Until convergence” means that the iteration is stopped when the
change in the unknown, ||u − u−||, or the residual ||A(u)u − b||, is
sufficiently small, see Section 10.2.3 for more details.

10.2.2 Newton’s method
The natural starting point for Newton’s method is the general nonlinear
vector equation F (u) = 0. As for a scalar equation, the idea is to approx-
imate F around a known value u− by a linear function F̂ , calculated
from the first two terms of a Taylor expansion of F . In the multi-variate
case these two terms become

F (u−) + J(u−) · (u− u−),

where J is the Jacobian of F , defined by

Ji,j = ∂Fi
∂uj

.

So, the original nonlinear system is approximated by

10.2 Systems of nonlinear algebraic equations 343

F̂ (u) = F (u−) + J(u−) · (u− u−) = 0,

which is linear in u and can be solved in a two-step procedure: first
solve Jδu = −F (u−) with respect to the vector δu and then update
u = u− + δu. A relaxation parameter can easily be incorporated:

u = ω(u− + δu) + (1− ω)u− = u− + ωδu .

Algorithm for Newton’s method

Given F (u) = 0 and an initial guess u−, iterate until convergence:

1. solve Jδu = −F (u−) with respect to δu
2. u = u− + ωδu
3. u− ← u

For the special system with structure A(u)u = b(u),

Fi =
∑
k

Ai,k(u)uk − bi(u),

one gets

Ji,j =
∑
k

∂Ai,k
∂uj

uk + Ai,j −
∂bi
∂uj

. (10.20)

We realize that the Jacobian needed in Newton’s method consists of
A(u−) as in the Picard iteration plus two additional terms arising from
the differentiation. Using the notation A′(u) for ∂A/∂u (a quantity with
three indices: ∂Ai,k/∂uj), and b′(u) for ∂b/∂u (a quantity with two
indices: ∂bi/∂uj), we can write the linear system to be solved as

(A+ A′u+ b′)δu = −Au+ b,

or

(A(u−) + A′(u−)u− + b′(u−))δu = −A(u−)u− + b(u−) .

Rearranging the terms demonstrates the difference from the system
solved in each Picard iteration:

344 10 Nonlinear problems

A(u−)(u− + δu)− b(u−)︸ ︷︷ ︸
Picard system

+ γ(A′(u−)u− + b′(u−))δu = 0 .

Here we have inserted a parameter γ such that γ = 0 gives the Picard
system and γ = 1 gives the Newton system. Such a parameter can be
handy in software to easily switch between the methods.

Combined algorithm for Picard and Newton iteration

Given A(u), b(u), and an initial guess u−, iterate until convergence:

1. solve (A+ γ(A′(u−)u− + b′(u−)))δu = −A(u−)u− + b(u−) with
respect to δu

2. u = u− + ωδu
3. u− ← u

γ = 1 gives a Newton method while γ = 0 corresponds to Picard
iteration.

10.2.3 Stopping criteria

Let || · || be the standard Euclidean vector norm. Four termination criteria
are much in use:

• Absolute change in solution: ||u− u−|| ≤ εu
• Relative change in solution: ||u − u−|| ≤ εu||u0||, where u0 denotes

the start value of u− in the iteration
• Absolute residual: ||F (u)|| ≤ εr
• Relative residual: ||F (u)|| ≤ εr||F (u0)||

To prevent divergent iterations to run forever, one terminates the itera-
tions when the current number of iterations k exceeds a maximum value
kmax.

For stationary problems, the relative criteria are most used since they
are not sensitive to the characteristic size of u, which may depend on
the underlying mesh and its resolution. Nevertheless, the relative criteria
can be misleading when the initial start value for the iteration is very
close to the solution, since an unnecessary reduction in the error measure
is enforced. For time-dependent problems, if the time-step is small then

10.2 Systems of nonlinear algebraic equations 345

the previous solution may be a quite good guess for the unknown and in
such cases the absolute criteria works better. It is common to combine
the absolute and relative measures of the size of the residual, as in

||F (u)|| ≤ εrr||F (u0)||+ εra, (10.21)

where εrr is the tolerance in the relative criterion and εra is the tolerance
in the absolute criterion. With a very good initial guess for the iteration
(typically the solution of a differential equation at the previous time
level), the term ||F (u0)|| is small and εra is the dominating tolerance.
Otherwise, εrr||F (u0)|| and the relative criterion dominates.

With the change in solution as criterion we can formulate a combined
absolute and relative measure of the change in the solution:

||δu|| ≤ εur||u0||+ εua, (10.22)

The ultimate termination criterion, combining the residual and the
change in solution with a test on the maximum number of iterations, can
be expressed as

||F (u)|| ≤ εrr||F (u0)||+ εra or ||δu|| ≤ εur||u0||+ εua or k > kmax .
(10.23)

10.2.4 Example: A nonlinear ODE model from epidemiology

The simplest model spreading of a disease, such as a flu, takes the form
of a 2× 2 ODE system

S′ = −βSI, (10.24)
I ′ = βSI − νI, (10.25)

where S(t) is the number of people who can get ill (susceptibles) and
I(t) is the number of people who are ill (infected). The constants β > 0
and ν > 0 must be given along with initial conditions S(0) and I(0).

Implicit time discretization. A Crank-Nicolson scheme leads to a 2× 2
system of nonlinear algebraic equations in the unknowns Sn+1 and In+1:

346 10 Nonlinear problems

Sn+1 − Sn

∆t
= −β[SI]n+ 1

2 ≈ −β2 (SnIn + Sn+1In+1), (10.26)

In+1 − In

∆t
= β[SI]n+ 1

2 − νIn+ 1
2 ≈ β

2 (SnIn + Sn+1In+1)− ν

2 (In + In+1) .
(10.27)

Introducing S for Sn+1, S(1) for Sn, I for In+1, I(1) for In, we can rewrite
the system as

FS(S, I) = S − S(1) + 1
2∆tβ(S(1)I(1) + SI) = 0, (10.28)

FI(S, I) = I − I(1) − 1
2∆tβ(S(1)I(1) + SI) + 1

2∆tν(I(1) + I) = 0 .
(10.29)

A Picard iteration. We assume that we have approximations S− and I−
to S and I, respectively. A way of linearizing the only nonlinear term SI
is to write I−S in the FS = 0 equation and S−I in the FI = 0 equation,
which also decouples the equations. Solving the resulting linear equations
with respect to the unknowns S and I gives

S =
S(1) − 1

2∆tβS
(1)I(1)

1 + 1
2∆tβI

− ,

I =
I(1) + 1

2∆tβS
(1)I(1) − 1

2∆tνI
(1)

1− 1
2∆tβS

− + 1
2∆tν

.

Before a new iteration, we must update S− ← S and I− ← I.

Newton’s method. The nonlinear system (10.28)-(10.29) can be written
as F (u) = 0 with F = (FS , FI) and u = (S, I). The Jacobian becomes

J =
(

∂
∂SFS

∂
∂IFS

∂
∂SFI

∂
∂IFI

)
=
(

1 + 1
2∆tβI

1
2∆tβS

−1
2∆tβI 1− 1

2∆tβS + 1
2∆tν

)
.

The Newton system J(u−)δu = −F (u−) to be solved in each iteration is
then

10.3 Linearization at the differential equation level 347(
1 + 1

2∆tβI
− 1

2∆tβS
−

−1
2∆tβI

− 1− 1
2∆tβS

− + 1
2∆tν

)(
δS
δI

)
=(

S− − S(1) + 1
2∆tβ(S(1)I(1) + S−I−)

I− − I(1) − 1
2∆tβ(S(1)I(1) + S−I−) + 1

2∆tν(I(1) + I−)

)

Remark. For this particular system of ODEs, explicit time integration
methods work very well. Even a Forward Euler scheme is fine, but (as also
experienced more generally) the 4-th order Runge-Kutta method is an
excellent balance between high accuracy, high efficiency, and simplicity.

10.3 Linearization at the differential equation level

The attention is now turned to nonlinear partial differential equations
(PDEs) and application of the techniques explained above for ODEs. The
model problem is a nonlinear diffusion equation for u(x, t):

∂u

∂t
= ∇ · (α(u)∇u) + f(u), x ∈ Ω, t ∈ (0, T], (10.30)

−α(u)∂u
∂n

= g, x ∈ ∂ΩN , t ∈ (0, T], (10.31)

u = u0, x ∈ ∂ΩD, t ∈ (0, T] . (10.32)

In the present section, our aim is to discretize this problem in time and
then present techniques for linearizing the time-discrete PDE problem
“at the PDE level” such that we transform the nonlinear stationary PDE
problem at each time level into a sequence of linear PDE problems, which
can be solved using any method for linear PDEs. This strategy avoids
the solution of systems of nonlinear algebraic equations. In Section 10.4
we shall take the opposite (and more common) approach: discretize the
nonlinear problem in time and space first, and then solve the resulting
nonlinear algebraic equations at each time level by the methods of
Section 10.2. Very often, the two approaches are mathematically identical,
so there is no preference from a computational efficiency point of view.
The details of the ideas sketched above will hopefully become clear
through the forthcoming examples.

348 10 Nonlinear problems

10.3.1 Explicit time integration

The nonlinearities in the PDE are trivial to deal with if we choose an
explicit time integration method for (10.30), such as the Forward Euler
method:

[D+
t u = ∇ · (α(u)∇u) + f(u)]n,

or written out,

un+1 − un

∆t
= ∇ · (α(un)∇un) + f(un),

which is a linear equation in the unknown un+1 with solution

un+1 = un +∆t∇ · (α(un)∇un) +∆tf(un) .

The disadvantage with this discretization is the strict stability criterion,
e.g., ∆t ≤ h2/(6 maxα) for the case f = 0 and a standard 2nd-order
finite difference discretization in 3D space with mesh cell sizes h = ∆x =
∆y = ∆z.

10.3.2 Backward Euler scheme and Picard iteration

A Backward Euler scheme for (10.30) reads

[D−t u = ∇ · (α(u)∇u) + f(u)]n .

Written out,

un − un−1

∆t
= ∇ · (α(un)∇un) + f(un) . (10.33)

This is a nonlinear PDE for the unknown function un(x). Such a PDE
can be viewed as a time-independent PDE where un−1(x) is a known
function.

We introduce a Picard iteration with k as iteration counter. A typical
linearization of the ∇ · (α(un)∇un) term in iteration k + 1 is to use
the previously computed un,k approximation in the diffusion coefficient:
α(un,k). The nonlinear source term is treated similarly: f(un,k). The
unknown function un,k+1 then fulfills the linear PDE

un,k+1 − un−1

∆t
= ∇ · (α(un,k)∇un,k+1) + f(un,k) . (10.34)

10.3 Linearization at the differential equation level 349

The initial guess for the Picard iteration at this time level can be taken
as the solution at the previous time level: un,0 = un−1.

We can alternatively apply the implementation-friendly notation where
u corresponds to the unknown we want to solve for, i.e., un,k+1 above,
and u− is the most recently computed value, un,k above. Moreover, u(1)

denotes the unknown function at the previous time level, un−1 above.
The PDE to be solved in a Picard iteration then looks like

u− u(1)

∆t
= ∇ · (α(u−)∇u) + f(u−) . (10.35)

At the beginning of the iteration we start with the value from the previous
time level: u− = u(1), and after each iteration, u− is updated to u.

Remark on notation
The previous derivations of the numerical scheme for time discretiza-
tions of PDEs have, strictly speaking, a somewhat sloppy notation,
but it is much used and convenient to read. A more precise notation
must distinguish clearly between the exact solution of the PDE
problem, here denoted ue(x, t), and the exact solution of the spatial
problem, arising after time discretization at each time level, where
(10.33) is an example. The latter is here represented as un(x) and is
an approximation to ue(x, tn). Then we have another approximation
un,k(x) to un(x) when solving the nonlinear PDE problem for un
by iteration methods, as in (10.34).

In our notation, u is a synonym for un,k+1 and u(1) is a synonym
for un−1, inspired by what are natural variable names in a code.
We will usually state the PDE problem in terms of u and quickly
redefine the symbol u to mean the numerical approximation, while
ue is not explicitly introduced unless we need to talk about the
exact solution and the approximate solution at the same time.

10.3.3 Backward Euler scheme and Newton’s method

At time level n, we have to solve the stationary PDE (10.33). In the
previous section, we saw how this can be done with Picard iterations.
Another alternative is to apply the idea of Newton’s method in a clever
way. Normally, Newton’s method is defined for systems of algebraic

350 10 Nonlinear problems

equations, but the idea of the method can be applied at the PDE level
too.

Linearization via Taylor expansions. Let un,k be an approximation to
the unknown un. We seek a better approximation on the form

un = un,k + δu . (10.36)

The idea is to insert (10.36) in (10.33), Taylor expand the nonlinearities
and keep only the terms that are linear in δu (which makes (10.36) an
approximation for un). Then we can solve a linear PDE for the correction
δu and use (10.36) to find a new approximation

un,k+1 = un,k + δu

to un. Repeating this procedure gives a sequence un,k+1, k = 0, 1, . . .
that hopefully converges to the goal un.

Let us carry out all the mathematical details for the nonlinear diffusion
PDE discretized by the Backward Euler method. Inserting (10.36) in
(10.33) gives

un,k + δu− un−1

∆t
= ∇·(α(un,k+δu)∇(un,k+δu))+f(un,k+δu) . (10.37)

We can Taylor expand α(un,k + δu) and f(un,k + δu):

α(un,k + δu) = α(un,k) + dα

du
(un,k)δu+O(δu2) ≈ α(un,k) + α′(un,k)δu,

f(un,k + δu) = f(un,k) + df

du
(un,k)δu+O(δu2) ≈ f(un,k) + f ′(un,k)δu .

Inserting the linear approximations of α and f in (10.37) results in

un,k + δu− un−1

∆t
= ∇ · (α(un,k)∇un,k) + f(un,k)+

∇ · (α(un,k)∇δu) +∇ · (α′(un,k)δu∇un,k)+
∇ · (α′(un,k)δu∇δu) + f ′(un,k)δu . (10.38)

The term α′(un,k)δu∇δu is of order δu2 and is therefore omitted since
we expect the correction δu to be small (δu � δu2). Reorganizing the
equation gives a PDE for δu that we can write in short form as

10.3 Linearization at the differential equation level 351

δF (δu;un,k) = −F (un,k),

where

F (un,k) = un,k − un−1

∆t
−∇ · (α(un,k)∇un,k) + f(un,k), (10.39)

δF (δu;un,k) = − 1
∆t

δu+∇ · (α(un,k)∇δu)+

∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu . (10.40)

Note that δF is a linear function of δu, and F contains only terms that
are known, such that the PDE for δu is indeed linear.

Observations
The notational form δF = −F resembles the Newton system
Jδu = −F for systems of algebraic equations, with δF as Jδu.
The unknown vector in a linear system of algebraic equations enters
the system as a linear operator in terms of a matrix-vector product
(Jδu), while at the PDE level we have a linear differential operator
instead (δF).

Similarity with Picard iteration. We can rewrite the PDE for δu in a
slightly different way too if we define un,k + δu as un,k+1.

un,k+1 − un−1

∆t
= ∇ · (α(un,k)∇un,k+1) + f(un,k)

+∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu . (10.41)

Note that the first line is the same PDE as arises in the Picard iteration,
while the remaining terms arise from the differentiations that are an
inherent ingredient in Newton’s method.

Implementation. For coding we want to introduce u for un, u− for un,k
and u(1) for un−1. The formulas for F and δF are then more clearly
written as

352 10 Nonlinear problems

F (u−) = u− − u(1)

∆t
−∇ · (α(u−)∇u−) + f(u−), (10.42)

δF (δu;u−) = − 1
∆t

δu+∇ · (α(u−)∇δu)+

∇ · (α′(u−)δu∇u−) + f ′(u−)δu . (10.43)

The form that orders the PDE as the Picard iteration terms plus the
Newton method’s derivative terms becomes

u− u(1)

∆t
= ∇ · (α(u−)∇u) + f(u−)+

γ(∇ · (α′(u−)(u− u−)∇u−) + f ′(u−)(u− u−)) . (10.44)

The Picard and full Newton versions correspond to γ = 0 and γ = 1,
respectively.
Derivation with alternative notation. Some may prefer to derive the
linearized PDE for δu using the more compact notation. We start with
inserting un = u− + δu to get

u− + δu− un−1

∆t
= ∇ · (α(u− + δu)∇(u− + δu)) + f(u− + δu) .

Taylor expanding,

α(u− + δu) ≈ α(u−) + α′(u−)δu,
f(u− + δu) ≈ f(u−) + f ′(u−)δu,

and inserting these expressions gives a less cluttered PDE for δu:

u− + δu− un−1

∆t
= ∇ · (α(u−)∇u−) + f(u−)+

∇ · (α(u−)∇δu) +∇ · (α′(u−)δu∇u−)+
∇ · (α′(u−)δu∇δu) + f ′(u−)δu .

10.3.4 Crank-Nicolson discretization
A Crank-Nicolson discretization of (10.30) applies a centered difference
at tn+ 1

2
:

10.4 1D stationary nonlinear differential equations 353

[Dtu = ∇ · (α(u)∇u) + f(u)]n+ 1
2 .

The standard technique is to apply an arithmetic average for quantities
defined between two mesh points, e.g.,

un+ 1
2 ≈ 1

2(un + un+1) .

However, with nonlinear terms we have many choices of formulating an
arithmetic mean:

[f(u)]n+ 1
2 ≈ f(1

2(un + un+1)) = [f(ut)]n+ 1
2 , (10.45)

[f(u)]n+ 1
2 ≈ 1

2(f(un) + f(un+1)) = [f(u)t]n+ 1
2 , (10.46)

[α(u)∇u]n+ 1
2 ≈ α(1

2(un + un+1))∇(1
2(un + un+1)) = [α(ut)∇ut]n+ 1

2 ,

(10.47)

[α(u)∇u]n+ 1
2 ≈ 1

2(α(un) + α(un+1))∇(1
2(un + un+1)) = [α(u)t∇ut]n+ 1

2 ,

(10.48)

[α(u)∇u]n+ 1
2 ≈ 1

2(α(un)∇un + α(un+1)∇un+1) = [α(u)∇ut]n+ 1
2 .

(10.49)

A big question is whether there are significant differences in accuracy
between taking the products of arithmetic means or taking the arithmetic
mean of products. Exercise 10.6 investigates this question, and the answer
is that the approximation is O(∆t2) in both cases.

10.4 1D stationary nonlinear differential equations

Section 10.3 presented methods for linearizing time-discrete PDEs directly
prior to discretization in space. We can alternatively carry out the
discretization in space of the time-discrete nonlinear PDE problem and
get a system of nonlinear algebraic equations, which can be solved by
Picard iteration or Newton’s method as presented in Section 10.2. This
latter approach will now be described in detail.

We shall work with the 1D problem

354 10 Nonlinear problems

− (α(u)u′)′ + au = f(u), x ∈ (0, L), α(u(0))u′(0) = C, u(L) = D .
(10.50)

The problem (10.50) arises from the stationary limit of a diffusion
equation,

∂u

∂t
= ∂

∂x

(
α(u)∂u

∂x

)
− au+ f(u), (10.51)

as t→∞ and ∂u/∂t→ 0. Alternatively, the problem (10.50) arises at
each time level from implicit time discretization of (10.51). For example,
a Backward Euler scheme for (10.51) leads to

un − un−1

∆t
= d

dx

(
α(un)du

n

dx

)
− aun + f(un) . (10.52)

Introducing u(x) for un(x), u(1) for un−1, and defining f(u) in (10.50) to
be f(u) in (10.52) plus un−1/∆t, gives (10.50) with a = 1/∆t.

10.4.1 Finite difference discretization

Since the technical steps in finite difference discretization in space are
so much simpler than the steps in the finite element method, we start
with finite difference to illustrate the concept of handling this nonlinear
problem and minimize the spatial discretization details.

The nonlinearity in the differential equation (10.50) poses no more
difficulty than a variable coefficient, as in the term (α(x)u′)′. We can
therefore use a standard finite difference approach to discretizing the
Laplace term with a variable coefficient:

[−DxαDxu+ au = f]i .

Writing this out for a uniform mesh with points xi = i∆x, i =
0, . . . , Nx, leads to

− 1
∆x2

(
αi+ 1

2
(ui+1 − ui)− αi− 1

2
(ui − ui−1)

)
+ aui = f(ui) . (10.53)

This equation is valid at all the mesh points i = 0, 1, . . . , Nx − 1. At
i = Nx we have the Dirichlet condition ui = D. The only difference from
the case with (α(x)u′)′ and f(x) is that now α and f are functions of u
and not only of x: (α(u(x))u′)′ and f(u(x)).

10.4 1D stationary nonlinear differential equations 355

The quantity αi+ 1
2
, evaluated between two mesh points, needs a com-

ment. Since α depends on u and u is only known at the mesh points, we
need to express αi+ 1

2
in terms of ui and ui+1. For this purpose we use

an arithmetic mean, although a harmonic mean is also common in this
context if α features large jumps. There are two choices of arithmetic
means:

αi+ 1
2
≈ α(1

2(ui + ui+1) = [α(ux)]i+ 1
2 , (10.54)

αi+ 1
2
≈ 1

2(α(ui) + α(ui+1)) = [α(u)x]i+ 1
2 (10.55)

Equation (10.53) with the latter approximation then looks like

− 1
2∆x2 ((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))(ui − ui−1))

+ aui = f(ui), (10.56)

or written more compactly,

[−Dxα
xDxu+ au = f]i .

At mesh point i = 0 we have the boundary condition α(u)u′ = C,
which is discretized by

[α(u)D2xu = C]0,

meaning

α(u0)u1 − u−1

2∆x = C . (10.57)

The fictitious value u−1 can be eliminated with the aid of (10.56) for
i = 0. Formally, (10.56) should be solved with respect to ui−1 and that
value (for i = 0) should be inserted in (10.57), but it is algebraically much
easier to do it the other way around. Alternatively, one can use a ghost
cell [−∆x, 0] and update the u−1 value in the ghost cell according to
(10.57) after every Picard or Newton iteration. Such an approach means
that we use a known u−1 value in (10.56) from the previous iteration.

356 10 Nonlinear problems

10.4.2 Solution of algebraic equations

The structure of the equation system. The nonlinear algebraic equa-
tions (10.56) are of the form A(u)u = b(u) with

Ai,i = 1
2∆x2 (α(ui−1) + 2α(ui) + α(ui+1)) + a,

Ai,i−1 = − 1
2∆x2 (α(ui−1) + α(ui)),

Ai,i+1 = − 1
2∆x2 (α(ui) + α(ui+1)),

bi = f(ui) .

The matrix A(u) is tridiagonal: Ai,j = 0 for j > i+ 1 and j < i− 1.
The above expressions are valid for internal mesh points 1 ≤ i ≤ Nx−1.

For i = 0 we need to express ui−1 = u−1 in terms of u1 using (10.57):

u−1 = u1 −
2∆x
α(u0)C . (10.58)

This value must be inserted in A0,0. The expression for Ai,i+1 applies for
i = 0, and Ai,i−1 does not enter the system when i = 0.

Regarding the last equation, its form depends on whether we include
the Dirichlet condition u(L) = D, meaning uNx = D, in the nonlinear
algebraic equation system or not. Suppose we choose (u0, u1, . . . , uNx−1)
as unknowns, later referred to as systems without Dirichlet conditions.
The last equation corresponds to i = Nx − 1. It involves the boundary
value uNx , which is substituted by D. If the unknown vector includes the
boundary value, (u0, u1, . . . , uNx), later referred to as system including
Dirichlet conditions, the equation for i = Nx−1 just involves the unknown
uNx , and the final equation becomes uNx = D, corresponding to Ai,i = 1
and bi = D for i = Nx.

Picard iteration. The obvious Picard iteration scheme is to use previ-
ously computed values of ui in A(u) and b(u), as described more in detail
in Section 10.2. With the notation u− for the most recently computed
value of u, we have the system F (u) ≈ F̂ (u) = A(u−)u − b(u−), with
F = (F0, F1, . . . , Fm), u = (u0, u1, . . . , um). The index m is Nx if the
system includes the Dirichlet condition as a separate equation and Nx−1
otherwise. The matrix A(u−) is tridiagonal, so the solution procedure
is to fill a tridiagonal matrix data structure and the right-hand side

10.4 1D stationary nonlinear differential equations 357

vector with the right numbers and call a Gaussian elimination routine
for tridiagonal linear systems.

Mesh with two cells. It helps on the understanding of the details to
write out all the mathematics in a specific case with a small mesh, say
just two cells (Nx = 2). We use u−i for the i-th component in u−.

The starting point is the basic expressions for the nonlinear equations
at mesh point i = 0 and i = 1 are

A0,−1u−1 + A0,0u0 + A0,1u1 = b0, (10.59)
A1,0u0 + A1,1u1 + A1,2u2 = b1 . (10.60)

Equation (10.59) written out reads

1
2∆x2 (− (α(u−1) + α(u0))u−1 +

(α(u−1) + 2α(u0) + α(u1))u0−
(α(u0) + α(u1)))u1 + au0 = f(u0) .

We must then replace u−1 by (10.58). With Picard iteration we get

1
2∆x2 (− (α(u−−1) + 2α(u−0) + α(u−1))u1 +

(α(u−−1) + 2α(u−0) + α(u−1))u0 + au0

= f(u−0)− 1
α(u−0)∆x

(α(u−−1) + α(u−0))C,

where

u−−1 = u−1 −
2∆x
α(u−0)

C .

Equation (10.60) contains the unknown u2 for which we have a Dirichlet
condition. In case we omit the condition as a separate equation, (10.60)
with Picard iteration becomes

358 10 Nonlinear problems

1
2∆x2 (− (α(u−0) + α(u−1))u0 +

(α(u−0) + 2α(u−1) + α(u−2))u1−
(α(u−1) + α(u−2)))u2 + au1 = f(u−1) .

We must now move the u2 term to the right-hand side and replace all
occurrences of u2 by D:

1
2∆x2 (− (α(u−0) + α(u−1))u0 +

(α(u−0) + 2α(u−1) + α(D))u1 + au1

= f(u−1) + 1
2∆x2 (α(u−1) + α(D))D .

The two equations can be written as a 2× 2 system:(
B0,0 B0,1
B1,0 B1,1

)(
u0
u1

)
=
(
d0
d1

)
,

where

B0,0 = 1
2∆x2 (α(u−−1) + 2α(u−0) + α(u−1)) + a (10.61)

B0,1 = − 1
2∆x2 (α(u−−1) + 2α(u−0) + α(u−1)), (10.62)

B1,0 = − 1
2∆x2 (α(u−0) + α(u−1)), (10.63)

B1,1 = 1
2∆x2 (α(u−0) + 2α(u−1) + α(D)) + a, (10.64)

d0 = f(u−0)− 1
α(u−0)∆x

(α(u−−1) + α(u−0))C, (10.65)

d1 = f(u−1) + 1
2∆x2 (α(u−1) + α(D))D . (10.66)

The system with the Dirichlet condition becomesB0,0 B0,1 0
B1,0 B1,1 B1,2

0 0 1


u0
u1
u2

 =

d0
d1
D

 ,
with

10.4 1D stationary nonlinear differential equations 359

B1,1 = 1
2∆x2 (α(u−0) + 2α(u−1) + α(u2)) + a, (10.67)

B1,2 = − 1
2∆x2 (α(u−1) + α(u2))), (10.68)

d1 = f(u−1) . (10.69)

Other entries are as in the 2× 2 system.

Newton’s method. The Jacobian must be derived in order to use
Newton’s method. Here it means that we need to differentiate F (u) =
A(u)u − b(u) with respect to the unknown parameters u0, u1, . . . , um
(m = Nx or m = Nx − 1, depending on whether the Dirichlet condition
is included in the nonlinear system F (u) = 0 or not). Nonlinear equation
number i of (10.56) has the structure

Fi = Ai,i−1(ui−1, ui)ui−1+Ai,i(ui−1, ui, ui+1)ui+Ai,i+1(ui, ui+1)ui+1−bi(ui) .

Computing the Jacobian requires careful differentiation. For example,

∂

∂ui
(Ai,i(ui−1, ui, ui+1)ui) = ∂Ai,i

∂ui
ui + Ai,i

∂ui
∂ui

= ∂

∂ui
(1
2∆x2 (α(ui−1) + 2α(ui) + α(ui+1)) + a)ui+

1
2∆x2 (α(ui−1) + 2α(ui) + α(ui+1)) + a

= 1
2∆x2 (2α′(ui)ui + α(ui−1) + 2α(ui) + α(ui+1)) + a .

The complete Jacobian becomes

360 10 Nonlinear problems

Ji,i = ∂Fi
∂ui

= ∂Ai,i−1

∂ui
ui−1 + ∂Ai,i

∂ui
ui + Ai,i + ∂Ai,i+1

∂ui
ui+1 −

∂bi
∂ui

= 1
2∆x2 (−α′(ui)ui−1 + 2α′(ui)ui + α(ui−1) + 2α(ui) + α(ui+1))+

a− 1
2∆x2α

′(ui)ui+1 − b′(ui),

Ji,i−1 = ∂Fi
∂ui−1

= ∂Ai,i−1

∂ui−1
ui−1 + Ai−1,i + ∂Ai,i

∂ui−1
ui −

∂bi
∂ui−1

= 1
2∆x2 (−α′(ui−1)ui−1 − (α(ui−1) + α(ui)) + α′(ui−1)ui),

Ji,i+1 = ∂Ai,i+1

∂ui−1
ui+1 + Ai+1,i + ∂Ai,i

∂ui+1
ui −

∂bi
∂ui+1

= 1
2∆x2 (−α′(ui+1)ui+1 − (α(ui) + α(ui+1)) + α′(ui+1)ui) .

The explicit expression for nonlinear equation number i, Fi(u0, u1, . . .),
arises from moving the f(ui) term in (10.56) to the left-hand side:

Fi = − 1
2∆x2 ((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))(ui − ui−1))

+ aui − f(ui) = 0 . (10.70)

At the boundary point i = 0, u−1 must be replaced using the formula
(10.58). When the Dirichlet condition at i = Nx is not a part of the
equation system, the last equation Fm = 0 for m = Nx − 1 involves the
quantity uNx−1 which must be replaced by D. If uNx is treated as an
unknown in the system, the last equation Fm = 0 has m = Nx and reads

FNx(u0, . . . , uNx) = uNx −D = 0 .

Similar replacement of u−1 and uNx must be done in the Jacobian for
the first and last row. When uNx is included as an unknown, the last
row in the Jacobian must help implement the condition δuNx = 0, since
we assume that u contains the right Dirichlet value at the beginning of
the iteration (uNx = D), and then the Newton update should be zero for
i = 0, i.e., δuNx = 0. This also forces the right-hand side to be bi = 0,
i = Nx.

We have seen, and can see from the present example, that the linear
system in Newton’s method contains all the terms present in the system
that arises in the Picard iteration method. The extra terms in Newton’s
method can be multiplied by a factor such that it is easy to program

10.4 1D stationary nonlinear differential equations 361

one linear system and set this factor to 0 or 1 to generate the Picard or
Newton system.

10.4.3 Galerkin-type discretization

For a Galerkin-type discretization, which may be developed into a finite
element method, we first need to derive the variational problem. Let V
be an appropriate function space with basis functions {ψi}i∈Is . Because
of the Dirichlet condition at x = L we require ψi(L) = 0, i ∈ Is. The
approximate solution is written as u = D+

∑
j∈Is cjψj , where the term D

can be viewed as a boundary function needed to implement the Dirichlet
condition u(L) = D. We remark that the boundary function is D rather
than Dx/L because of the Neumann condition at x = 0.

Using Galerkin’s method, we multiply the differential equation by any
v ∈ V and integrate terms with second-order derivatives by parts:

∫ L

0
α(u)u′v′ dx+

∫ L

0
auv dx =

∫ L

0
f(u)v dx+ [α(u)u′v]L0 , ∀v ∈ V .

The Neumann condition at the boundary x = 0 is inserted in the boundary
term:

[α(u)u′v]L0 = α(u(L))u′(L)v(L)−α(u(0))u′(0)v(0) = 0−Cv(0) = −Cv(0) .

(Recall that since ψi(L) = 0, any linear combination v of the basis
functions also vanishes at x = L: v(L) = 0.) The variational problem is
then: find u ∈ V such that

∫ L

0
α(u)u′v′ dx+

∫ L

0
auv dx =

∫ L

0
f(u)v dx− Cv(0), ∀v ∈ V .

(10.71)
To derive the algebraic equations, we note that ∀v ∈ V is equivalent

with v = ψi for i ∈ Is. Setting u = D+
∑
j cjψj and sorting terms results

in the linear system

362 10 Nonlinear problems

∑
j∈Is

∫ L

0

α(D +
∑
k∈Is

ckψk)ψ′jψ′i + aψiψj

 dx

 cj
=
∫ L

0
f(D +

∑
k∈Is

ckψk)ψi dx− Cψi(0), i ∈ Is . (10.72)

Fundamental integration problem. Methods that use the Galerkin
or weighted residual method face a fundamental difficulty in nonlinear
problems: how can we integrate terms like

∫ L
0 α(

∑
k ckψk)ψ′iψ′j dx and∫ L

0 f(
∑
k ckψk)ψi dx when we do not know the ck coefficients in the

argument of the α function? We can resort to numerical integration,
provided an approximate

∑
k ckψk can be used for the argument u in f

and α. This is the approach used in computer programs.
However, if we want to look more mathematically into the structure

of the algebraic equations generated by the finite element method in
nonlinear problems, and compare such equations with those arising in
the finite difference method, we need techniques that enable integration
of expressions like

∫ L
0 f(

∑
k ckψk)ψi dx by hand. Two such techniques

will be shown: the group finite element and numerical integration based
on the nodes only. Both techniques are approximate, but they allow
us to see the difference equations in the finite element method. The
details are worked out in Appendix 10.6. Some readers will prefer to
dive into these symbolic calculations to gain more understanding of
nonlinear finite element equations, while others will prefer to continue
with computational algorithms (in the next two sections) rather than
analysis.

10.4.4 Picard iteration defined from the variational form

Consider the problem (10.50) with the corresponding variational form
(10.71). Our aim is to define a Picard iteration based on this variational
form without any attempt to compute integrals symbolically as in the
previous three sections. The idea in Picard iteration is to use a previously
computed u value in the nonlinear functions α(u) and f(u). Let u− be the
available approximation to u from the previous iteration. The linearized
variational form for Picard iteration is then

∫ L

0
(α(u−)u′v′ + auv) dx =

∫ L

0
f(u−)v dx− Cv(0), ∀v ∈ V . (10.73)

10.4 1D stationary nonlinear differential equations 363

This is a linear problem a(u, v) = L(v) with bilinear and linear forms

a(u, v) =
∫ L

0
(α(u−)u′v′ + auv) dx, L(v) =

∫ L

0
f(u−)v dx− Cv(0) .

Make sure to distinguish the coefficient a in auv from the differential
equation from the a in the abstract bilinear form notation a(·, ·).

The linear system associated with (10.73) is computed the standard
way. Technically, we are back to solving −(α(x)u′)′ + au = f(x). The
unknown u is sought on the form u = B(x) +

∑
j∈Is cjψj , with B(x) = D

and ψi = ϕν(i), ν(i) = i+ 1, and Is = {0, 1, . . . , N = Nn − 2}.

10.4.5 Newton’s method defined from the variational form

Application of Newton’s method to the nonlinear variational form (10.71)
arising from the problem (10.50) requires identification of the nonlinear
algebraic equations Fi = 0. Although we originally denoted the unknowns
in nonlinear algebraic equations by u0, . . . , uN , it is in the present context
most natural to have the unknowns as c0, . . . , cN and write

Fi(c0, . . . , cN) = 0, i ∈ Is,

and define the Jacobian as Ji,j = ∂Fi/∂cj for i, j ∈ Is.
The specific form of the equations Fi = 0 follows from the variational

form

∫ L

0
(α(u)u′v′ + auv) dx =

∫ L

0
f(u)v dx− Cv(0), ∀v ∈ V,

by choosing v = ψi, i ∈ Is, and setting u =
∑
j∈Is cjψj , maybe with a

boundary function to incorporate Dirichlet conditions, we get

Fi =
∫ L

0
(α(u)u′ψ′i+auψi−f(u)ψi) dx+Cψi(0) = 0, i ∈ Is . (10.74)

In the differentiations leading to the Jacobian we will frequently use the
results

∂u

∂cj
= ∂

∂cj

∑
k

ckψk = ψj ,
∂u′

∂cj
= ∂

∂cj

∑
k

ckψ
′
k = ψ′j .

364 10 Nonlinear problems

The derivation of the Jacobian of (10.74) goes as

Ji,j = ∂Fi
∂cj

=
∫ L

0

∂

∂cj
(α(u)u′ψ′i + auψi − f(u)ψi) dx

=
∫ L

0
((α′(u) ∂u

∂cj
u′ + α(u)∂u

′

∂cj
)ψ′i + a

∂u

∂cj
ψi − f ′(u) ∂u

∂cj
ψi) dx

=
∫ L

0
((α′(u)ψju′ + α(u)ψ′j)ψ′i + aψjψi − f ′(u)ψjψi) dx

=
∫ L

0
(α′(u)u′ψ′iψj + α(u)ψ′iψ′j + (a− f(u))ψiψj) dx

(10.75)

One must be careful about the prime symbol as differenti-
ation!
In α′ the derivative is with respect to the independent variable in
the α function, and that is u, so

α′ = dα

du
,

while in u′ the differentiation is with respect to x, so

u′ = du

dx
.

Similarly, f is a function of u, so f ′ means df/du.

When calculating the right-hand side vector Fi and the coefficient
matrix Ji,j in the linear system to be solved in each Newton iteration,
one must use a previously computed u, denoted by u−, for the symbol u
in (10.74) and (10.75). With this notation we have

Fi =
∫ L

0

(
α(u−)u−′ψ′i + (a− f(u−))ψi

)
dx− Cψi(0), i ∈ Is,

(10.76)

Ji,j =
∫ L

0
(α′(u−)u−′ψ′iψj + α(u−)ψ′iψ′j + (a− f(u−))ψiψj) dx, i, j ∈ Is .

(10.77)

10.5 Multi-dimensional PDE problems 365

These expressions can be used for any basis {ψi}i∈Is . Choosing finite
element functions for ψi, one will normally want to compute the integral
contribution cell by cell, working in a reference cell. To this end, we restrict
the integration to one cell and transform the cell to [−1, 1]. The most
recently computed approximation u− to u becomes ũ− =

∑
t ũ
−1
t ϕ̃t(X)

over the reference element, where ũ−1
t is the value of u− at global node

(or degree of freedom) q(e, t) corresponding to the local node t (or degree
of freedom). The formulas (10.76) and (10.77) then change to

F̃ (e)
r =

∫ 1

−1

(
α(ũ−)ũ−′ϕ̃′r + (a− f(ũ−))ϕ̃r

)
det J dX − Cϕ̃r(0), (10.78)

J̃ (e)
r,s =

∫ 1

−1
(α′(ũ−)ũ−′ϕ̃′rϕ̃s + α(ũ−)ϕ̃′rϕ̃′s + (a− f(ũ−))ϕ̃rϕ̃s) det J dX,

(10.79)

with r, s ∈ Id runs over the local degrees of freedom.
Many finite element programs require the user to provide Fi and Ji,j .

Some programs, like FEniCS, are capable of automatically deriving Ji,j
if Fi is specified.

Dirichlet conditions. Incorporation of the Dirichlet values by assembling
contributions from all degrees of freedom and then modifying the linear
system can obviously be applied to Picard iteration as that method
involves a standard linear system. In the Newton system, however, the
unknown is a correction δu to the solution. Dirichlet conditions are
implemented by inserting them in the initial guess u− for the Newton
iteration and implementing δui = 0 for all known degrees of freedom.
The manipulation of the linear system follows exactly the algorithm in
the linear problems, the only difference being that the known values are
zero.

10.5 Multi-dimensional PDE problems

The fundamental ideas in the derivation of Fi and Ji,j in the 1D model
problem are easily generalized to multi-dimensional problems. Neverthe-
less, the expressions involved are slightly different, with derivatives in x
replaced by ∇, so we present some examples below in detail.

http://fenicsproject.org

366 10 Nonlinear problems

10.5.1 Finite element discretization

As an example, a Backward Euler discretization of the PDE

ut = ∇ · (α(u)∇u) + f(u), (10.80)

gives the nonlinear time-discrete PDEs

un −∆t∇ · (α(un)∇un) + f(un) = un−1 .

We may alternatively write these equations with u for un and u(1) for
un−1:

u−∆t∇ · (α(u)∇u)−∆tf(u) = u(1) .

Understand the meaning of the symbol u in various formu-
las!
Note that the mathematical meaning of the symbol u changes in
the above equations: u(x, t) is the exact solution of (10.80), un(x)
is an approximation to the exact solution at t = tn, while u(x)
in the latter equation is a synonym for un. Below, this u(x) will
be approximated by a new u =

∑
k ckψk(x) in space, and then

the actual u symbol used in the Picard and Newton iterations
is a further approximation of

∑
k ckψk arising from the nonlinear

iteration algorithm.
Much literature reserves u for the exact solution, uses uh(x, t)

for the finite element solution that varies continuously in time, in-
troduces perhaps unh as the approximation of uh at time tn, arising
from some time discretization, and then finally applies un,kh for the
approximation to unh in the k-th iteration of a Picard or Newton
method. The converged solution at the previous time step can be
called un−1

h , but then this quantity is an approximate solution of
the nonlinear equations (at the previous time level), while the coun-
terpart unh is formally the exact solution of the nonlinear equations
at the current time level. The various symbols in the mathematics
can in this way be clearly distinguished. However, we favor to use
u for the quantity that is most naturally called u in the code, and
that is the most recent approximation to the solution, e.g., named
un,kh above. This is also the key quantity of interest in mathematical

10.5 Multi-dimensional PDE problems 367

derivations of algorithms as well. Choosing u this way makes the
most important mathematical cleaner than using more cluttered
notation as un,kh . We therefore introduce other symbols for other
versions of the unknown function. It is most appropriate for us to
say that ue(x, t) is the exact solution, un in the equation above is
the approximation to ue(x, tn) after time discretization, and u is
the spatial approximation to un from the most recent iteration in a
nonlinear iteration method.

Let us assume homogeneous Neumann conditions on the entire bound-
ary for simplicity in the boundary term. The variational form becomes:
find u ∈ V such that

∫
Ω

(uv+∆tα(u)∇u ·∇v−∆tf(u)v−u(1)v) dx = 0, ∀v ∈ V . (10.81)

The nonlinear algebraic equations follow from setting v = ψi and using
the representation u =

∑
k ckψk, which we just write as

Fi =
∫
Ω

(uψi +∆tα(u)∇u · ∇ψi −∆tf(u)ψi − u(1)ψi) dx . (10.82)

Picard iteration needs a linearization where we use the most recent
approximation u− to u in α and f :

Fi ≈ F̂i =
∫
Ω

(uψi+∆tα(u−)∇u·∇ψi−∆tf(u−)ψi−u(1)ψi) dx . (10.83)

The equations F̂i = 0 are now linear and we can easily derive a linear
system

∑
j∈Is Ai,jcj = bi, i ∈ Is, for the unknown coefficients {ci}i∈Is by

inserting u =
∑
j cjψj . We get

Ai,j =
∫
Ω

(ψjψi+∆tα(u−)∇ψj ·∇ψi) dx, bi =
∫
Ω

(∆tf(u−)ψi+u(1)ψi) dx .

In Newton’s method we need to evaluate Fi with the known value u−
for u:

368 10 Nonlinear problems

Fi ≈ F̂i =
∫
Ω

(u−ψi +∆tα(u−)∇u− · ∇ψi −∆tf(u−)ψi − u(1)ψi) dx .
(10.84)

The Jacobian is obtained by differentiating (10.82) and using

∂u

∂cj
=
∑
k

∂

∂cj
ckψk = ψj , (10.85)

∂∇u
∂cj

=
∑
k

∂

∂cj
ck∇ψk = ∇ψj . (10.86)

The result becomes

Ji,j = ∂Fi
∂cj

=
∫
Ω

(ψjψi +∆tα′(u)ψj∇u · ∇ψi +∆tα(u)∇ψj · ∇ψi−

∆tf ′(u)ψjψi) dx . (10.87)

The evaluation of Ji,j as the coefficient matrix in the linear system in
Newton’s method applies the known approximation u− for u:

Ji,j =
∫
Ω

(ψjψi +∆tα′(u−)ψj∇u− · ∇ψi +∆tα(u−)∇ψj · ∇ψi−

∆tf ′(u−)ψjψi) dx . (10.88)

Hopefully, this example also shows how convenient the notation with u
and u− is: the unknown to be computed is always u and linearization
by inserting known (previously computed) values is a matter of adding
an underscore. One can take great advantage of this quick notation in
software [25].

Non-homogeneous Neumann conditions. A natural physical flux con-
dition for the PDE (10.80) takes the form of a non-homogeneous Neumann
condition

− α(u)∂u
∂n

= g, x ∈ ∂ΩN , (10.89)

where g is a prescribed function and ∂ΩN is a part of the boundary
of the domain Ω. From integrating

∫
Ω∇ · (α∇u) dx by parts, we get a

boundary term

10.5 Multi-dimensional PDE problems 369∫
∂ΩN

α(u)∂u
∂u
v ds . (10.90)

Inserting the condition (10.89) into this term results in an integral over
prescribed values:

−
∫
∂ΩN

gv ds .

The nonlinearity in the α(u) coefficient condition (10.89) therefore does
not contribute with a nonlinearity in the variational form.

Robin conditions. Heat conduction problems often apply a kind of
Newton’s cooling law, also known as a Robin condition, at the boundary:

− α(u)∂u
∂u

= h(u)(u− Ts(t)), x ∈ ∂ΩR, (10.91)

where h(u) is a heat transfer coefficient between the body (Ω) and its
surroundings, Ts is the temperature of the surroundings, and ∂ΩR is a
part of the boundary where this Robin condition applies. The boundary
integral (10.90) now becomes∫

∂ΩR

h(u)(u− Ts(T))v ds .

In many physical applications, h(u) can be taken as constant, and then
the boundary term is linear in u, otherwise it is nonlinear and contributes
to the Jacobian in a Newton method. Linearization in a Picard method
will typically use a known value in h, but keep the u in u−Ts as unknown:
h(u−)(u− Ts(t)). Exercise 10.15 asks you to carry out the details.

10.5.2 Finite difference discretization

A typical diffusion equation

ut = ∇ · (α(u)∇u) + f(u),

can be discretized by (e.g.) a Backward Euler scheme, which in 2D can
be written

[D−t u = Dxα(u)xDxu+Dyα(u)yDyu+ f(u)]ni,j .

370 10 Nonlinear problems

We do not dive into the details of handling boundary conditions now.
Dirichlet and Neumann conditions are handled as in a corresponding
linear, variable-coefficient diffusion problems.

Writing the scheme out, putting the unknown values on the left-
hand side and known values on the right-hand side, and introducing
∆x = ∆y = h to save some writing, one gets

uni,j −
∆t

h2 (1
2(α(uni,j) + α(uni+1,j))(uni+1,j − uni,j)

− 1
2(α(uni−1,j) + α(uni,j))(uni,j − uni−1,j)

+ 1
2(α(uni,j) + α(uni,j+1))(uni,j+1 − uni,j)

− 1
2(α(uni,j−1) + α(uni,j))(uni,j − uni,j−1))−∆tf(uni,j) = un−1

i,j

This defines a nonlinear algebraic system on the form A(u)u = b(u).

Picard iteration. The most recently computed values u− of un can
be used in α and f for a Picard iteration, or equivalently, we solve
A(u−)u = b(u−). The result is a linear system of the same type as arising
from ut = ∇ · (α(x)∇u) + f(x, t).

The Picard iteration scheme can also be expressed in operator notation:

[D−t u = Dxα(u−)xDxu+Dyα(u−)yDyu+ f(u−)]ni,j .

Newton’s method. As always, Newton’s method is technically more
involved than Picard iteration. We first define the nonlinear algebraic
equations to be solved, drop the superscript n (use u for un), and intro-
duce u(1) for un−1:

Fi,j = ui,j −
∆t

h2 (
1
2(α(ui,j) + α(ui+1,j))(ui+1,j − ui,j)−
1
2(α(ui−1,j) + α(ui,j))(ui,j − ui−1,j)+
1
2(α(ui,j) + α(ui,j+1))(ui,j+1 − ui,j)−
1
2(α(ui,j−1) + α(ui,j))(ui,j − ui,j−1))−∆t f(ui,j)− u(1)

i,j = 0 .

10.5 Multi-dimensional PDE problems 371

It is convenient to work with two indices i and j in 2D finite difference
discretizations, but it complicates the derivation of the Jacobian, which
then gets four indices. (Make sure you really understand the 1D version
of this problem as treated in Section 10.4.1.) The left-hand expression of
an equation Fi,j = 0 is to be differentiated with respect to each of the
unknowns ur,s (recall that this is short notation for unr,s), r ∈ Ix, s ∈ Iy:

Ji,j,r,s = ∂Fi,j
∂ur,s

.

The Newton system to be solved in each iteration can be written as∑
r∈Ix

∑
s∈Iy

Ji,j,r,sδur,s = −Fi,j , i ∈ Ix, j ∈ Iy .

Given i and j, only a few r and s indices give nonzero contribution to
the Jacobian since Fi,j contains ui±1,j , ui,j±1, and ui,j . This means that
Ji,j,r,s has nonzero contributions only if r = i± 1, s = j ± 1, as well as
r = i and s = j. The corresponding terms in Ji,j,r,s are Ji,j,i−1,j , Ji,j,i+1,j ,
Ji,j,i,j−1, Ji,j,i,j+1, and Ji,j,i,j . Therefore, the left-hand side of the Newton
system,

∑
r

∑
s Ji,j,r,sδur,s collapses to

Ji,j,r,sδur,s = Ji,j,i,jδui,j + Ji,j,i−1,jδui−1,j + Ji,j,i+1,jδui+1,j + Ji,j,i,j−1δui,j−1

+ Ji,j,i,j+1δui,j+1

The specific derivatives become

372 10 Nonlinear problems

Ji,j,i−1,j = ∂Fi,j
∂ui−1,j

= 1
2
∆t

h2 (α′(ui−1,j)(ui,j − ui−1,j) + (α(ui−1,j) + α(ui,j))(−1)),

Ji,j,i+1,j = ∂Fi,j
∂ui+1,j

= 1
2
∆t

h2 (−α′(ui+1,j)(ui+1,j − ui,j)− (α(ui−1,j) + α(ui,j))),

Ji,j,i,j−1 = ∂Fi,j
∂ui,j−1

= 1
2
∆t

h2 (α′(ui,j−1)(ui,j − ui,j−1) + (α(ui,j−1) + α(ui,j))(−1)),

Ji,j,i,j+1 = ∂Fi,j
∂ui,j+1

= 1
2
∆t

h2 (−α′(ui,j+1)(ui,j+1 − ui,j)− (α(ui,j−1) + α(ui,j))) .

The Ji,j,i,j entry has a few more terms and is left as an exercise. Inserting
the most recent approximation u− for u in the J and F formulas and
then forming Jδu = −F gives the linear system to be solved in each
Newton iteration. Boundary conditions will affect the formulas when any
of the indices coincide with a boundary value of an index.

10.5.3 Continuation methods

Picard iteration or Newton’s method may diverge when solving PDEs
with severe nonlinearities. Relaxation with ω < 1 may help, but in
highly nonlinear problems it can be necessary to introduce a continuation
parameter Λ in the problem: Λ = 0 gives a version of the problem that
is easy to solve, while Λ = 1 is the target problem. The idea is then to
increase Λ in steps, Λ0 = 0, Λ1 < · · · < Λn = 1, and use the solution from
the problem with Λi−1 as initial guess for the iterations in the problem
corresponding to Λi.

The continuation method is easiest to understand through an example.
Suppose we intend to solve

−∇ · (||∇u||q∇u) = f,

which is an equation modeling the flow of a non-Newtonian fluid through a
channel or pipe. For q = 0 we have the Poisson equation (corresponding to

10.6 Symbolic nonlinear finite element equations 373

a Newtonian fluid) and the problem is linear. A typical value for pseudo-
plastic fluids may be qn = −0.8. We can introduce the continuation
parameter Λ ∈ [0, 1] such that q = qnΛ. Let {Λ`}n`=0 be the sequence of
Λ values in [0, 1], with corresponding q values {q`}n`=0. We can then solve
a sequence of problems

−∇ ·
(
||∇u`||q`∇u

`
)

= f, ` = 0, . . . , n,

where the initial guess for iterating on u` is the previously computed
solution u`−1. If a particular Λ` leads to convergence problems, one may
try a smaller increase in Λ: Λ∗ = 1

2(Λ`−1 + Λ`), and repeat halving the
step in Λ until convergence is reestablished.

10.6 Symbolic nonlinear finite element equations

The integrals in nonlinear finite element equations are computed by
numerical integration rules in computer programs, so the formulas for
the variational form is directly transferred to numbers. It is of interest to
understand the nature of the system of difference equations that arises
from the finite element method in nonlinear problems and to compare
with corresponding expressions arising from finite difference discretization.
We shall dive into this problem here. To see the structure of the difference
equations implied by the finite element method, we have to find symbolic
expressions for the integrals, and this is extremely difficult since the
integrals involve the unknown function in nonlinear problems. However,
there are some techniques that allow us to approximate the integrals and
work out symbolic formulas that can compared with their finite difference
counterparts.

We shall address the 1D model problem (10.50) from the beginning of
Section 10.4. The finite difference discretization is shown in Section 10.4.1,
while the variational form based on Galerkin’s method is developed in
Section 10.4.3. We build directly on formulas developed in the latter
section.

10.6.1 Finite element basis functions

Introduction of finite element basis functions ϕi means setting

374 10 Nonlinear problems

ψi = ϕν(i), i ∈ Is,

where degree of freedom number ν(i) in the mesh corresponds to unknown
number i (ci). In the present example, we use all the basis functions
except the last at i = Nn − 1, i.e., Is = {0, . . . , Nn − 2}, and ν(j) = j.
The expansion of u can be taken as

u = D +
∑
j∈Is

cjϕν(j),

but it is more common in a finite element context to use a boundary
function B =

∑
j∈Ib Ujϕj , where Uj are prescribed Dirichlet conditions

for degree of freedom number j and Uj is the corresponding value.

u = DϕNn−1 +
∑
j∈Is

cjϕν(j) .

In the general case with u prescribed as Uj at some nodes j ∈ Ib, we set

u =
∑
j∈Ib

Ujϕj +
∑
j∈Is

cjϕν(j),

where cj = u(xν(j)). That is, ν(j) maps unknown number j to the
corresponding node number ν(j) such that cj = u(xν(j)).

10.6.2 The group finite element method

Finite element approximation of functions of u. Since we already
expand u as

∑
j ϕju(xj), we may use the same approximation for other

functions as well. For example,

f(u) ≈
∑
j

f(xj)ϕj ,

where f(xj) is the value of f at node j. Since f is a function of u,
f(xj) = f(u(xj)). Introducing uj as a short form for u(xj), we can write

f(u) ≈
∑
j

f(uj)ϕj .

This approximation is known as the group finite element method or the
product approximation technique. The index j runs over all node numbers
in the mesh.

10.6 Symbolic nonlinear finite element equations 375

The principal advantages of the group finite element method are
two-fold:

1. Complicated nonlinear expressions can be simplified to increase the
efficiency of numerical computations.

2. One can derive symbolic forms of the difference equations arising from
the finite element method in nonlinear problems. The symbolic form
is useful for comparing finite element and finite difference equations
of nonlinear differential equation problems.

Below, we shall explore point 2 to see exactly how the finite element
method creates more complex expressions in the resulting linear system
(the difference equations) that the finite difference method does. It turns
out that is very difficult to see what kind of terms in the difference
equations that arise from

∫
f(u)ϕi dx without using the group finite

element method or numerical integration utilizing the nodes only.
Note, however, that an expression like

∫
f(u)ϕi dx causes no problems

in a computer program as the integral is calculated by numerical integra-
tion using an existing approximation of u in f(u) such that the integrand
can be sampled at any spatial point.

Simplified problem. Our aim now is to derive symbolic expressions
for the difference equations arising from the finite element method in
nonlinear problems and compare the expressions with those arising in the
finite difference method. To this end, let us simplify the model problem
and set a = 0, α = 1, f(u) = u2, and have Neumann conditions at
both ends such that we get a very simple nonlinear problem −u′′ = u2,
u′(0) = 1, u′(L) = 0. The variational form is then∫ L

0
u′v′ dx =

∫ L

0
u2v dx− v(0), ∀v ∈ V .

The term with u′v′ is well known so the only new feature is the term∫
u2v dx.
To make the distance from finite element equations to finite difference

equations as short as possible, we shall substitute cj in the sum u =∑
j cjϕj by uj = u(xj) since cj is the value of u at node j. (In the more

general case with Dirichlet conditions as well, we have a sum
∑
j cjϕν(j)

where cj is replaced by u(xν(j)). We can then introduce some other
counter k such that it is meaningful to write u =

∑
k ukϕk, where k runs

over appropriate node numbers.) The quantity uj in
∑
j ujϕj is the same

376 10 Nonlinear problems

as u at mesh point number j in the finite difference method, which is
commonly denoted uj .

Integrating nonlinear functions. Consider the term
∫
u2v dx in the

variational formulation with v = ϕi and u =
∑
k ϕkuk:∫ L

0
(
∑
k

ukϕk)2ϕi dx .

Evaluating this integral for P1 elements (see Problem 10.11) results in
the expression

h

12(u2
i−1 + 2ui(ui−1 + ui+1) + 6u2

i + u2
i+1),

to be compared with the simple value u2
i that would arise in a finite

difference discretization when u2 is sampled at mesh point xi. More
complicated f(u) functions in the integral

∫ L
0 f(u)ϕi dx give rise to

much more lengthy expressions, if it is possible to carry out the integral
symbolically at all.

Application of the group finite element method. Let us use the group
finite element method to derive the terms in the difference equation
corresponding to f(u) in the differential equation. We have

∫ L

0
f(u)ϕi dx ≈

∫ L

0
(
∑
j

ϕjf(uj))ϕi dx =
∑
j

(∫ L

0
ϕiϕj dx

)
f(uj) .

We recognize this expression as the mass matrix M , arising from∫
ϕiϕj dx, times the vector f = (f(u0), f(u1), . . . ,): Mf . The associ-

ated terms in the difference equations are, for P1 elements,

h

6 (f(ui−1) + 4f(ui) + f(ui+1)) .

Occasionally, we want to interpret this expression in terms of finite
differences, and to this end a rewrite of this expression is convenient:

h

6 (f(ui−1) + 4f(ui) + f(ui+1)) = h[f(u)− h2

6 DxDxf(u)]i .

That is, the finite element treatment of f(u) (when using a group finite
element method) gives the same term as in a finite difference approach,

10.6 Symbolic nonlinear finite element equations 377

f(ui), minus a diffusion term which is the 2nd-order discretization of
1
6h

2f ′′(xi).
We may lump the mass matrix through integration with the Trape-

zoidal rule so that M becomes diagonal in the finite element method. In
that case the f(u) term in the differential equation gives rise to a single
term hf(ui), just as in the finite difference method.

10.6.3 Numerical integration of nonlinear terms by hand

Let us reconsider a term
∫
f(u)v dx as treated in the previous section,

but now we want to integrate this term numerically. Such an approach
can lead to easy-to-interpret formulas if we apply a numerical integration
rule that samples the integrand at the node points xi only, because at
such points, ϕj(xi) = 0 if j 6= i, which leads to great simplifications.

The term in question takes the form∫ L

0
f(
∑
k

ukϕk)ϕi dx .

Evaluation of the integrand at a node x` leads to a collapse of the sum∑
k ukϕk to one term because∑

k

ukϕk(x`) = u` .

f(
∑
k

uk ϕk(x`)︸ ︷︷ ︸
δk`

)ϕi(x`)︸ ︷︷ ︸
δi`

= f(u`)δi`,

where we have used the Kronecker delta: δij = 0 if i 6= j and δij = 1 if
i = j.

Considering the Trapezoidal rule for integration, where the integration
points are the nodes, we have

∫ L

0
f(
∑
k

ukϕk(x))ϕi(x) dx ≈ h
Nn∑
`=0

f(u`)δi` − C = hf(ui) .

This is the same representation of the f term as in the finite difference
method. The term C contains the evaluations of the integrand at the
ends with weight 1

2 , needed to make a true Trapezoidal rule:

378 10 Nonlinear problems

C = h

2 f(u0)ϕi(0) + h

2 f(uNn−1)ϕi(L) .

The answer hf(ui) must therefore be multiplied by 1
2 if i = 0 or i = Nn−1.

Note that C = 0 for i = 1, . . . , Nn − 2.
One can alternatively use the Trapezoidal rule on the reference cell

and assemble the contributions. It is a bit more labor in this context, but
working on the reference cell is safer as that approach is guaranteed to
handle discontinuous derivatives of finite element functions correctly (not
important in this particular example), while the rule above was derived
with the assumption that f is continuous at the integration points.

The conclusion is that it suffices to use the Trapezoidal rule if one
wants to derive the difference equations in the finite element method
and make them similar to those arising in the finite difference method.
The Trapezoidal rule has sufficient accuracy for P1 elements, but for P2
elements one should turn to Simpson’s rule.

10.6.4 Discretization of a variable coefficient Laplace term

Turning back to the model problem (10.50), it remains to calculate the
contribution of the (αu′)′ and boundary terms to the difference equations.
The integral in the variational form corresponding to (αu′)′ is∫ L

0
α(
∑
k

ckψk)ψ′iψ′j dx .

Numerical integration utilizing a value of
∑
k ckψk from a previous itera-

tion must in general be used to compute the integral. Now our aim is to
integrate symbolically, as much as we can, to obtain some insight into how
the finite element method approximates this term. To be able to derive
symbolic expressions, we must either turn to the group finite element
method or numerical integration in the node points. Finite element basis
functions ϕi are now used.

Group finite element method. We set α(u) ≈
∑
k α(uk)ϕk, and then

we write

∫ L

0
α(
∑
k

ckϕk)ϕ′iϕ′j dx ≈
∑
k

(
∫ L

0
ϕkϕ

′
iϕ
′
j dx︸ ︷︷ ︸

Li,j,k

)α(uk) =
∑
k

Li,j,kα(uk) .

10.6 Symbolic nonlinear finite element equations 379

Further calculations are now easiest to carry out in the reference cell.
With P1 elements we can compute Li,j,k for the two k values that are
relevant on the reference cell. Turning to local indices, one gets

L
(e)
r,s,t = 1

2h

(
1 −1
−1 1

)
, t = 0, 1,

where r, s, t = 0, 1 are indices over local degrees of freedom in the reference
cell (i = q(e, r), j = q(e, s), and k = q(e, t)). The sum

∑
k Li,j,kα(uk)

at the cell level becomes
∑1
t=0 L

(e)
r,s,tα(ũt), where ũt is u(xq(e,t)), i.e., the

value of u at local node number t in cell number e. The element matrix
becomes

1
2(α(ũ0) + α(ũ(1))) 1

h

(
1 −1
−1 1

)
. (10.92)

As usual, we employ a left-to-right numbering of cells and nodes. Row
number i in the global matrix gets contributions from the first row of
the element matrix in cell i and the last row of the element matrix in
cell i− 1. In cell number i− 1 the sum α(ũ0) + α(ũ(1)) corresponds to
α(ui−1) + α(ui). The same sum becomes α(ui) + α(ui+1) in cell number
i. We can with this insight assemble the contributions to row number i
in the global matrix:

1
2h(−(α(ui−1)+α(ui)), α(ui−1)+2α(ui)+α(ui+1), α(ui)+α(ui+1)) .

Multiplying by the vector of unknowns ui results in a formula that can
be arranged to

− 1
h

(1
2(α(ui) + α(ui+1))(ui+1 − ui)−

1
2(α(ui−1) + α(ui))(ui − ui−1)),

(10.93)
which is nothing but the standard finite difference discretization of
−(α(u)u′)′ with an arithmetic mean of α(u) (and the usual factor h
because of the integration in the finite element method).

Numerical integration at the nodes. Instead of using the group finite
element method and exact integration we can turn to the Trapezoidal
rule for computing

∫ L
0 α(

∑
k ukϕk)ϕ′iϕ′j dx, again at the cell level since

that is most convenient when we deal with discontinuous functions ϕ′i:

380 10 Nonlinear problems

∫ 1

−1
α(
∑
t

ũtϕ̃t)ϕ̃′rϕ̃′s
h

2dX =
∫ 1

−1
α(

1∑
t=0

ũtϕ̃t)
2
h

dϕ̃r
dX

2
h

dϕ̃s
dX

h

2dX

= 1
2h(−1)r(−1)s

∫ 1

−1
α(

1∑
t=0

utϕ̃t(X))dX

≈ 1
2h(−1)r(−1)sα(

1∑
t=0

ϕ̃t(−1)ũt) + α(
1∑
t=0

ϕ̃t(1)ũt)

= 1
2h(−1)r(−1)s(α(ũ0) + α(ũ(1))) . (10.94)

The element matrix in (10.94) is identical to the one in (10.92), showing
that the group finite element method and Trapezoidal integration are
equivalent with a standard finite discretization of a nonlinear Laplace
term (α(u)u′)′ using an arithmetic mean for α: [DxxDxu]i.

Remark about integration in the physical x coordinate

We might comment on integration in the physical coordinate system
too. The common Trapezoidal rule in Section 10.6.3 cannot be used
to integrate derivatives like ϕ′i, because the formula is derived under
the assumption of a continuous integrand. One must instead use the
more basic version of the Trapezoidal rule where all the trapezoids
are summed up. This is straightforward, but I think it is even more
straightforward to apply the Trapezoidal rule on the reference cell
and assemble the contributions.

The term
∫
auv dx in the variational form is linear and gives these

terms in the algebraic equations:

ah

6 (ui−1 + 4ui + ui+1) = ah[u− h2

6 DxDxu]i .

The final term in the variational form is the Neumann condition at the
boundary: Cv(0) = Cϕi(0). With a left-to-right numbering only i = 0
will give a contribution Cv(0) = Cδi0 (since ϕi(0) 6= 0 only for i = 0).

Summary

For the equation

10.7 Exercises 381

−(α(u)u′)′ + au = f(u),

P1 finite elements results in difference equations where

• the term −(α(u)u′)′ becomes −h[Dxα(u)xDxu]i if the group
finite element method or Trapezoidal integration is applied,

• f(u) becomes hf(ui) with Trapezoidal integration or the “mass
matrix” representation h[f(u)− h

6DxDxf(u)]i if computed by a
group finite element method,

• au leads to the “mass matrix” form ah[u− h
6DxDxu]i.

As we now have explicit expressions for the nonlinear difference equa-
tions also in the finite element method, a Picard or Newton method
can be defined as shown for the finite difference method. However, our
efforts in deriving symbolic forms of the difference equations in the fi-
nite element method was motivated by a desire to see how nonlinear
terms in differential equations make the finite element and difference
method different. For practical calculations in computer programs we
apply numerical integration, normally the more accurate Gauss-Legendre
quadrature rules, to the integrals directly. This allows us to easily evaluate
the nonlinear algebraic equations for a given numerical approximation
of u (here denoted u−). To solve the nonlinear algebraic equations we
need to apply the Picard iteration method or Newton’s method to the
variational form directly, as shown next.

10.7 Exercises

Problem 10.1: Determine if equations are nonlinear or not
Classify each term in the following equations as linear or nonlinear.
Assume that u, u, and p are unknown functions and that all other
symbols are known quantities.

1. mu′′ + β|u′|u′ + cu = F (t)
2. ut = αuxx
3. utt = c2∇2u
4. ut = ∇ · (α(u)∇u) + f(x, y)
5. ut + f(u)x = 0
6. ut + u · ∇u = −∇p+ r∇2u, ∇ · u = 0 (u is a vector field)

382 10 Nonlinear problems

7. u′ = f(u, t)
8. ∇2u = λeu

Filename: nonlinear_vs_linear.

Exercise 10.2: Derive and investigate a generalized logistic
model
The logistic model for population growth is derived by assuming a
nonlinear growth rate,

u′ = a(u)u, u(0) = I, (10.95)

and the logistic model arises from the simplest possible choice of a(u):
r(u) = %(1 − u/M), where M is the maximum value of u that the
environment can sustain, and % is the growth under unlimited access to
resources (as in the beginning when u is small). The idea is that a(u) ∼ %
when u is small and that a(t)→ 0 as u→M .

An a(u) that generalizes the linear choice is the polynomial form

a(u) = %(1− u/M)p, (10.96)

where p > 0 is some real number.
a) Formulate a Forward Euler, Backward Euler, and a Crank-Nicolson
scheme for (10.95).
Hint. Use a geometric mean approximation in the Crank-Nicolson scheme:
[a(u)u]n+1/2 ≈ a(un)un+1.
b) Formulate Picard and Newton iteration for the Backward Euler
scheme in a).
c) Implement the numerical solution methods from a) and b). Use
logistic.py to compare the case p = 1 and the choice (10.96).
d) Implement unit tests that check the asymptotic limit of the solutions:
u→M as t→∞.
Hint. You need to experiment to find what “infinite time” is (increases
substantially with p) and what the appropriate tolerance is for testing
the asymptotic limit.
e) Perform experiments with Newton and Picard iteration for the model
(10.96). See how sensitive the number of iterations is to ∆t and p.
Filename: logistic_p.

http://tinyurl.com/znpudbt/logistic.py

10.7 Exercises 383

Problem 10.3: Experience the behavior of Newton’s method

The program Newton_demo.py illustrates graphically each step in New-
ton’s method and is run like

Terminal

Terminal> python Newton_demo.py f dfdx x0 xmin xmax

Use this program to investigate potential problems with Newton’s method
when solving e−0.5x2 cos(πx) = 0. Try a starting point x0 = 0.8 and
x0 = 0.85 and watch the different behavior. Just run

Terminal

Terminal> python Newton_demo.py ’0.2 + exp(-0.5*x**2)*cos(pi*x)’ \
’-x*exp(-x**2)*cos(pi*x) - pi*exp(-x**2)*sin(pi*x)’ \
0.85 -3 3

and repeat with 0.85 replaced by 0.8. Zoom in to see the details. The
program reads

import sys
import matplotlib.pyplot as plt
from numpy import *

from sys import argv
if not len(argv) == 6:

print("usage: > Newton_demo.py f dfx x0 xmin xmax ")
sys.exit(0)

f_str = argv[1]
dfdx_str = argv[2]
x0 = float(argv[3])
xmin = float(argv[4])
xmax = float(argv[5])

i = 0
tol = 1.0e-9
maxit = 100
x = x0
f = eval(f_str, vars())
dfdx = eval(dfdx_str, vars())
xs = []
fs = []
xs.append(x)
fs.append(f)
print("x=%.3e f=%.3e dfdx=%.3e " % (x, f, dfdx))
while abs(f) > tol and i <= maxit and x > xmin and x < xmax :

x = x0 - f/dfdx
f = eval(f_str, vars())
dfdx = eval(dfdx_str, vars())
x0 = x

http://tinyurl.com/znpudbt/Newton_demo.py

384 10 Nonlinear problems

xs.append(x0)
fs.append(f)
i = i+1
print("x=%.3e f=%.3e dfdx=%.3e " % (x, f, dfdx))

x = arange(xmin, xmax, (xmax-xmin)/100.0)
f = eval(f_str, vars())

plt.plot(x, f, "g")
plt.plot(xs, fs, "bo")
plt.plot(xs, fs, "b")
plt.show()

Problem 10.4: Compute the Jacobian of a 2× 2 system

Write up the system (10.18)-(10.19) in the form F (u) = 0, F = (F0, F1),
u = (u0, u1), and compute the Jacobian Ji,j = ∂Fi/∂uj .

Problem 10.5: Solve nonlinear equations arising from a
vibration ODE

Consider a nonlinear vibration problem

mu′′ + bu′|u′|+ s(u) = F (t), (10.97)

where m > 0 is a constant, b ≥ 0 is a constant, s(u) a possibly nonlinear
function of u, and F (t) is a prescribed function. Such models arise from
Newton’s second law of motion in mechanical vibration problems where
s(u) is a spring or restoring force, mu′′ is mass times acceleration, and
bu′|u′| models water or air drag.
a) Rewrite the equation for u as a system of two first-order ODEs, and
discretize this system by a Crank-Nicolson (centered difference) method.
With v = u′, we get a nonlinear term vn+ 1

2 |vn+ 1
2 |. Use a geometric

average for vn+ 1
2 .

b) Formulate a Picard iteration method to solve the system of nonlinear
algebraic equations.
c) Explain how to apply Newton’s method to solve the nonlinear equa-
tions at each time level. Derive expressions for the Jacobian and the
right-hand side in each Newton iteration.
Filename: nonlin_vib.

10.7 Exercises 385

Exercise 10.6: Find the truncation error of arithmetic mean
of products

In Section 10.3.4 we introduce alternative arithmetic means of a product.
Say the product is P (t)Q(t) evaluated at t = tn+ 1

2
. The exact value is

[PQ]n+ 1
2 = P n+ 1

2Qn+ 1
2

There are two obvious candidates for evaluating [PQ]n+ 1
2 as a mean of

values of P and Q at tn and tn+1. Either we can take the arithmetic
mean of each factor P and Q,

[PQ]n+ 1
2 ≈ 1

2(P n + P n+1)1
2(Qn +Qn+1), (10.98)

or we can take the arithmetic mean of the product PQ:

[PQ]n+ 1
2 ≈ 1

2(P nQn + P n+1Qn+1) . (10.99)

The arithmetic average of P (tn+ 1
2
) is O(∆t2):

P (tn+ 1
2
) = 1

2(P n + P n+1) +O(∆t2) .

A fundamental question is whether (10.98) and (10.99) have different
orders of accuracy in ∆t = tn+1− tn. To investigate this question, expand
quantities at tn+1 and tn in Taylor series around tn+ 1

2
, and subtract the

true value [PQ]n+ 1
2 from the approximations (10.98) and (10.99) to see

what the order of the error terms are.

Hint. You may explore sympy for carrying out the tedious calculations.
A general Taylor series expansion of P (t+ 1

2∆t) around t involving just
a general function P (t) can be created as follows:

>>> from sympy import *
>>> t, dt = symbols(’t dt’)
>>> P = symbols(’P’, cls=Function)
>>> P(t).series(t, 0, 4)
P(0) + t*Subs(Derivative(P(_x), _x), (_x,), (0,)) +
t**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/2 +
t**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/6 + O(t**4)
>>> P_p = P(t).series(t, 0, 4).subs(t, dt/2)
>>> P_p
P(0) + dt*Subs(Derivative(P(_x), _x), (_x,), (0,))/2 +
dt**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/8 +
dt**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/48 + O(dt**4)

386 10 Nonlinear problems

The error of the arithmetic mean, 1
2(P (−1

2∆t) + P (−1
2∆t)) for t = 0 is

then

>>> P_m = P(t).series(t, 0, 4).subs(t, -dt/2)
>>> mean = Rational(1,2)*(P_m + P_p)
>>> error = simplify(expand(mean) - P(0))
>>> error
dt**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/8 + O(dt**4)

Use these examples to investigate the error of (10.98) and (10.99) for
n = 0. (Choosing n = 0 is necessary for not making the expressions too
complicated for sympy, but there is of course no lack of generality by
using n = 0 rather than an arbitrary n - the main point is the product
and addition of Taylor series.)
Filename: product_arith_mean.

Problem 10.7: Newton’s method for linear problems

Suppose we have a linear system F (u) = Au− b = 0. Apply Newton’s
method to this system, and show that the method converges in one
iteration. Filename: Newton_linear.

Exercise 10.8: Discretize a 1D problem with a nonlinear
coefficient

We consider the problem

((1 + u2)u′)′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 . (10.100)

a) Discretize (10.100) by a centered finite difference method on a uniform
mesh.

b) Discretize (10.100) by a finite element method with P1 elements of
equal length. Use the Trapezoidal method to compute all integrals. Set
up the resulting matrix system in symbolic form such that the equations
can be compared with those in a).
Filename: nonlin_1D_coeff_discretize.

10.7 Exercises 387

Exercise 10.9: Linearize a 1D problem with a nonlinear
coefficient
We have a two-point boundary value problem

((1 + u2)u′)′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 . (10.101)

a) Construct a Picard iteration method for (10.101) without discretizing
in space.
b) Apply Newton’s method to (10.101) without discretizing in space.
c) Discretize (10.101) by a centered finite difference scheme. Construct a
Picard method for the resulting system of nonlinear algebraic equations.
d) Discretize (10.101) by a centered finite difference scheme. Define the
system of nonlinear algebraic equations, calculate the Jacobian, and set
up Newton’s method for solving the system.
Filename: nonlin_1D_coeff_linearize.

Problem 10.10: Finite differences for the 1D Bratu problem
We address the so-called Bratu problem

u′′ + λeu = 0, x ∈ (0, 1), u(0) = u(1) = 0, (10.102)

where λ is a given parameter and u is a function of x. This is a widely used
model problem for studying numerical methods for nonlinear differential
equations. The problem (10.102) has an exact solution

ue(x) = −2 ln
(

cosh((x− 1
2)θ/2)

cosh(θ/4)

)
,

where θ solves

θ =
√

2λ cosh(θ/4) .

There are two solutions of (10.102) for 0 < λ < λc and no solution for
λ > λc. For λ = λc there is one unique solution. The critical value λc
solves

1 =
√

2λc
1
4 sinh(θ(λc)/4) .

A numerical value is λc = 3.513830719.

388 10 Nonlinear problems

a) Discretize (10.102) by a centered finite difference method.

b) Set up the nonlinear equations Fi(u0, u1, . . . , uNx) = 0 from a). Cal-
culate the associated Jacobian.

c) Implement a solver that can compute u(x) using Newton’s method.
Plot the error as a function of x in each iteration.

d) Investigate whether Newton’s method gives second-order convergence
by computing ||ue−u||/||ue−u−||2 in each iteration, where u is solution
in the current iteration and u− is the solution in the previous iteration.
Filename: nonlin_1D_Bratu_fd.

Problem 10.11: Integrate functions of finite element
expansions

We shall investigate integrals on the form∫ L

0
f(
∑
k

ukϕk(x))ϕi(x) dx, (10.103)

where ϕi(x) are P1 finite element basis functions and uk are unknown
coefficients, more precisely the values of the unknown function u at nodes
xk. We introduce a node numbering that goes from left to right and
also that all cells have the same length h. Given i, the integral only gets
contributions from [xi−1, xi+1]. On this interval ϕk(x) = 0 for k < i− 1
and k > i+ 1, so only three basis functions will contribute:∑

k

ukϕk(x) = ui−1ϕi−1(x) + uiϕi(x) + ui+1ϕi+1(x) .

The integral (10.103) now takes the simplified form∫ xi+1

xi−1

f(ui−1ϕi−1(x) + uiϕi(x) + ui+1ϕi+1(x))ϕi(x) dx .

Split this integral in two integrals over cell L (left), [xi−1, xi], and cell
R (right), [xi, xi+1]. Over cell L, u simplifies to ui−1ϕi−1 + uiϕi (since
ϕi+1 = 0 on this cell), and over cell R, u simplifies to uiϕi + ui+1ϕi+1.
Make a sympy program that can compute the integral and write it out
as a difference equation. Give the f(u) formula on the command line.
Try out f(u) = u2, sin u, expu.

10.7 Exercises 389

Hint. Introduce symbols u_i, u_im1, and u_ip1 for ui, ui−1, and ui+1,
respectively, and similar symbols for xi, xi−1, and xi+1. Find formulas
for the basis functions on each of the two cells, make expressions for u
on the two cells, integrate over each cell, expand the answer and simplify.
You can ask sympy for LATEX code and render it either by creating
a LATEX document and compiling it to a PDF document or by using
http://latex.codecogs.com to display LATEX formulas in a web page.
Here are some appropriate Python statements for the latter purpose:

from sympy import *
...
expr_i holdes the integral as a sympy expression
latex_code = latex(expr_i, mode=’plain’)
Replace u_im1 sympy symbol name by latex symbol u_{i-1}
latex_code = latex_code.replace(’im1’, ’{i-1}’)
Replace u_ip1 sympy symbol name by latex symbol u_{i+1}
latex_code = latex_code.replace(’ip1’, ’{i+1}’)
Escape (quote) latex_code so it can be sent as HTML text
import cgi
html_code = cgi.escape(latex_code)
Make a file with HTML code for displaying the LaTeX formula
f = open(’tmp.html’, ’w’)
Include an image that can be clicked on to yield a new
page with an interactive editor and display area where the
formula can be further edited
text = """
<a href="http://www.codecogs.com/eqnedit.php?latex=%(html_code)s"
target="_blank">

<img src="http://latex.codecogs.com/gif.latex?%(html_code)s"
title="%(latex_code)s"/>

""" % vars()

f.write(text)
f.close()

The formula is displayed by loading tmp.html into a web browser.
Filename: fu_fem_int.

Problem 10.12: Finite elements for the 1D Bratu problem

We address the same 1D Bratu problem as described in Problem 10.10.
a) Discretize (10.12) by a finite element method using a uniform mesh
with P1 elements. Use a group finite element method for the eu term.
b) Set up the nonlinear equations Fi(u0, u1, . . . , uNx) = 0 from a). Cal-
culate the associated Jacobian.
Filename: nonlin_1D_Bratu_fe.

http://latex.codecogs.com

390 10 Nonlinear problems

Exercise 10.13: Discretize a nonlinear 1D heat conduction
PDE by finite differences

We address the 1D heat conduction PDE

%c(T)Tt = (k(T)Tx)x,

for x ∈ [0, L], where % is the density of the solid material, c(T) is the
heat capacity, T is the temperature, and k(T) is the heat conduction
coefficient. T (x, 0) = I(x), and ends are subject to a cooling law:

k(T)Tx|x=0 = h(T)(T − Ts), −k(T)Tx|x=L = h(T)(T − Ts),

where h(T) is a heat transfer coefficient and Ts is the given surrounding
temperature.

a) Discretize this PDE in time using either a Backward Euler or Crank-
Nicolson scheme.

b) Formulate a Picard iteration method for the time-discrete problem
(i.e., an iteration method before discretizing in space).

c) Formulate a Newton method for the time-discrete problem in b).

d) Discretize the PDE by a finite difference method in space. Derive the
matrix and right-hand side of a Picard iteration method applied to the
space-time discretized PDE.

e) Derive the matrix and right-hand side of a Newton method applied
to the discretized PDE in d).
Filename: nonlin_1D_heat_FD.

Exercise 10.14: Use different symbols for different
approximations of the solution

The symbol u has several meanings, depending on the context, as briefly
mentioned in Section 10.5.1. Go through the derivation of the Picard
iteration method in that section and use different symbols for all the
different approximations of u:

• ue(x, t) for the exact solution of the PDE problem
• ue(x)n for the exact solution after time discretization
• un(x) for the spatially discrete solution

∑
j cjψj

10.7 Exercises 391

• un,k for approximation in Picard/Newton iteration no k to un(x)

Filename: nonlin_heat_FE_usymbols.

Exercise 10.15: Derive Picard and Newton systems from a
variational form

We study the multi-dimensional heat conduction PDE

%c(T)Tt = ∇ · (k(T)∇T)

in a spatial domain Ω, with a nonlinear Robin boundary condition

−k(T)∂T
∂n

= h(T)(T − Ts(t)),

at the boundary ∂Ω. The primary unknown is the temperature T , %
is the density of the solid material, c(T) is the heat capacity, k(T) is
the heat conduction, h(T) is a heat transfer coefficient, and Ts(T) is a
possibly time-dependent temperature of the surroundings.
a) Use a Backward Euler or Crank-Nicolson time discretization and
derive the variational form for the spatial problem to be solved at each
time level.
b) Define a Picard iteration method from the variational form at a time
level.
c) Derive expressions for the matrix and the right-hand side of the
equation system that arises from applying Newton’s method to the
variational form at a time level.
d) Apply the Backward Euler or Crank-Nicolson scheme in time first.
Derive a Newton method at the PDE level. Make a variational form of
the resulting PDE at a time level.
Filename: nonlin_heat_FE.

Exercise 10.16: Derive algebraic equations for nonlinear 1D
heat conduction

We consider the same problem as in Exercise 10.15, but restricted to one
space dimension: Ω = [0, L]. Simplify the boundary condition to Tx = 0
(i.e., h(T) = 0). Use a uniform finite element mesh of P1 elements, the

392 10 Nonlinear problems

group finite element method, and the Trapezoidal rule for integration
at the nodes to derive symbolic expressions for the algebraic equations
arising from this diffusion problem. Filename: nonlin_1D_heat_FE.

Exercise 10.17: Differentiate a highly nonlinear term

The operator ∇· (α(u)∇u) with α(u) = |∇u|q appears in several physical
problems, especially flow of Non-Newtonian fluids. The expression |∇u|
is defined as the Euclidean norm of a vector: |∇u|2 = ∇u · ∇u. In a
Newton method one has to carry out the differentiation ∂α(u)/∂cj , for
u =

∑
k ckψk. Show that

∂

∂uj
|∇u|q = q|∇u|q−2∇u · ∇ψj .

Filename: nonlin_differentiate.

Exercise 10.18: Crank-Nicolson for a nonlinear 3D diffusion
equation

Redo Section 10.5.2 when a Crank-Nicolson scheme is used to discretize
the equations in time and the problem is formulated for three spatial
dimensions.
Hint. Express the Jacobian as Ji,j,k,r,s,t = ∂Fi,j,k/∂ur,s,t and observe,
as in the 2D case, that Ji,j,k,r,s,t is very sparse: Ji,j,k,r,s,t 6= 0 only for
r = i± i, s = j ± 1, and t = k ± 1 as well as r = i, s = j, and t = k.
Filename: nonlin_heat_FD_CN_2D.

Exercise 10.19: Find the sparsity of the Jacobian

Consider a typical nonlinear Laplace term like ∇ · α(u)∇u discretized by
centered finite differences. Explain why the Jacobian corresponding to
this term has the same sparsity pattern as the matrix associated with
the corresponding linear term α∇2u.
Hint. Set up the unknowns that enter the difference equation at a point
(i, j) in 2D or (i, j, k) in 3D, and identify the nonzero entries of the
Jacobian that can arise from such a type of difference equation.
Filename: nonlin_sparsity_Jacobian.

10.7 Exercises 393

Problem 10.20: Investigate a 1D problem with a
continuation method

Flow of a pseudo-plastic power-law fluid between two flat plates can be
modeled by

d

dx

(
µ0

∣∣∣∣dudx
∣∣∣∣n−1 du

dx

)
= −β, u′(0) = 0, u(H) = 0,

where β > 0 and µ0 > 0 are constants. A target value of n may be
n = 0.2.

a) Formulate a Picard iteration method directly for the differential
equation problem.

b) Perform a finite difference discretization of the problem in each Picard
iteration. Implement a solver that can compute u on a mesh. Verify that
the solver gives an exact solution for n = 1 on a uniform mesh regardless
of the cell size.

c) Given a sequence of decreasing n values, solve the problem for each
n using the solution for the previous n as initial guess for the Picard
iteration. This is called a continuation method. Experiment with n =
(1, 0.6, 0.2) and n = (1, 0.9, 0.8, . . . , 0.2) and make a table of the number
of Picard iterations versus n.

d) Derive a Newton method at the differential equation level and dis-
cretize the resulting linear equations in each Newton iteration with the
finite difference method.

e) Investigate if Newton’s method has better convergence properties
than Picard iteration, both in combination with a continuation method.

Variational methods for linear
systems 11

A successful family of methods, usually referred to as Conjugate Gradient-
like algorithms, or Krylov subspace methods, can be viewed as Galerkin
or least-squares methods applied to a linear system Ax = b. This view is
different from the standard approaches to deriving the classical Conjugate
Gradient method in the literature. Nevertheless, the fundamental ideas
of least squares and Galerkin approximations from Section 3 can be used
to derive the most popular and successful methods for linear systems,
and this is the topic of the present chapter. Such a view may increase
the general understanding of variational methods and their applicability.

Our exposition focuses on the basic reasoning behind the methods,
and a natural continuation of the material here is provided by several
review texts. Bruaset [8] gives an accessible theoretical overview of a
wide range of Conjugate Gradient-like methods. Barrett et al. [4] present
a collection of computational algorithms and give valuable information
about the practical use of the methods. Saad [27] and Axelsson [3] have
evolved as modern, classical text books on iterative methods in general
for linear systems.

Given a linear system

Ax = b, x, b ∈ Rn, A ∈ Rn,n (11.1)

and a start vector x0, we want to construct an iterative solution method
that produces approximations x1, x2, . . ., which hopefully converge to
the exact solution x. In iteration no. k we seek an approximation

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

396 11 Variational methods for linear systems

xk+1 = xk + u, u =
k∑
j=0

cjqj (11.2)

where qj ∈ Rn are known vectors and cj are constants to be determined.
To be specific, let q0, . . . , qk be basis vectors for Vk+1:

Vk+1 = span{q0, . . . , qk} .

The associated inner product (·, ·) is here the standard Euclidean inner
product on Rn.

The corresponding error in the equation Ax = b, the residual, becomes

rk+1 = b− Axk+1 = rk −
k∑
j=0

cjAqj .

11.1 Conjugate gradient-like iterative methods

11.1.1 The Galerkin method

Galerkin’s method states that the error in the equation, the residual, is
orthogonal to the space Vk+1 where we seek the approximation to the
problem.

The Galerkin (or projection) method aims at finding u =
∑
j cjqj ∈

Vk+1 such that

(rk+1, v) = 0, ∀v ∈ Vk+1 .

This statement is equivalent to the residual being orthogonal to each
basis vector:

(rk+1, qi) = 0, i = 0, . . . , k . (11.3)

Inserting the expression for rk+1 in (11.3) gives a linear system for cj :

k∑
j=0

(Aqi, qj)cj = (rk, qi), i = 0, . . . , k . (11.4)

11.1 Conjugate gradient-like iterative methods 397

11.1.2 The least squares method

The idea of the least-squares method is to minimize the square of the
norm of the residual with respect to the free parameters c0, . . . , ck. That
is, we minimize (rk+1, rk+1):

∂

∂ci
(rk+1, rk+1) = 2(∂r

k+1

∂ci
, rk+1) = 0, i = 0, . . . , k .

Since ∂rk+1/∂ci = −Aqi, this approach leads to the following linear
system:

k∑
j=0

(Aqi, Aqj)cj = (rk+1, Aqi), i = 0, . . . , k . (11.5)

11.1.3 Krylov subspaces

To obtain a complete algorithm, we need to establish a rule to update
the basis B = {q0, . . . , qk} for the next iteration. That is, we need to
compute a new basis vector qk+1 ∈ Vk+2 such that

B = {q0, . . . , qk+1} (11.6)

is a basis for the space Vk+2 that is used in the next iteration. The present
family of methods applies the Krylov space, where Vk is defined as

Vk = span
{
r0, Ar0, A2r0, . . . Ak−1r0

}
. (11.7)

Some frequent names of the associated iterative methods are therefore
Krylov subspace iterations, Krylov projection methods, or simply Krylov
methods. It is a fact that Vk ⊂ Vk+1 and that r0Ar0, . . . Ak−1r0 are
linearly independent vectors.

11.1.4 Computation of the basis vectors

A potential formula for updating qk+1, such that qk+1 ∈ Vk+2, is

qk+1 = rk+1 +
k∑
j=0

βjqj . (11.8)

398 11 Variational methods for linear systems

(Since rk+1 involves Aqk, and qk ∈ Vk+1, multiplying by A raises the
dimension of the Krylov space by 1, so Aqk ∈ Vk+2.) The free parameters
βj can be used to enforce desirable orthogonality properties of q0, . . . , qk+1.
For example, it is convenient to require that the coefficient matrices in
the linear systems for c0, . . . , ck are diagonal. Otherwise, we must solve
a (k + 1)× (k + 1) linear system in each iteration. If k should approach
n, the systems for the coefficients ci are of the same size as our original
system Ax = b! A diagonal matrix, however, ensures an efficient closed
form solution for c0, . . . , ck.

To obtain a diagonal coefficient matrix, we require in Galerkin’s method
that

(Aqi, qj) = 0 when i 6= j,

whereas we in the least-squares method require

(Aqi, Aqj) = 0 when i 6= j .

We can define the inner product

〈u, v〉 ≡ (Au, v) = uTAv, (11.9)

provided A is symmetric and positive definite. Another useful inner
product is

[u, v] ≡ (Au,Av) = uTATAv . (11.10)

These inner products will be referred to as the A product, with the
associated A norm, and the ATA product, with the associated ATA
norm.

The orthogonality condition on the qi vectors are then 〈qk+1, qi〉 = 0
in the Galerkin method and [qk+1, qi] = 0 in the least-squares method,
where i runs from 0 to k. A standard Gram-Schmidt process can be
used for constructing qk+1 orthogonal to q0, . . . , qk. This leads to the
determination of the β0, . . . , βk constants as

βi = 〈r
k+1, qi〉
〈qi, qi〉

(Galerkin) (11.11)

βi = [rk+1, qi]
[qi, qi]

(least squares) (11.12)

for i = 0, . . . , k.

11.1 Conjugate gradient-like iterative methods 399

11.1.5 Computation of a new solution vector

The orthogonality condition on the basis vectors qi leads to the following
solution for c0, . . . , ck:

ci = (rk, qi)
〈qi, qi〉

(Galerkin) (11.13)

ci = (rk, Aqi)
[qi, qi]

(least squares) (11.14)

In iteration k, (rk, qi) = 0 and (rk, Aqi) = 0, for i = 0, . . . , k − 1, in
the Galerkin and least squares case, respectively. Hence, ci = 0, for
i = 0, . . . , k − 1. In other words,

xk+1 = xk + ckqk .

When A is symmetric and positive definite, one can show that also βi = 0,
for 0 = 1, . . . , k − 1, in both the Galerkin and least squares methods
[8]. This means that xk and qk+1 can be updated using only qk and not
the previous q0, . . . , qk−1 vectors. This property has of course dramatic
effects on the storage requirements of the algorithms as the number of
iterations increases.

For the suggested algorithms to work, we must require that the denom-
inators in (11.13) and (11.14) do not vanish. This is always fulfilled for
the least-squares method, while a (positive or negative) definite matrix
A avoids break-down of the Galerkin-based iteration (provided qi 6= 0).

The Galerkin solution method for linear systems was originally devised
as a direct method in the 1950s. After n iterations the exact solution is
found in exact arithmetic, but at a higher cost than when using Gaussian
elimination. Naturally, the method did not receive significant popularity
before researchers discovered (in the beginning of the 1970s) that the
method could produce a good approximation to x for k � n iterations.
The method, called the Conjugate Gradient method, has from then on
caught considerable interest as an iterative scheme for solving linear
systems arising from PDEs discretized such that the coefficient matrix
becomes sparse.

Finally, we mention how to terminate the iteration. The simplest
criterion is ||rk+1|| ≤ εr, where εr is a small prescribed tolerance. Some-
times it is more appropriate to use a relative residual, ||rk+1||/||r0|| ≤ εr.

400 11 Variational methods for linear systems

Termination criteria for Conjugate Gradient-like methods is a subject on
its own [8].

11.1.6 Summary of the least squares method
In the algorithm below, we have summarized the computational steps in
the least-squares method. Notice that we update the residual recursively
instead of using rk = b − Axk in each iteration since we then avoid a
possibly expensive matrix-vector product.

1. given a start vector x0, compute r0 = b− Ax0 and set q0 = r0.
2. for k = 0, 1, 2, . . . until termination criteria are fulfilled:

a. ck = (rk, Aqk)/[qk, qk]
b. xk+1 = xk + ckqk
c. rk+1 = rk − ckAqk
d. if A is symmetric then

i. βk = [rk+1, qk]/[qk, qk]
A. qk+1 = rk+1 − βkqk

e. else
i. βj = [rk+1, qj]/[qj , qj], j = 0, . . . , k
ii. qk+1 = rk+1 −

∑k
j=0 βjqj

Remark. The algorithm above is just a summary of the steps in the
derivation of the least-squares method and should not be directly used
for practical computations without further developments.

11.1.7 Truncation and restart
When A is nonsymmetric, the storage requirements of q0, . . . , qk may be
prohibitively large. It has become a standard trick to either truncate or
restart the algorithm. In the latter case one restarts the algorithm every
K+1-th step, i.e., one aborts the iteration and starts the algorithm again
with x0 = xK . The other alternative is to truncate the sum

∑k
j=0 βjqj

and use only the last K vectors:

xk+1 = xk +
k∑

j=k−K
βjqj .

11.1 Conjugate gradient-like iterative methods 401

Both the restarted and truncated version of the algorithm require storage
of only K + 1 basis vectors qk−K , . . . , qk. The basis vectors are also often
called search direction vectors. The truncated version of the least-squares
algorithm above is widely known as Generalized Minimum Residuals,
shortened as GMRES, or GMRES(K) to explicitly indicate the number of
search direction vectors. In the literature one encounters the name Gen-
eralized Conjugate Residual method, abbreviated CGR, for the restarted
version of Orthomin. When A is symmetric, the method is known under
the name Conjugate Residuals.

11.1.8 Summary of the Galerkin method

In case of Galerkin’s method, we assume that A is symmetric and positive
definite. The resulting computational procedure is the famous Conjugate
Gradient method. Since A must be symmetric, the recursive update of
qk+1 needs only one previous search direction vector qk, that is, βj = 0
for j < k.

1. Given a start vector x0, compute r0 = b− Ax0 and set q0 = r0.
2. for k = 1, 2, . . . until termination criteria are fulfilled:

a. ck = (rk, qk)/〈qk, qk〉
b. xk = xk−1 + ckqk
c. rk = rk−1 − ckAqk
d. βk = 〈rk+1, qk〉/〈qk, qk〉
e. qk+1 = rk+1 − βkqk

The previous remark that the listed algorithm is just a summary of the
steps in the solution procedure, and not an efficient algorithm that should
be implemented in its present form, must be repeated here. In general,
we recommend to rely on some high-quality linear algebra library that
offers an implementation of the Conjugate gradient method.

The computational nature of Conjugate gradient-like
methods
Looking at the Galerkin and least squares algorithms above, one
notice that the matrix A is only used in matrix-vector products.
This means that it is sufficient to store only the nonzero entries of
A. The rest of the algorithms consists of vector operations of the

402 11 Variational methods for linear systems

type y ← ax+ y, the slightly more general variant q ← ax+ y, as
well as inner products.

11.1.9 A framework based on the error

Let us define the error ek = x− xk. Multiplying this equation by A leads
to the well-known relation between the error and the residual for linear
systems:

Aek = rk . (11.15)

Using rk = Aek we can reformulate the Galerkin and least-squares
methods in terms of the error. The Galerkin method can then be written

(rk, qi) = (Aek, qi) = 〈ek, qi〉 = 0, i = 0, . . . , k . (11.16)

For the least-squares method we obtain

(rk, Aqi) = [ek, qi] = 0, i = 0, . . . , k . (11.17)

This means that

〈ek, v〉 = 0 ∀v ∈ Vk+1 (Galerkin)
[ek, v] = 0 ∀v ∈ Vk+1 (least-squares)

In other words, the error is A-orthogonal to the space Vk+1 in the
Galerkin method, whereas the error is ATA-orthogonal to Vk+1 in the
least-squares method. When the error is orthogonal to a space, we find the
best approximation in the associated norm to the solution in that space.
Specifically here, it means that for a symmetric and positive definite A,
the Conjugate gradient method finds the optimal adjustment in Vk+1 of
the vector xk (in the A-norm) in the update for xk+1. Similarly, the least
squares formulation finds the optimal adjustment in Vk+1 measured in
the ATA-norm.

A lot of Conjugate gradient-like methods were developed in the 1980s
and 1990s, some of the most popular methods do not fit directly into
the framework presented here. The theoretical similarities between the
methods are covered in [8], whereas we refer to [4] for algorithms and prac-
tical comments related to widespread methods, such as the SYMMLQ

11.2 Preconditioning 403

method (for symmetric indefinite systems), the Generalized Minimal
Residual (GMRES) method, the BiConjugate Gradient (BiCG) method,
the Quasi-Minimal Residual (QMR) method, and the BiConjugate Gra-
dient Stabilized (BiCGStab) method. When A is symmetric and positive
definite, the Conjugate gradient method is the optimal choice with re-
spect to computational efficiency, but when A is nonsymmetric, the
performance of the methods is strongly problem dependent, and one
needs to experiment.

11.2 Preconditioning

11.2.1 Motivation and Basic Principles

The Conjugate Gradient method has been subject to extensive analysis,
and its convergence properties are well understood. To reduce the initial
error e0 = x − x0 with a factor 0 < ε � 1 after k iterations, or more
precisely, ||ek||A ≤ ε||e0||A, it can be shown that k is bounded by

1
2 ln 2

ε

√
κ,

where κ is the ratio of the largest and smallest eigenvalue of A. The
quantity κ is commonly referred to as the spectral condition number.
Common finite element and finite difference discretizations of Poisson-like
PDEs lead to κ ∼ h−2, where h denotes the mesh size. This implies that
the Conjugate Gradient method converges slowly in PDE problems with
fine meshes, as the number of iterations is proportional to h−1.

To speed up the Conjugate Gradient method, we should manipulate
the eigenvalue distribution. For instance, we could reduce the condition
number κ. This can be achieved by so-called preconditioning. Instead
of applying the iterative method to the system Ax = b, we multiply by
a matrix M−1 and apply the iterative method to the mathematically
equivalent system

M−1Ax = M−1b . (11.18)

The aim now is to construct a nonsingular preconditioning matrix or
algorithm such that M−1A has a more favorable condition number than
A. We remark that we use the notation M−1 here to indicate that it
should resemble the inverse of the matrix A.

404 11 Variational methods for linear systems

For increased flexibility we can write M−1 = CLCR and transform the
system according to

CLACRy = CLb, y = C−1
R x, (11.19)

where CL is the left and CR is the right preconditioner. If the original
coefficient matrix A is symmetric and positive definite, CL = CT

R leads
to preservation of these properties in the transformed system. This
is important when applying the Conjugate Gradient method to the
preconditioned linear system. Even if A and M are symmetric and
positive definite, M−1A does not necessarily inherit these properties.
It appears that for practical purposes one can express the iterative
algorithms such that it is sufficient to work with a single preconditioning
matrix M only [4, 8]. We shall therefore speak of preconditioning in
terms of the left preconditioner M in the following.

11.2.2 Use of the preconditioning matrix in the iterative
methods

Optimal convergence for the Conjugate Gradient method is achieved
when the coefficient matrix M−1A equals the identity matrix I and
only one iteration is required. In the algorithm we need to perform
matrix-vector products M−1Au for an arbitrary u ∈ Rn. This means
that we have to solve a linear system with M as coefficient matrix in
each iteration since we implement the product y = M−1Au in a two step
fashion: First we compute v = Au and then we solve the linear system
My = v for y. The optimal choice M = A therefore involves the solution
of Ay = v in each iteration, which is a problem of the same complexity
as our original system Ax = b. The strategy must hence be to compute
an M−1 ≈ A−1 such that the algorithmic operations involved in the
inversion of M are cheap.

The preceding discussion motivates the following demands on the
preconditioning matrix M :

• M−1 should be a good approximation to A,
• M−1 should be inexpensive to compute,
• M−1 should be sparse in order to minimize storage requirements,
• linear systems with M as coefficient matrix must be efficiently solved.

Regarding the last property, such systems must be solved in O(n) op-
erations, that is, a complexity of the same order as the vector updates

11.2 Preconditioning 405

in the Conjugate Gradient-like algorithms. These four properties are
contradictory and some sort of compromise must be sought.

11.2.3 Classical iterative methods as preconditioners

The simplest possible iterative method for solving Ax = b is

xk+1 = xk + rk .

Applying this method to the preconditioned system M−1Ax = M−1b
results in the scheme

xk+1 = xk +M−1rk,

which is nothing but the formula for classical iterative methods such
as the Jacobi method, the Gauss-Seidel method, SOR (Successive over-
relaxation), and SSOR (Symmetric successive over-relaxation). This
motivates for choosing M as one iteration of these classical methods. In
particular, these methods provide simple formulas for M :

• Jacobi preconditioning: M = D.
• Gauss-Seidel preconditioning: M = D + L.
• SOR preconditioning: M = ω−1D + L.
• SSOR preconditioning:M = (2−ω)−1 (ω−1D + L

) (
ω−1D

)−1 (
ω−1D + U

)
Turning our attention to the four requirements of the preconditioning
matrix, we realize that the suggested M matrices do not demand addi-
tional storage, linear systems with M as coefficient matrix are solved
effectively in O(n) operations, and M needs no initial computation. The
only questionable property is how well M approximates A, and that is
the weak point of using classical iterative methods as preconditioners.

The Conjugate Gradient method can only utilize the Jacobi and SSOR
preconditioners among the classical iterative methods, because the M
matrix in that case is on the form M−1 = CLC

T
L , which is necessary

to ensure that the coefficient matrix of the preconditioned system is
symmetric and positive definite. For certain PDEs, like the Poisson
equation, it can be shown that the SSOR preconditioner reduces the
condition number with an order of magnitude, i.e., from O(h−2) to
O(h−1), provided we use the optimal choice of the relaxation parameter
ω. According to experiments, however, the performance of the SSOR
preconditioned Conjugate Gradient method is not very sensitive to the

406 11 Variational methods for linear systems

choice of ω. We refer to [4, 8] for more information about classical iterative
methods as preconditioners.

11.2.4 Incomplete factorization preconditioners

Imagine that we choose M = A and solve systems My = v by a direct
method. Such methods typically first compute the LU factorization M =
L̄Ū and thereafter perform two triangular solves. The lower and upper
triangular factors L̄ and Ū are computed from a Gaussian elimination
procedure. Unfortunately, L̄ and Ū contain nonzero values, so-called fill-
in, in many locations where the original matrix A contains zeroes. This
decreased sparsity of L̄ and Ū increases both the storage requirements
and the computational efforts related to solving systems My = v. An
idea to improve the situation is to compute sparse versions of the factors
L̄ and Ū . This is achieved by performing Gaussian elimination, but
neglecting the fill-in (!). In this way, we can compute approximate factors
L̂ and Û that become as sparse as A. The storage requirements are hence
only doubled by introducing a preconditioner, and the triangular solves
become an O(n) operation since the number of nonzeroes in the L̂ and
Û matrices (and A) is O(n) when the underlying PDE is discretized
by finite difference or finite element methods. We call M = L̂Û an
incomplete LU factorization preconditioner, often just referred to as the
ILU preconditioner.

Instead of throwing away all fill-in entries, we can add them to the
main diagonal. This yields the modified incomplete LU factorization
(MILU). One can also allow a certain amount of fill-in to improve the
quality of the preconditioner, at the expense of more storage for the
factors. Libraries offering ILU preconditioners will then often have a
tolerance for how small a fill-in element in the Gaussian elimination must
be to be dropped, and a parameter that governs the maximum number
of nonzeros per row in the factors. A popular ILU implementation is the
open source C code SuperLU. This preconditioner is available to Python
programmers through the scipy.sparse.linalg.spilu function.

The general algorithm for MILU preconditioning follows the steps
of traditional exact Gaussian elimination, except that we restrict the
computations to the nonzero entries in A. The factors L̂ and Û can
be stored directly in the sparsity structure of A, that is, the algorithm
overwrites a copy M of A with its MILU factorization. The steps in the
MILU factorizations are listed below.

https://fs.hlrs.de/projects/craydoc/docs_merged/books/S-6532-30/S-6532-30.pdf

11.2 Preconditioning 407

1. Given a sparsity pattern as an index set I, copy Mi,j ← Ai,j , i, j =
1, . . . , n

2. for k = 1, 2, . . . , n
a. for i = k + 1, . . . , n

•if (i, k) ∈ I then
i. Mi,k ←Mi,k/Mk,k

•else
i. Mi,k = 0

•r = Mi,k

•for j = k + 1, . . . , n
–if j = i then

·Mi,j ←Mi,j − rMk,j +
∑n
p=k+1 (Mi,p − rMk,p)

–else
·if (i, j) ∈ I then

·Mi,j ←Mi,j − rMk,j

·else
·Mi,j = 0

We also remark here that the algorithm above needs careful refinement
before it should be implemented in a code. For example, one will not run
through a series of (i, j) indices and test for each of them if (i, j) ∈ I.
Instead one should run more directly through the sparsity structure of
A. More comprehensive material on how to solve sparse linear systems
can be found in e.g. [27] and [12].

11.2.5 Preconditioners developed for solving PDE problems

The above mentioned preconditioners are general purpose preconditioners
that may be applied to solve any linear system and may speed up
the solution process significantly. For linear systems arising from PDE
problems there are however often more efficient preconditioners that
exploit the fact that the matrices come from discretized PDEs. These
preconditioners often enable the solution of linear systems involving
millions of unknowns in a matter of seconds or less on a regular desktop

408 11 Variational methods for linear systems

computer. This means that solving these huge linear systems often takes
less time than printing them file. Moreover, these preconditioners may
be used on parallel computers in a scalable fashion such that simulations
involving billions of degrees of freedom are available e.g. by cloud services
or super-computing centers.

The most efficient preconditioners are the so-called multilevel precondi-
tioners (e.g. multigrid and domain decomposition) which in particular for
Poisson type problems yields error reduction of a factor 10 per iteration
and hence a typical iteration count of the iterative method of 5-10. These
preconditioners utilize the fact that different parts of the solution can be
localized or represented on a coarser resolution during the computations
before being glued together to a close match to the true solution. While
a proper description of these methods are beyond the scope here, we
mention that black-box preconditioners are implemented in open source
frameworks such as PETSc, Hypre, and Trilinos and these frameworks
are used by most available finite element software (such as FEniCS).
Many books have been devoted to the topic, c.f. e.g. [28, 30]

While these multilevel preconditioners are available and efficient for
PDEs similar to the Poisson problem there is currently no black-box
solver that handles general systems of PDEs. We mention, however, a
promising approach for tackling some systems of PDEs, namely the so-
called operator preconditioning framework [24]. This framework utilize
tools from functional analysis to deduct appropriate block preconditioners
typically involving blocks composed of for instance multilevel precondi-
tioners in a systematic construction. The framework has extended the
use of Poisson type multilevel preconditioners to many systems of PDEs
with success.

Useful formulas A

A.1 Finite difference operator notation

All the finite differences here, and their corresponding operator notation.
take place on a time mesh for a function of time. The same formulas
apply in space too (just replace t by a spatial coordinate and add spatial
coordinates in u).

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

410 A Useful formulas

u′(tn) ≈ [Dtu]n = un+ 1
2 − un− 1

2

∆t
(A.1)

u′(tn) ≈ [D2tu]n = un+1 − un−1

2∆t (A.2)

u′(tn) ≈ [D−t u]n = un − un−1

∆t
(A.3)

u′(tn) ≈ [D+
t u]n = un+1 − un

∆t
(A.4)

u′(tn+θ) ≈ [D̄tu]n+θ = un+1 − un

∆t
(A.5)

u′(tn) ≈ [D2−
t u]n = 3un − 4un−1 + un−2

2∆t (A.6)

u′′(tn) ≈ [DtDtu]n = un+1 − 2un + un−1

∆t2
(A.7)

u(tn+ 1
2
) ≈ [ut]n+ 1

2 = 1
2(un+1 + un) (A.8)

u(tn+ 1
2
)2 ≈ [u2t,g]n+ 1

2 = un+1un (A.9)

u(tn+ 1
2
) ≈ [ut,h]n+ 1

2 = 2
1

un+1 + 1
un

(A.10)

u(tn+θ) ≈ [ut,θ]n+θ = θun+1 + (1− θ)un, (A.11)
tn+θ = θtn+1 + (1− θ)tn−1 (A.12)

A.2 Truncation errors of finite difference approximations

A.3 Finite differences of exponential functions 411

u′e(tn) = [Dtue]n +Rn = u
n+ 1

2e − un−
1
2e

∆t
+Rn,

Rn = − 1
24u

′′′
e (tn)∆t2 +O(∆t4) (A.13)

u′e(tn) = [D2tue]n +Rn = un+1
e − un−1

e
2∆t +Rn,

Rn = −1
6u
′′′
e (tn)∆t2 +O(∆t4) (A.14)

u′e(tn) = [D−t ue]n +Rn = une − un−1
e

∆t
+Rn,

Rn = −1
2u
′′
e(tn)∆t+O(∆t2) (A.15)

u′e(tn) = [D+
t ue]n +Rn = un+1

e − une
∆t

+Rn,

Rn = −1
2u
′′
e(tn)∆t+O(∆t2) (A.16)

u′e(tn+θ) = [D̄tue]n+θ +Rn+θ = un+1
e − une
∆t

+Rn+θ,

Rn+θ = −1
2(1− 2θ)u′′e(tn+θ)∆t+ 1

6((1− θ)3 − θ3)u′′′e (tn+θ)∆t2+

O(∆t3) (A.17)

u′e(tn) = [D2−
t ue]n +Rn = 3une − 4un−1

e + un−2
e

2∆t +Rn,

Rn = 1
3u
′′′
e (tn)∆t2 +O(∆t3) (A.18)

u′′e(tn) = [DtDtue]n +Rn = un+1
e − 2une + un−1

e
∆t2

+Rn,

Rn = − 1
12u

′′′′
e (tn)∆t2 +O(∆t4) (A.19)

ue(tn+θ) = [uet,θ]n+θ +Rn+θ = θun+1
e + (1− θ)une +Rn+θ,

Rn+θ = −1
2u
′′
e(tn+θ)∆t2θ(1− θ) +O(∆t3) . (A.20)

A.3 Finite differences of exponential functions

Complex exponentials. Let un = exp (iωn∆t) = eiωtn .

412 A Useful formulas

[DtDtu]n = un
2
∆t

(cosω∆t− 1) = − 4
∆t

sin2
(
ω∆t

2

)
, (A.21)

[D+
t u]n = un

1
∆t

(exp (iω∆t)− 1), (A.22)

[D−t u]n = un
1
∆t

(1− exp (−iω∆t)), (A.23)

[Dtu]n = un
2
∆t

i sin
(
ω∆t

2

)
, (A.24)

[D2tu]n = un
1
∆t

i sin (ω∆t) . (A.25)

Real exponentials. Let un = exp (ωn∆t) = eωtn .

[DtDtu]n = un
2
∆t

(cosω∆t− 1) = − 4
∆t

sin2
(
ω∆t

2

)
, (A.26)

[D+
t u]n = un

1
∆t

(exp (iω∆t)− 1), (A.27)

[D−t u]n = un
1
∆t

(1− exp (−iω∆t)), (A.28)

[Dtu]n = un
2
∆t

i sin
(
ω∆t

2

)
, (A.29)

[D2tu]n = un
1
∆t

i sin (ω∆t) . (A.30)

A.4 Finite differences of tn

The following results are useful when checking if a polynomial term in a
solution fulfills the discrete equation for the numerical method.

[D+
t t]n = 1, (A.31)

[D−t t]n = 1, (A.32)
[Dtt]n = 1, (A.33)

[D2tt]n = 1, (A.34)
[DtDtt]n = 0 . (A.35)

The next formulas concern the action of difference operators on a t2
term.

A.4 Finite differences of tn 413

[D+
t t

2]n = (2n+ 1)∆t, (A.36)
[D−t t2]n = (2n− 1)∆t, (A.37)

[Dtt
2]n = 2n∆t, (A.38)

[D2tt
2]n = 2n∆t, (A.39)

[DtDtt
2]n = 2, (A.40)

Finally, we present formulas for a t3 term:These must be controlled
against lib.py. Use tn instead of n∆t??

[D+
t t

3]n = 3(n∆t)2 + 3n∆t2 +∆t2, (A.41)
[D−t t3]n = 3(n∆t)2 − 3n∆t2 +∆t2, (A.42)

[Dtt
3]n = 3(n∆t)2 + 1

4∆t
2, (A.43)

[D2tt
3]n = 3(n∆t)2 +∆t2, (A.44)

[DtDtt
3]n = 6n∆t, (A.45)

A.4.1 Software

Application of finite difference operators to polynomials and exponential
functions, resulting in the formulas above, can easily be computed by
some sympy code:

from sympy import *
t, dt, n, w = symbols(’t dt n w’, real=True)

Finite difference operators

def D_t_forward(u):
return (u(t + dt) - u(t))/dt

def D_t_backward(u):
return (u(t) - u(t-dt))/dt

def D_t_centered(u):
return (u(t + dt/2) - u(t-dt/2))/dt

def D_2t_centered(u):
return (u(t + dt) - u(t-dt))/(2*dt)

def D_t_D_t(u):

414 A Useful formulas

return (u(t + dt) - 2*u(t) + u(t-dt))/(dt**2)

op_list = [D_t_forward, D_t_backward,
D_t_centered, D_2t_centered, D_t_D_t]

def ft1(t):
return t

def ft2(t):
return t**2

def ft3(t):
return t**3

def f_expiwt(t):
return exp(I*w*t)

def f_expwt(t):
return exp(w*t)

func_list = [ft1, ft2, ft3, f_expiwt, f_expwt]

To see the results, one can now make a simple loop like

for func in func_list:
for op in op_list:

f = func
e = op(f)
e = simplify(expand(e))
print(e)
if func in [f_expiwt, f_expwt]:

e = e/f(t)
e = e.subs(t, n*dt)
print(expand(e))
print(factor(simplify(expand(e))))

References

[1] M. S. Alnæs and K.-A. Mardal. On the efficiency of symbolic
computations combined with code generation for finite element
methods. ACM Transactions on Mathematical Software (TOMS),
37(1):6, 2010.

[2] D. N. Arnold and A. Logg. Periodic table of the finite elements.
SIAM News, 47(9):212, 2014.

[3] O. Axelsson. Iterative Solution Methods. Cambridge University
Press, 1996.

[4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates
for the Solution of Linear Systems: Building Blocks for Iterative
Methods. SIAM, second edition, 1994. http://www.netlib.org/
linalg/html_templates/Templates.html.

[5] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications
in Solid Mechanics. Cambridge University Press, third edition, 2007.

[6] S. Brenner and R. Scott. The Mathematical Theory of Finite Element
Methods. Springer, third edition, 2007.

[7] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods,
volume 15. Springer Science & Business Media, 2012.

[8] A. M. Bruaset. A Survey of Preconditioned Iterative Methods. Chap-
man and Hall, 1995.

[9] H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast
Iterative Solvers: with Applications in Incompressible Fluid Dynamics.
Oxford University Press, second edition, 2015.

[10] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational

© 2019, Hans Petter Langtangen, Kent-Andre Mardal.
Released under CC Attribution 4.0 license

http://www.netlib.org/linalg/html_templates/Templates.html
http://www.netlib.org/linalg/html_templates/Templates.html

416 REFERENCES

Differential Equations. Cambridge University Press, second edition,
1996.

[11] P. M. Gresho and R. L. Sani. Incompressible flow and the finite
element method. John Wiley and Sons, Inc., New York, NY (United
States), 1998.

[12] W. Hackbusch. Iterative solution of large sparse systems of equations,
volume 95. Springer, 1994.

[13] C. Johnson. Numerical Solution of Partial Differential Equations by
the Finite Element Method. Dover, 2009.

[14] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations.
SIAM, 1995.

[15] R. C. Kirby. Fast simplicial finite element algorithms using bernstein
polynomials. Numerische Mathematik, 117(4):631–652, 2011.

[16] R. C. Kirby, A. Logg, M. E. Rognes, , and A. R. Terrel. Common
and unusual finite elements. In A. Logg, K.-A. Mardal, and G. N.
Wells, editors, Automated Solution of Differential Equations by the
Finite Element Method, pages 95–119. Springer, 2012.

[17] R. C. Kirby and K.-A. Mardal. Constructing general reference
finite elements. In A. Logg, K.-A. Mardal, and G. N. Wells, editors,
Automated Solution of Differential Equations by the Finite Element
Method, pages 121–132. Springer, 2012.

[18] H. P. Langtangen. Computational Partial Differential Equations -
Numerical Methods and Diffpack Programming. Texts in Computa-
tional Science and Engineering. Springer, second edition, 2003.

[19] H. P. Langtangen and A. Logg. Solving PDEs in Hours – The
FEniCS Tutorial Volume II. 2016. http://hplgit.github.io/
fenics-tutorial/doc/web/.

[20] H. P. Langtangen and A. Logg. Solving PDEs in Minutes – The
FEniCS Tutorial Volume I. 2016. http://hplgit.github.io/
fenics-tutorial/doc/web/.

[21] H. P. Langtangen, K.-A. Mardal, and R. Winther. Numerical meth-
ods for incompressible viscous flow. Advances in water Resources,
25(8-12):1125–1146, 2002.

[22] M. G. Larson and F. Bengzon. The Finite Element Method: Theory,
Implementation, and Applications. Texts in Computational Science
and Engineering. Springer, 2013.

[23] A. Logg, K.-A. Mardal, and G. N. Wells. Automated Solution of
Differential Equations by the Finite Element Method. Springer, 2012.

[24] K.-A. Mardal and R. Winther. Preconditioning discretizations of
systems of partial differential equations. Numerical Linear Algebra

http://hplgit.github.io/fenics-tutorial/doc/web/
http://hplgit.github.io/fenics-tutorial/doc/web/
http://hplgit.github.io/fenics-tutorial/doc/web/
http://hplgit.github.io/fenics-tutorial/doc/web/

REFERENCES 417

with Applications, 18(1):1–40, 2011.
[25] M. Mortensen, H. P. Langtangen, and G. N. Wells. A FEniCS-

based programming framework for modeling turbulent flow by the
Reynolds-averaged Navier-Stokes equations. Advances in Water
Resources, 34(9), 2011.

[26] A. Quarteroni and A. Valli. Numerical Approximation of Partial
Differential Equations. Springer, 1994.

[27] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM,
second edition, 2003. http://www-users.cs.umn.edu/~saad/
IterMethBook_2ndEd.pdf.

[28] B. Smith, P. Bjorstad, and W. D. Gropp. Domain decomposition:
parallel multilevel methods for elliptic partial differential equations.
Cambridge university press, 2004.

[29] V. Thomée. Galerkin finite element methods for parabolic problems.
1984.

[30] U. Trottenberg, C.W. Oosterlee, and A. Schuller. Multigrid. Elsevier,
2000.

[31] S. Turek. Efficient Solvers for Incompressible Flow Problems: An Al-
gorithmic and Computational Approach, volume 6. Springer Science
& Business Media, 1999.

[32] A. Tveito and R. Winther. Introduction to partial differential equa-
tions: a computational approach. Springer Science & Business Media;,
2004.

[33] O. C. Zienkiewicz and R. L. Taylor. The finite element method.
McGraw-hill London, 1977.

http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

Index

ATA = AT b (normal equations),
27

affine mapping, 90, 125
approximation

by sines, 34
collocation, 39
interpolation, 39
of functions, 18
of general vectors, 14
of vectors in the plane, 11

assembly, 87

basis vector, 11
Bernstein(interpolating) polyno-

mial, 49

cell, 111
cells list, 113
chapeau function, 82
Chebyshev nodes, 45
collocation method (approxima-

tion), 39
continuation method, 372, 393

convection-diffusion, 174, 233

degree of freedom, 111
dof map, 111
dof_map list, 113

edges, 124
element matrix, 87
essential boundary condition, 167
Expression, 129

faces, 124
FEniCS, 127
finite element basis function, 82
finite element expansion

reference element, 112
finite element mesh, 75
finite element, definition, 111
fixed-point iteration, 327
FunctionSpace, 129

Galerkin method
functions, 20
vectors, 13, 17

Gauss-Legendre quadrature, 119

419

420 INDEX

group finite element method, 376

hat function, 82
Hermite polynomials, 116

ILU, 406
incomplete factorization, 406
integration by parts, 154
internal node, 77
interpolation method (approxima-

tion), 39
isoparametric mapping, 125

Kronecker delta, 42, 78
Krylov space, 397

Lagrange (interpolating) polyno-
mial, 42

latex.codecogs.com web site,
388

least squreas method
vectors, 12

linear elements, 82
linear solvers

conjugate gradients, 401
GCR, 400
generalized conjugate residu-

als, 400
GMRES, 400
minimum residuals, 400
preconditioning, 403

linear systems
preconditioned, 403

linearization, 327
explicit time integration, 324
fixed-point iteration, 327
Picard iteration, 327
successive substitutions, 327

lumped mass matrix, 110, 257

mapping of reference cells

affine mapping, 90
isoparametric mapping, 125

mass lumping, 110, 257
mass matrix, 110, 253, 257
mesh

finite elements, 75
method of weighted residuals, 146
Midpoint rule, 118
MILU, 406
mixed finite elements, 285

natural boundary condition, 167
Newton-Cotes rules, 118
norm, 11
normal equations, 27
numerical integration

Midpoint rule, 118
Newton-Cotes formulas, 118
Simpson’s rule, 118
Trapezoidal rule, 118

online rendering of LATEX formulas,
388

P1 element, 82
P2 element, 82
Petrov-Galerkin methods, 233
Picard iteration, 327
preconditioning, 403

classical iterations, 405
product approximation technique,

376
project (FEniCS function), 129
projection

functions, 20
vectors, 13, 17

quadratic elements, 82

reference cell, 111
relaxation (nonlinear equations),

332

INDEX 421

residual, 144
Runge’s phenomenon, 45

search (direction) vectors, 400
shared node, 77
simplex elements, 124
simplices, 124
Simpson’s rule, 118
single Picard iteration technique,

328
solve (FEniCS function), 129
sparse matrices, 102
stiffness matrix, 253
stopping criteria (nonlinear prob-

lems), 328, 344
strong form, 155
successive substitutions, 327

tensor product, 59
test function, 3, 148
test space, 148
TestFunction, 129
Trapezoidal rule, 118
trial function, 3, 148
trial space, 148
TrialFunction, 129

variational formulation, 146
vertex, 111
vertices list, 113

weak form, 155
weak formulation, 146
weighted residuals, 146

	Preface
	Second Preface
	Quick overview of the finite element method
	Function approximation by global functions
	Approximation of vectors
	Approximation of planar vectors
	Approximation of general vectors

	Approximation principles
	The least squares method
	The projection (or Galerkin) method
	Example of linear approximation
	Implementation of the least squares method
	Perfect approximation
	The regression method

	Orthogonal basis functions
	Ill-conditioning
	Fourier series
	Orthogonal basis functions
	Numerical computations

	Interpolation
	The interpolation (or collocation) principle
	Lagrange polynomials
	Bernstein polynomials

	Approximation properties and convergence rates
	Approximation of functions in higher dimensions
	2D basis functions as tensor products of 1D functions
	Example on polynomial basis in 2D
	Implementation
	Extension to 3D

	Exercises

	Function approximation by finite elements
	Finite element basis functions
	Elements and nodes
	The basis functions
	Example on quadratic finite element functions
	Example on linear finite element functions
	Example on cubic finite element functions
	Calculating the linear system
	Assembly of elementwise computations
	Mapping to a reference element
	Example on integration over a reference element

	Implementation
	Integration
	Linear system assembly and solution
	Example on computing symbolic approximations
	Using interpolation instead of least squares
	Example on computing numerical approximations
	The structure of the coefficient matrix
	Applications
	Sparse matrix storage and solution

	Comparison of finite elements and finite differences
	Finite difference approximation of given functions
	Interpretation of a finite element approximation in terms of finite difference operators
	Making finite elements behave as finite differences

	A generalized element concept
	Cells, vertices, and degrees of freedom
	Extended finite element concept
	Implementation
	Computing the error of the approximation
	Example on cubic Hermite polynomials

	Numerical integration
	Newton-Cotes rules
	Gauss-Legendre rules with optimized points

	Finite elements in 2D and 3D
	Basis functions over triangles in the physical domain
	Basis functions over triangles in the reference cell
	Affine mapping of the reference cell
	Isoparametric mapping of the reference cell
	Computing integrals

	Implementation
	Example of approximation in 2D using FEniCS
	Refined code with curve plotting

	Exercises

	Variational formulations with global basis functions
	Basic principles for approximating differential equations
	Differential equation models
	Simple model problems and their solutions
	Forming the residual
	The least squares method
	The Galerkin method
	The method of weighted residuals
	The method of weighted residual and the truncation error
	Test and trial functions
	The collocation method
	Examples on using the principles
	Integration by parts
	Boundary function

	Computing with global polynomials
	Computing with Dirichlet and Neumann conditions
	When the numerical method is exact
	Abstract notation for variational formulations
	Variational problems and minimization of functionals

	Examples on variational formulations
	Variable coefficient
	First-order derivative in the equation and boundary condition
	Nonlinear coefficient

	Implementation of the algorithms
	Extensions of the code for approximation
	Fallback to numerical methods
	Example with constant right-hand side

	Approximations may fail: convection-diffusion
	Exercises

	Variational formulations with finite elements
	Computing with finite elements
	Finite element mesh and basis functions
	Computation in the global physical domain
	Comparison with a finite difference discretization
	Cellwise computations

	Boundary conditions: specified nonzero value
	General construction of a boundary function
	Example on computing with a finite element-based boundary function
	Modification of the linear system
	Symmetric modification of the linear system
	Modification of the element matrix and vector

	Boundary conditions: specified derivative
	The variational formulation
	Boundary term vanishes because of the test functions
	Boundary term vanishes because of linear system modifications
	Direct computation of the global linear system
	Cellwise computations

	Implementation of finite element algorithms
	Extensions of the code for approximation
	Utilizing a sparse matrix
	Application to our model problem

	Variational formulations in 2D and 3D
	Integration by parts
	Example on a multi-dimensional variational problem
	Transformation to a reference cell in 2D and 3D
	Numerical integration
	Convenient formulas for P1 elements in 2D
	A glimpse of the mathematical theory of the finite element method

	Implementation in 2D and 3D via FEniCS
	Mathematical problem
	Variational formulation
	The FEniCS solver
	Making the mesh
	Solving a problem

	Convection-diffusion and Petrov-Galerkin methods
	Summary
	Exercises

	Time-dependent variational forms
	Discretization in time by a Forward Euler scheme
	Time discretization
	Space discretization
	Variational forms
	Notation for the solution at recent time levels
	Deriving the linear systems
	Computational algorithm
	Example using cosinusoidal basis functions
	Comparing P1 elements with the finite difference method

	Discretization in time by a Backward Euler scheme
	Time discretization
	Variational forms
	Linear systems

	Dirichlet boundary conditions
	Boundary function
	Finite element basis functions
	Modification of the linear system
	Example: Oscillating Dirichlet boundary condition

	Accuracy of the finite element solution
	Methods of analysis
	Fourier components and dispersion relations
	Forward Euler discretization
	Backward Euler discretization
	Comparing amplification factors

	Exercises

	Variational forms for systems of PDEs
	Variational forms
	Sequence of scalar PDEs formulation
	Vector PDE formulation

	A worked example
	Identical function spaces for the unknowns
	Variational form of each individual PDE
	Compound scalar variational form
	Decoupled linear systems
	Coupled linear systems

	Different function spaces for the unknowns
	Computations in 1D
	Another example in 1D

	Exercises

	Flexible implementations of boundary conditions
	Optimization with constraint
	Elimination of variables
	Lagrange multiplier method
	Penalty method

	Optimization of functionals
	Classical calculus of variations
	Penalty and Nitsche's methods for optimization with constraints
	Lagrange multiplier method for optimization with constraints
	Example: 1D problem
	Example: adding a constraint in a Neumann problem

	Nonlinear problems
	Introduction of basic concepts
	Linear versus nonlinear equations
	A simple model problem
	Linearization by explicit time discretization
	Exact solution of nonlinear algebraic equations
	Linearization
	Picard iteration
	Linearization by a geometric mean
	Newton's method
	Relaxation
	Implementation and experiments
	Generalization to a general nonlinear ODE
	Systems of ODEs

	Systems of nonlinear algebraic equations
	Picard iteration
	Newton's method
	Stopping criteria
	Example: A nonlinear ODE model from epidemiology

	Linearization at the differential equation level
	Explicit time integration
	Backward Euler scheme and Picard iteration
	Backward Euler scheme and Newton's method
	Crank-Nicolson discretization

	1D stationary nonlinear differential equations
	Finite difference discretization
	Solution of algebraic equations
	Galerkin-type discretization
	Picard iteration defined from the variational form
	Newton's method defined from the variational form

	Multi-dimensional PDE problems
	Finite element discretization
	Finite difference discretization
	Continuation methods

	Symbolic nonlinear finite element equations
	Finite element basis functions
	The group finite element method
	Numerical integration of nonlinear terms by hand
	Discretization of a variable coefficient Laplace term

	Exercises

	Variational methods for linear systems
	Conjugate gradient-like iterative methods
	The Galerkin method
	The least squares method
	Krylov subspaces
	Computation of the basis vectors
	Computation of a new solution vector
	Summary of the least squares method
	Truncation and restart
	Summary of the Galerkin method
	A framework based on the error

	Preconditioning
	Motivation and Basic Principles
	Use of the preconditioning matrix in the iterative methods
	Classical iterative methods as preconditioners
	Incomplete factorization preconditioners
	Preconditioners developed for solving PDE problems

	Useful formulas
	Finite difference operator notation
	Truncation errors of finite difference approximations
	Finite differences of exponential functions
	Finite differences of tn
	Software

	References
	Index

