
introduction
IN 5400— Network visualizaton and adverserial fooling

Anne Solberg
20.03.2019

University of Oslo

What does the layers learn?

∙ What does the intermediate features look like?
∙ How can we get conficence in what the network learns?

1

Plan for today: making new use of gradients

∙ Filter visualization
∙ Visualize features in the last layers
∙ Visualize what triggers a certain node in a given layer
∙ Salicency maps/class activation maps
∙ Layerwise relevance propagation
∙ Adverserial fooling

2

Reading material and relevant video links:

∙ No good text for this subject, research papers are the best source.
∙ Relevant papers are linked in the following slides.
∙ Visualization: partly covered by CS 231n Lecture 12 2017.
∙ Adverserial fooling: Ian Goodfellow’s lecture https://www.youtube.com/
watch?v=CIfsB_EYsVI&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

∙ Focus: overview of the selected methods and how they use gradients

3

https://www.youtube.com/watch?v=CIfsB_EYsVI&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
https://www.youtube.com/watch?v=CIfsB_EYsVI&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

visualizing the filters directly

Can we visualize the filters directly?

∙ Useful for the first layer(s), but most useful for larger filter kernels like AlexNet
∙ More difficult deeper into the network, when we have a large number of small filter
kernels in each layer.

∙ Check it out at
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

5

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.htm

Filters in the first layer of AlexNet

∙ Visualizing the filters of the first layer or AlexNet
∙ 11x11x3 filters

6

Visualizing filters in layer1 from LeNet trained on CIFAR layer

7

Visualizing filters in layer 2 from LeNet trained on CIFAR layer

8

visualizing features in the last layer

Visualizing the features in the final layer

Use AlexNet as an example:

∙ Can visualize the 4096 features in different ways:
∙ Do a PCA (principal component analysis) down to 3 PCA components and visualize as RGB
∙ Use t-SNE (later lecture) to visualize
∙ Demonstrate similarity for an image by finding the nearest neighboring images in feature
space. 10

Nearest neighbors in feature space for a given image

∙ Given a pretrained model and an example image
∙ Propagate the example image to the second last fully connected layer (before the
classifier)

∙ Find the k nearest neighbors from the training set in the 4096-d feature space

∙ This will tell about invariance etc.
11

occlusion experiments

Occlusion experiments

∙ Create a small patch of zeros
∙ Slide this patch over the input image to zero out different parts of the image
∙ Classify each image
∙ Record how much the probability for the best class changes with and without a
zero-pad at the location

∙ Reference: https://arxiv.org/pdf/1311.2901.pdf

13

https://arxiv.org/pdf/1311.2901.pdf

Occlusion - examples

Figures from https://arxiv.org/pdf/1311.2901.pdf
14

https://arxiv.org/pdf/1311.2901.pdf

saliency/class activation maps

Introduction - backpropagation with respect to the image

∙ Training: given a likelihood function that measures the fit between the predicted
class score and the true labels, use backpropagation to find the weights.

∙ Backpropagation with respect to the image pixels
∙ Given a pretrained model and a given class
∙ Keep the weights constant
∙ Based on the likelihood with respect to the input image pixels, use gradient descent
updates to find an input image that maximize the likelihood

16

Image saliency - by gradient explanations

∙ Given a pretrained model
∙ Given an input image
∙ Compute the score for that class (before normalization to probabilities)
∙ Keep the weights, zero out the gradients for the other classes.
∙ Backpropagate the gradients from the score for that class with respect to each input
pixel.

∙ Take max over input channels to get a single scalar value for each pixel
∙ Image saliency gives a pixel-by-pixel view of how sensitive the class-specific score is
to each pixel in the input image.

∙ Reference: https://arxiv.org/pdf/1312.6034.pdf

17

https://arxiv.org/pdf/1312.6034.pdf

Saliency - examples

Saliency is a univariate number - but visualized using a heatmap colortable here.

18

GradCAM - visualizing class activation maps

∙ Main principle: visualize the gradient information in the last convolutional layer
∙ Why - Fully connected layers loose the spatial information

∙ Given a class c
∙ Start with the score (non-normalized) sc before softmax
∙ Compute the gradient of this with respect to the feature maps of the last conv-layer
∙ Use global average pooling for all locations to get a weight
∙ Sum these over all nodes in the layer
∙ Guided GradCAM combines this with Guided Backpropagation using multiplication
∙ Reference: https://arxiv.org/pdf/1610.02391.pdf

19

https://arxiv.org/pdf/1610.02391.pdf

GradCAM - details

∙ Given a class c, a pretrained model, and an input image
∙ Select layer (normally the last convolutional)
∙ Forward propagate to the the score sc before softmax.
∙ Zero out gradients for all other classes.
∙ Do backward pass to get the gradients of sc with respcect to the activations for node
k Ak , and save the gradient (hook layer in PyTorch)

∙ Get a score for how important node kis for class c by doing Global Average Pooling
over the spatial dimensions of the tensor.

αc
k =

1

Z

∑
h

∑
w

∂sc
∂Ak

hw

∙ Get the GradCAM score by summing over the nodes with positive activation:

GradCAM = ReLU

(∑
k

αc
kAk

)

20

GradCAM - examples

Original

GradCAM heatmap

GradCAM overlaid
image

21

GradCAM - examples

Original

GradCAM heatmap

GradCAM overlaid
image

Guided GradCAM 22

Guided backpropagation with respect to a given node

∙ Guided backprop: secton 3.4 in : https://arxiv.org/abs/1412.6806
∙ Select a layer and a node in that layer
∙ Forward propagate an image
∙ Set all gradient to zero, except for the selected node
∙ Backpropagate back to the input, but set negative gradients to zero

23

https://arxiv.org/abs/1412.6806

Guided backprop - one filter for several layers

Original

Filter 1 layer 5

Filter 1 layer 2

Filter 1 layer 7

Filter 1 layer 3

Filter 1 layer 9

Filter 1 layer 4

Filter 1 layer 15
24

Guided backprop - several filters for layer 15

Filter 1 layer 15

Filter 15 layer 15

Filter 5 layer 15

Filter 30 layer 15

Filter 15 layer 15

Filter 35 layer 15

Filter 40 layer 15

Filter 45 layer 15
25

SmoothGrad - adding noise and averaging over gradients

∙ Very simple idea: add noise to a given gradient image/saliency image.
∙ Average the saliency map/gradient map over n noisy images.
∙ Reference: https://arxiv.org/pdf/1706.03825.pdf

26

https://arxiv.org/pdf/1706.03825.pdf

Smoothgrad - results

Vanilla gradient backpropagation (saliency
map) Smooth Grad

27

Gradient ascent on the image for visualization

∙ Start from a random image
∙ Given a pretrained model and a target class
∙ Use gradient ascent to create an image I∗ that maximize the score s (unnormalized
probabilities) for the target class y

I∗ = arg max
I

(sy(I∗)−R(I)) (1)

∙ R(I) is a regularization term to get the image to look like a natural image, and not
just noise.

∙ (R(I) should include L2-decay, Gaussian blur at certain iterations, and clipping
pixels with small norm/contributions.

∙ See more details in https://arxiv.org/abs/1506.06579
∙ Implement this in the weekly exercise

28

https://arxiv.org/abs/1506.06579

layerwise relevance propagation

Layerwise relevance propagation

∙ Layerwise backpropagation redistributes the class score
back to the inputs in a somewhat more robust way than
saliency or class activation maps

∙ Good sources for this:
∙ Good overview paper: https://arxiv.org/abs/1706.07979
∙ Tutorial for this method: heatmapping.org

∙ Consider the relevance Rk for node k in layer and how to
backpropagate this to a node j in the previos layer Rj

∙ The relevance should be conserved:
∑

j Rj←k = Rk

∙ Global conservation will sum this up over all layers.
∙ This technique can also be used for other types of data
than images.

30

https://arxiv.org/abs/1706.07979
heatmapping.org

Introduction to layer propagation rules

∙ Let all neurons be described by the activation: ak = σ(
∑

j ajwjk + bk) with
activation function σ.

∙ Relevance backpropagation from layer k to j considers both positive and negative
contributions:

Rj =
∑
k

(α
ajw

+
jk∑

j ajw
+
jk

− β
ajw

−
jk∑

j ajw
−
jk

)Rk

∙ α and β are choosen as positive numbers such that α− β = 1

∙ A simple variant is α1β0, which only considers positive contributions
∙ Another variant is α2β1

∙ Pooling layers can either use a winner-take-all strategy or distribute proportional to
neuron activations in the pool

∙ Normalization layers can either be ignored or a special rule is used.

31

Layerwise relevance propagation - MNIST results

32

Layerwise relevance propagation - trained on VGG results

33

Why do we need explainable deep learning?

∙ Verification of the system
∙ Example: to use deep learning for medical application the medical experts needs to trust
it. Accuracy is not enough to decide to use a model.

∙ Understand weaknesses to improve the system
∙ Example: are there any biases in the dataset? Is information included by a mistake?

∙ Learning from the system
∙ Example: Has the game system (chess/go) learning something we do not know?

∙ Compliance to legislation?
∙ Who is responsible for a decision?

34

Example of non-robust class activation maps

∙ This example of which part of the image is important illustrates the concept well!
∙ Reference: https://ieeexplore.ieee.org/document/7780687

35

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Bach_Analyzing_Classifiers_Fisher_CVPR_2016_paper.pdf

adverserial fooling

Introduction to adverserial fooling

∙ Adverserial images - what are they and why do they happen?
∙ How can they be used to compromise machine learning systems?
∙ How can we avoid this?
∙ How can they be used improve the performance, even without fooling the system.

37

Introduction to adverserial fooling - optical illusions

Duck or rabbit?

Young or old lady?

See at lot more and learn about it here

38

https://en.wikipedia.org/wiki/Optical_illusion

Fooling the network

Image from https://arxiv.org/abs/1412.6572

∙ Original image: 8-bit RGB, internal representation 32bit float
∙ The differences between the images are so small that they are quantized into the
same 8-bit representations, but they still fool the network

39

https://arxiv.org/abs/1412.6572

Linear explanation of adverserial examples

∙ Consider a sample x stored given a given precision (e.g. 8-bit image channels).
∙ Consider a small perturbation η of x, x̃ = x+ η and assume η is so small that the
representation of x̃ is the same as x.

∙ We would expect a classifier to assign x and x̃ to the same class as long as ||η||∞ < ϵ,
where ϵ is small enough to be discarded by the storage representation of x.

∙ Consider the dot product
wT x̃ = wTx+ wT η

∙ The adverserial perturbation grows the activation by wT η.
∙ For high dimensions, we can add infinitesimal changes to the input that add up to
large changes in the output .

∙ For more details, see https://arxiv.org/abs/1412.6572
∙ This is valid for linear models trained with gradient descent, like softmax
classification, logistic regression and support vector machines.

40

https://arxiv.org/abs/1412.6572

Discussion of non-linear models

∙ ReLU is close to a linear model
∙ Even tanh or LSTM-models are not that different from linear model
∙ By normalization we take care to operate close to the linear mode where gradient
updates works bests

41

Adverserial perturbations of x

∙ Let w be the parameters of a model
with input x and true class ytrue.

∙ Given a likelihood function L(x,w)

∙ We want to create an adverserial
perturbation of x in order to force the
network to misclassify x as y′ ̸= ytrue.

∙ We classify a sample to the class that
maximize L(w, x, y′).

The sign of the gradient of L tells us if we
should increase or decrease x to increase
L(w, x).

42

Fast gradient sign method for generating (FSGM) adverserial examples

∙ An adverserial example with ϵ-bound ϵ, given a norm p is classified to a different
class than the target y and satisfies

||x̃− x||p < ϵ

∙ L0-norm: bounds the number of pixels in x̃ that can be modified from x.
∙ L2-norm: bounds the total squared distance between x̃ and x.
∙ L∞-norm: bounds the change for every pixel in x.

43

Fast gradient sign method

∙ When the input dimension is large,
changing each element in x by ϵ yields
a perturbation η (such that ||η||∞ = ϵ)
which can significantly change the inner
product wTx.

∙ The fast gradient sign method obtains
the perturbations by setting

η = ϵsign(∇xL(x,w))

∙ Update x given learning rate λ as:

x̃ = x+ λη

We want the given sample to be classifed to
the red class. The weights are fixed, but we
modify the sample.

44

Implementing FSGM

∙ Note that this can be computed by backpropagation with respect to the image,
keeping the weights constant.

∙ Define the model/network architecture under attack, train it and set the flag for
computing the gradients of the data.

∙ Select the image xfool from the training set that we want to modify, and a target class
y′.

∙ Iterate over the following steps:
∙ Forward propage xfool to get the current scores for all classes
∙ Find the index of the current best class ycurr
∙ If ycurr = y′, stop
∙ Backpropagate xfool with respect to the data to get g
∙ Else update xfool by taking a step λϵsign(∇xL(x,w))

45

MNIST Adverserial attacks over a range of ϵ values

Try ϵ = 0,, 0.25, attack the test set, and record the percentage of correctly classified
images as a funciton of epsilon.

46

MNIST Adverserial attacks over a range of ϵ values

Example of MNIST adverserial images
∙ MNIST images are small 32x32 images
and we see the pertubations quite clear.

∙ With larger RGB-images (increasing
dimension), the pertubation we need
for each pixel to obtain a
misclassification is much smaller

∙ For normal image sizes, adverserial
images can look very similar to the
original, while they have the same
L2-distance to the original as the MNIST
images here

47

Some types of classification errors

Is any of these more likely to get adverserial errors?
Underfitted model

Decent fit of model Underfitted model

48

Adverserial training

∙ Regular data augmentation includes transformations like rotations, scaling etc. that
naturally can occur in test sets.

∙ Training on adverserial examples add images that do not occur naturally, but expose
the flaws in the network.

∙ A modified cost function is used:

L̃(w, x, y) = αJ(w, x, y) + (1− α)J(w, x+ ϵsign(∇xJ(w, x, y))

∙ Increasing network capacity (number of nodes) and using early stopping might be
useful

49

Adverserial examples for other domains

∙ Fooling OCR with text images https://arxiv.org/abs/1802.05385
∙ Fooling speech recognition
https://arxiv.org/abs/1707.05373https://arxiv.org/abs/1707.05373

50

https://arxiv.org/abs/1802.05385
https://arxiv.org/abs/1707.05373https://arxiv.org/abs/1707.05373

Discussion of adverserial fooling

∙ Requires access to the images to fool a trained network.
∙ Adverserial examples often generelize to similar models.
∙ Ideally we should also have access to the model, but we can also train a set of
common CNN-models ourself, then attach an unknown model using an adverserial
image that fools our trained models.

∙ Adverserial training is a type of regularization and can increase the robustness of the
model.

∙ Adverserial fooling is also a problem in linear models, but adverserial training does
not work well for linear models.

51

Just for fun: Deep Dream

∙ Read more: https://research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html

∙ Start with either a noise image or a natural image.
∙ Forward propagate the image to a given layer.
∙ Modify the gradient of this layer to equal its activation : see more of what the layer
sees

∙ Add some tricks
∙ Backward propagate and update image

52

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep dreams

53

More fun: neural style transfer

∙ Texture synthesis using deep learning is really effective.
∙ Take e.g. an image and a painting.
∙ Combine the style of the painting onto the image by optimizing a content loss and a
style loss

∙ Read https://arxiv.org/abs/1508.06576
∙ A faster variant https://arxiv.org/abs/1603.08155

54

https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1603.08155

Fun: neural style transfer

55

learning goals

Learning goals

∙ Understand the need to be able to visualize the network
∙ Understand the limitations of visualizing the filters directly
∙ Understand heatmaps like class activation maps, saliency maps, and know about
layerwise relevance propagation

∙ Know the principles and goals of guided backprop
∙ Understand how adverserial images are created, and what adverserial traning is, and
what models are suspect to being fooled.

57

Questions?

58

	 Visualizing the filters directly
	Visualizing features in the last layer
	Occlusion experiments
	Saliency/class activation maps
	Layerwise relevance propagation
	Adverserial fooling
	Learning goals

