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What does the layers learn?

∙ What does the intermediate features look like?
∙ How can we get conficence in what the network learns?
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Plan for today: making new use of gradients

∙ Filter visualization
∙ Visualize features in the last layers
∙ Visualize what triggers a certain node in a given layer
∙ Salicency maps/class activation maps
∙ Layerwise relevance propagation
∙ Adverserial fooling
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Reading material and relevant video links:

∙ No good text for this subject, research papers are the best source.
∙ Relevant papers are linked in the following slides.
∙ Visualization: partly covered by CS 231n Lecture 12 2017.
∙ Adverserial fooling: Ian Goodfellow’s lecture https://www.youtube.com/
watch?v=CIfsB_EYsVI&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

∙ Focus: overview of the selected methods and how they use gradients
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visualizing the filters directly



Can we visualize the filters directly?

∙ Useful for the first layer(s), but most useful for larger filter kernels like AlexNet
∙ More difficult deeper into the network, when we have a large number of small filter
kernels in each layer.

∙ Check it out at
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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Filters in the first layer of AlexNet

∙ Visualizing the filters of the first layer or AlexNet
∙ 11x11x3 filters
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Visualizing filters in layer1 from LeNet trained on CIFAR layer
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Visualizing filters in layer 2 from LeNet trained on CIFAR layer
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visualizing features in the last layer



Visualizing the features in the final layer

Use AlexNet as an example:

∙ Can visualize the 4096 features in different ways:
∙ Do a PCA (principal component analysis) down to 3 PCA components and visualize as RGB
∙ Use t-SNE (later lecture) to visualize
∙ Demonstrate similarity for an image by finding the nearest neighboring images in feature
space. 10



Nearest neighbors in feature space for a given image

∙ Given a pretrained model and an example image
∙ Propagate the example image to the second last fully connected layer (before the
classifier)

∙ Find the k nearest neighbors from the training set in the 4096-d feature space

∙ This will tell about invariance etc.
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occlusion experiments



Occlusion experiments

∙ Create a small patch of zeros
∙ Slide this patch over the input image to zero out different parts of the image
∙ Classify each image
∙ Record how much the probability for the best class changes with and without a
zero-pad at the location

∙ Reference: https://arxiv.org/pdf/1311.2901.pdf
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Occlusion - examples

Figures from https://arxiv.org/pdf/1311.2901.pdf
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saliency/class activation maps



Introduction - backpropagation with respect to the image

∙ Training: given a likelihood function that measures the fit between the predicted
class score and the true labels, use backpropagation to find the weights.

∙ Backpropagation with respect to the image pixels
∙ Given a pretrained model and a given class
∙ Keep the weights constant
∙ Based on the likelihood with respect to the input image pixels, use gradient descent
updates to find an input image that maximize the likelihood
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Image saliency - by gradient explanations

∙ Given a pretrained model
∙ Given an input image
∙ Compute the score for that class (before normalization to probabilities)
∙ Keep the weights, zero out the gradients for the other classes.
∙ Backpropagate the gradients from the score for that class with respect to each input
pixel.

∙ Take max over input channels to get a single scalar value for each pixel
∙ Image saliency gives a pixel-by-pixel view of how sensitive the class-specific score is
to each pixel in the input image.

∙ Reference: https://arxiv.org/pdf/1312.6034.pdf
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Saliency - examples

Saliency is a univariate number - but visualized using a heatmap colortable here.
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GradCAM - visualizing class activation maps

∙ Main principle: visualize the gradient information in the last convolutional layer
∙ Why - Fully connected layers loose the spatial information

∙ Given a class c
∙ Start with the score (non-normalized) sc before softmax
∙ Compute the gradient of this with respect to the feature maps of the last conv-layer
∙ Use global average pooling for all locations to get a weight
∙ Sum these over all nodes in the layer
∙ Guided GradCAM combines this with Guided Backpropagation using multiplication
∙ Reference: https://arxiv.org/pdf/1610.02391.pdf
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GradCAM - details

∙ Given a class c, a pretrained model, and an input image
∙ Select layer (normally the last convolutional)
∙ Forward propagate to the the score sc before softmax.
∙ Zero out gradients for all other classes.
∙ Do backward pass to get the gradients of sc with respcect to the activations for node
k Ak , and save the gradient (hook layer in PyTorch)

∙ Get a score for how important node kis for class c by doing Global Average Pooling
over the spatial dimensions of the tensor.

αc
k =

1

Z

∑
h

∑
w

∂sc
∂Ak

hw

∙ Get the GradCAM score by summing over the nodes with positive activation:

GradCAM = ReLU

(∑
k

αc
kAk

)
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GradCAM - examples

Original

GradCAM heatmap

GradCAM overlaid
image
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GradCAM - examples

Original

GradCAM heatmap

GradCAM overlaid
image

Guided GradCAM 22



Guided backpropagation with respect to a given node

∙ Guided backprop: secton 3.4 in : https://arxiv.org/abs/1412.6806
∙ Select a layer and a node in that layer
∙ Forward propagate an image
∙ Set all gradient to zero, except for the selected node
∙ Backpropagate back to the input, but set negative gradients to zero
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Guided backprop - one filter for several layers

Original

Filter 1 layer 5

Filter 1 layer 2

Filter 1 layer 7

Filter 1 layer 3

Filter 1 layer 9

Filter 1 layer 4

Filter 1 layer 15
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Guided backprop - several filters for layer 15

Filter 1 layer 15

Filter 15 layer 15

Filter 5 layer 15

Filter 30 layer 15

Filter 15 layer 15

Filter 35 layer 15

Filter 40 layer 15

Filter 45 layer 15
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SmoothGrad - adding noise and averaging over gradients

∙ Very simple idea: add noise to a given gradient image/saliency image.
∙ Average the saliency map/gradient map over n noisy images.
∙ Reference: https://arxiv.org/pdf/1706.03825.pdf
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Smoothgrad - results

Vanilla gradient backpropagation (saliency
map) Smooth Grad
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Gradient ascent on the image for visualization

∙ Start from a random image
∙ Given a pretrained model and a target class
∙ Use gradient ascent to create an image I∗ that maximize the score s (unnormalized
probabilities) for the target class y

I∗ = arg max
I

(sy(I∗)−R(I)) (1)

∙ R(I) is a regularization term to get the image to look like a natural image, and not
just noise.

∙ (R(I) should include L2-decay, Gaussian blur at certain iterations, and clipping
pixels with small norm/contributions.

∙ See more details in https://arxiv.org/abs/1506.06579
∙ Implement this in the weekly exercise
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layerwise relevance propagation



Layerwise relevance propagation

∙ Layerwise backpropagation redistributes the class score
back to the inputs in a somewhat more robust way than
saliency or class activation maps

∙ Good sources for this:
∙ Good overview paper: https://arxiv.org/abs/1706.07979
∙ Tutorial for this method: heatmapping.org

∙ Consider the relevance Rk for node k in layer and how to
backpropagate this to a node j in the previos layer Rj

∙ The relevance should be conserved:
∑

j Rj←k = Rk

∙ Global conservation will sum this up over all layers.
∙ This technique can also be used for other types of data
than images.
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Introduction to layer propagation rules

∙ Let all neurons be described by the activation: ak = σ(
∑

j ajwjk + bk) with
activation function σ.

∙ Relevance backpropagation from layer k to j considers both positive and negative
contributions:

Rj =
∑
k

(α
ajw

+
jk∑

j ajw
+
jk

− β
ajw

−
jk∑

j ajw
−
jk

)Rk

∙ α and β are choosen as positive numbers such that α− β = 1

∙ A simple variant is α1β0, which only considers positive contributions
∙ Another variant is α2β1

∙ Pooling layers can either use a winner-take-all strategy or distribute proportional to
neuron activations in the pool

∙ Normalization layers can either be ignored or a special rule is used.
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Layerwise relevance propagation - MNIST results
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Layerwise relevance propagation - trained on VGG results
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Why do we need explainable deep learning?

∙ Verification of the system
∙ Example: to use deep learning for medical application the medical experts needs to trust
it. Accuracy is not enough to decide to use a model.

∙ Understand weaknesses to improve the system
∙ Example: are there any biases in the dataset? Is information included by a mistake?

∙ Learning from the system
∙ Example: Has the game system (chess/go) learning something we do not know?

∙ Compliance to legislation?
∙ Who is responsible for a decision?
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Example of non-robust class activation maps

∙ This example of which part of the image is important illustrates the concept well!
∙ Reference: https://ieeexplore.ieee.org/document/7780687
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adverserial fooling



Introduction to adverserial fooling

∙ Adverserial images - what are they and why do they happen?
∙ How can they be used to compromise machine learning systems?
∙ How can we avoid this?
∙ How can they be used improve the performance, even without fooling the system.
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Introduction to adverserial fooling - optical illusions

Duck or rabbit?

Young or old lady?

See at lot more and learn about it here
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Fooling the network

Image from https://arxiv.org/abs/1412.6572

∙ Original image: 8-bit RGB, internal representation 32bit float
∙ The differences between the images are so small that they are quantized into the
same 8-bit representations, but they still fool the network
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Linear explanation of adverserial examples

∙ Consider a sample x stored given a given precision (e.g. 8-bit image channels).
∙ Consider a small perturbation η of x, x̃ = x+ η and assume η is so small that the
representation of x̃ is the same as x.

∙ We would expect a classifier to assign x and x̃ to the same class as long as ||η||∞ < ϵ,
where ϵ is small enough to be discarded by the storage representation of x.

∙ Consider the dot product
wT x̃ = wTx+ wT η

∙ The adverserial perturbation grows the activation by wT η.
∙ For high dimensions, we can add infinitesimal changes to the input that add up to
large changes in the output .

∙ For more details, see https://arxiv.org/abs/1412.6572
∙ This is valid for linear models trained with gradient descent, like softmax
classification, logistic regression and support vector machines.
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Discussion of non-linear models

∙ ReLU is close to a linear model
∙ Even tanh or LSTM-models are not that different from linear model
∙ By normalization we take care to operate close to the linear mode where gradient
updates works bests
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Adverserial perturbations of x

∙ Let w be the parameters of a model
with input x and true class ytrue.

∙ Given a likelihood function L(x,w)

∙ We want to create an adverserial
perturbation of x in order to force the
network to misclassify x as y′ ̸= ytrue.

∙ We classify a sample to the class that
maximize L(w, x, y′).

The sign of the gradient of L tells us if we
should increase or decrease x to increase
L(w, x).
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Fast gradient sign method for generating (FSGM) adverserial examples

∙ An adverserial example with ϵ-bound ϵ, given a norm p is classified to a different
class than the target y and satisfies

||x̃− x||p < ϵ

∙ L0-norm: bounds the number of pixels in x̃ that can be modified from x.
∙ L2-norm: bounds the total squared distance between x̃ and x.
∙ L∞-norm: bounds the change for every pixel in x.
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Fast gradient sign method

∙ When the input dimension is large,
changing each element in x by ϵ yields
a perturbation η (such that ||η||∞ = ϵ)
which can significantly change the inner
product wTx.

∙ The fast gradient sign method obtains
the perturbations by setting

η = ϵsign(∇xL(x,w))

∙ Update x given learning rate λ as:

x̃ = x+ λη

We want the given sample to be classifed to
the red class. The weights are fixed, but we
modify the sample.
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Implementing FSGM

∙ Note that this can be computed by backpropagation with respect to the image,
keeping the weights constant.

∙ Define the model/network architecture under attack, train it and set the flag for
computing the gradients of the data.

∙ Select the image xfool from the training set that we want to modify, and a target class
y′.

∙ Iterate over the following steps:
∙ Forward propage xfool to get the current scores for all classes
∙ Find the index of the current best class ycurr
∙ If ycurr = y′, stop
∙ Backpropagate xfool with respect to the data to get g
∙ Else update xfool by taking a step λϵsign(∇xL(x,w))
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MNIST Adverserial attacks over a range of ϵ values

Try ϵ = 0, ....., 0.25, attack the test set, and record the percentage of correctly classified
images as a funciton of epsilon.
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MNIST Adverserial attacks over a range of ϵ values

Example of MNIST adverserial images
∙ MNIST images are small 32x32 images
and we see the pertubations quite clear.

∙ With larger RGB-images (increasing
dimension), the pertubation we need
for each pixel to obtain a
misclassification is much smaller

∙ For normal image sizes, adverserial
images can look very similar to the
original, while they have the same
L2-distance to the original as the MNIST
images here
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Some types of classification errors

Is any of these more likely to get adverserial errors?
Underfitted model

Decent fit of model Underfitted model
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Adverserial training

∙ Regular data augmentation includes transformations like rotations, scaling etc. that
naturally can occur in test sets.

∙ Training on adverserial examples add images that do not occur naturally, but expose
the flaws in the network.

∙ A modified cost function is used:

L̃(w, x, y) = αJ(w, x, y) + (1− α)J(w, x+ ϵsign(∇xJ(w, x, y))

∙ Increasing network capacity (number of nodes) and using early stopping might be
useful
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Adverserial examples for other domains

∙ Fooling OCR with text images https://arxiv.org/abs/1802.05385
∙ Fooling speech recognition
https://arxiv.org/abs/1707.05373https://arxiv.org/abs/1707.05373
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Discussion of adverserial fooling

∙ Requires access to the images to fool a trained network.
∙ Adverserial examples often generelize to similar models.
∙ Ideally we should also have access to the model, but we can also train a set of
common CNN-models ourself, then attach an unknown model using an adverserial
image that fools our trained models.

∙ Adverserial training is a type of regularization and can increase the robustness of the
model.

∙ Adverserial fooling is also a problem in linear models, but adverserial training does
not work well for linear models.
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Just for fun: Deep Dream

∙ Read more: https://research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html

∙ Start with either a noise image or a natural image.
∙ Forward propagate the image to a given layer.
∙ Modify the gradient of this layer to equal its activation : see more of what the layer
sees

∙ Add some tricks
∙ Backward propagate and update image
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Deep dreams
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More fun: neural style transfer

∙ Texture synthesis using deep learning is really effective.
∙ Take e.g. an image and a painting.
∙ Combine the style of the painting onto the image by optimizing a content loss and a
style loss

∙ Read https://arxiv.org/abs/1508.06576
∙ A faster variant https://arxiv.org/abs/1603.08155
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Fun: neural style transfer
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learning goals



Learning goals

∙ Understand the need to be able to visualize the network
∙ Understand the limitations of visualizing the filters directly
∙ Understand heatmaps like class activation maps, saliency maps, and know about
layerwise relevance propagation

∙ Know the principles and goals of guided backprop
∙ Understand how adverserial images are created, and what adverserial traning is, and
what models are suspect to being fooled.
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Questions?
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