
INF5400 — MACHINE LEARNING FOR IMAGE ANALYSIS

DEPARTMENT OF INFORMATICS, UNIVERSITY OF OSLO

2019

Exercise week 13

Generative Adversarial Networks

In this programming exercise, we are going to implement DCGAN (Deep Convolu-
tional Generative Adversarial Networks) introduced in (Radford et al., 2016). The im-
plementation will be in PyTorch, and a similar tutorial, which this one is heavily in-
fluenced by, is available at https://pytorch.org/tutorials/beginner/dcgan_
faces_tutorial.html.

• The goal is to implement a standalone python program that can be used for
training and generating images.

• This guide will show you the essentials of the implementation. For a more
complete version, see the accompanying solution proposal.

• We will train on the Labeled Faces in the Wild dataset, available from http:
//vis-www.cs.umass.edu/lfw/. This is a relatively small dataset, and fits
well for this purpose.

• The implementation will run on both CPU and GPU, but is not implemented
to make use of multiple GPUs.

• The exercise was developed on, and runs with Python 3.6 and PyTorch 1.1, but
have not been tested on other versions.

• Feel free to experiment with different approaches, this implementation is just
a suggestion, and not necessarily the best.

1

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/

1 Import data

Use the function in listing 1 to download the dataset.

1 import subprocess
2
3 def maybe_download_lfw (download_root_dir):
4 download_dir = download_root_dir . joinpath (’lfw ’)
5 if (
6 download_dir . exists () and
7 download_dir . is_dir () and
8 list(download_dir . iterdir ()
9):

10 print ("LFW dataset already downloaded ")
11 return download_dir
12
13 tar_path = download_root_dir . joinpath (’lfw.tgz ’)
14 if not tar_path . exists ():
15 url = ’http :// vis -www.cs. umass .edu/lfw/lfw.tgz ’
16 cmd = [’curl ’, url , ’-o’, str(tar_path)]
17 print (" Downloading LFW from {} to {}". format (url , tar_path))
18 subprocess .call(cmd)
19
20 if not download_dir . exists ():
21 download_dir . mkdir ()
22
23 print (" Unpacking ")
24 cmd = [’tar ’, ’xzf ’, str(tar_path), ’-C’, str(download_dir)]
25 subprocess .call(cmd)
26
27 return download_dir

Listing 1: Download data

Create a data_loader that we can use to iterate through the training dataset. We
will resize the images to a shape of (c,h, w) = (3,64,64), and normalize their values
to a range of [−1,1] in accordance with the original paper (the input image values
are in the range [0,1]). As in the original paper, we are going to use a batch-size of
128.

2

1 import Path
2 import torch
3 import torchvision
4
5 data_dir = Path(’where you would like to keep your downloaded data ’)
6 download_dir = maybe_download_lfw (data_dir)
7 target_size = 64
8 batch_size = 128
9 data_loader = torch . utils .data. DataLoader (

10 torchvision . datasets . ImageFolder (
11 str(download_dir),
12 transform = torchvision . transforms . Compose (
13 [
14 torchvision . transforms . Resize ((target_size , target_size)),
15 torchvision . transforms . ToTensor () ,
16 torchvision . transforms . Normalize (
17 (0.5 , 0.5 , 0.5) , (0.5 , 0.5 , 0.5)
18),
19]
20)
21),
22 batch_size = batch_size ,
23 shuffle =True ,
24)
25
26 # Example how to iterate through one epoch
27 for image_batch , label_batch in data_loader :
28 # Do something with the images and labels

Listing 2: Import data

2 Training

This section will describe the discriminator network and the generator network. It
will then go on to describe how to train them together.

2.1 Network implementation

The discriminator is a network that (in our case) takes a 64× 64× 3 input image,
and outputs a number with a value in (0, 1) that we will interpret as the probability
that the input image is a real image. Listing 3 display one way to implement the
discriminator network in PyTorch.

The generator is (in our case) a network that takes an one-dimensional vector of
length latent_length and outputs an image with shape 64×64×3. A suggestion
for the generator network is implemented in listing 4.

3

1 class Discriminator (torch .nn. Module):
2 def __init__ (self):
3 super (Discriminator , self). __init__ ()
4 self. leaky_relu = torch .nn. LeakyReLU (0.2)
5 # Input shape (c, h, w): (3, 64, 64)
6 self. conv_1 = torch .nn. Conv2d (
7 in_channels =3,
8 out_channels =64 ,
9 kernel_size =4,

10 stride =2,
11 padding =1,
12 bias=False ,
13)
14 # Input shape (c, h, w): (64 , 32, 32)
15 self. conv_2 = torch .nn. Conv2d (
16 in_channels =64 ,
17 out_channels =128 ,
18 kernel_size =4,
19 stride =2,
20 padding =1,
21 bias=False ,
22)
23 self.bn_1 = torch .nn. BatchNorm2d (128)
24 # Input shape (c, h, w): (128 , 16, 16)
25 self. conv_3 = torch .nn. Conv2d (
26 in_channels =128 ,
27 out_channels =256 ,
28 kernel_size =4,
29 stride =2,
30 padding =1,
31 bias=False ,
32)
33 self.bn_2 = torch .nn. BatchNorm2d (256)
34 # Input shape (c, h, w): (256 , 8, 8)
35 self. conv_4 = torch .nn. Conv2d (
36 in_channels =256 ,
37 out_channels =512 ,
38 kernel_size =4,
39 stride =2,
40 padding =1,
41 bias=False ,
42)
43 self.bn_3 = torch .nn. BatchNorm2d (512)
44 # Input shape (c, h, w): (512 , 4, 4)
45 self. conv_5 = torch .nn. Conv2d (
46 in_channels =512 ,
47 out_channels =1,
48 kernel_size =4,
49 stride =1,
50 padding =0,
51 bias=False ,
52)
53
54 def forward (self , x):
55 x = self. leaky_relu (self. conv_1 (x))
56 x = self. leaky_relu (self.bn_1(self. conv_2 (x)))
57 x = self. leaky_relu (self.bn_2(self. conv_3 (x)))
58 x = self. leaky_relu (self.bn_3(self. conv_4 (x)))
59 x = torch . sigmoid (self. conv_5 (x))
60 return x

Listing 3: Discriminator network

4

1 latent_length = 100
2 class Generator (torch .nn. Module):
3 def __init__ (self):
4 super (Generator , self). __init__ ()
5 # Input shape (c, h, w): (latent_length , 1, 1)
6 self. convtr_1 = torch .nn. ConvTranspose2d (
7 in_channels = latent_length ,
8 out_channels =512 ,
9 kernel_size =4,

10 stride =1,
11 padding =0,
12 bias=False ,
13)
14 self.bn_1 = torch .nn. BatchNorm2d (num_features =512)
15 # Input shape (c, h, w): (512 , 4, 4)
16 self. convtr_2 = torch .nn. ConvTranspose2d (
17 in_channels =512 ,
18 out_channels =256 ,
19 kernel_size =4,
20 stride =2,
21 padding =1,
22 bias=False ,
23)
24 self.bn_2 = torch .nn. BatchNorm2d (num_features =256)
25 # Input shape (c, h, w): (256 , 8, 8)
26 self. convtr_3 = torch .nn. ConvTranspose2d (
27 in_channels =256 ,
28 out_channels =128 ,
29 kernel_size =4,
30 stride =2,
31 padding =1,
32 bias=False ,
33)
34 self.bn_3 = torch .nn. BatchNorm2d (num_features =128)
35 # Input shape (c, h, w): (128 , 16, 16)
36 self. convtr_4 = torch .nn. ConvTranspose2d (
37 in_channels =128 ,
38 out_channels =64 ,
39 kernel_size =4,
40 stride =2,
41 padding =1,
42 bias=False ,
43)
44 self.bn_4 = torch .nn. BatchNorm2d (num_features =64)
45 # Input shape (c, h, w): (64 , 32, 32)
46 self. convtr_5 = torch .nn. ConvTranspose2d (
47 in_channels =64 ,
48 out_channels =3,
49 kernel_size =4,
50 stride =2,
51 padding =1,
52 bias=False ,
53)
54 # Output shape (c, h, w): (3, 64, 64). NOTE: The spatial shape should

match target_size
55
56 def forward (self , x):
57 x = torch .nn. functional .relu(self.bn_1(self. convtr_1 (x)))
58 x = torch .nn. functional .relu(self.bn_2(self. convtr_2 (x)))
59 x = torch .nn. functional .relu(self.bn_3(self. convtr_3 (x)))
60 x = torch .nn. functional .relu(self.bn_4(self. convtr_4 (x)))
61 x = torch .tanh(self. convtr_5 (x))
62 return x

Listing 4: Generator network

5

2.2 Parameter initialisation

All weights are initialised from a zero-centered Normal distribution with standard
deviation 0.02, while the Batch Norm bias parameters are initialised to zero. This
can be achieved in PyTorch by implementing the function

1 def initialise_weights (submodule):
2 if (
3 isinstance (submodule , torch .nn. Conv2d) or
4 isinstance (submodule , torch .nn. ConvTranspose2d)
5):
6 # Initialise from a random normal distribution with mean 0.0 and
7 # stdev 0.02
8 torch .nn.init. normal_ (submodule . weight .data , 0.0 , 0.02)
9 elif isinstance (submodule , torch .nn. BatchNorm2d):

10 # Initialise from a random normal distribution with mean 1.0 and
11 # stdev 0.02
12 torch .nn.init. normal_ (submodule . weight .data , 1.0 , 0.02)
13 # Initialise all bias parameters to zero
14 torch .nn.init. constant_ (submodule .bias.data , 0.0)

Listing 5: Weight initialisation

and applying it on the discriminator network and the generator network

1 device = torch . device (’cuda :0 ’ if torch .cuda. is_available () else ’cpu ’)
2 discriminator = Discriminator ().to(device)
3 discriminator . apply (initialise_weights)
4 generator = Generator ().to(device)
5 generator . apply (initialise_weights)

Listing 6: Weight initialisation

2.3 Adversarial training

For each update step we are going to update the discriminator network D , and the
generator network G once. First, consider the discriminator network with the asso-
ciated loss

LD =− 1

m

m∑
i=1

[log(D(xi))+ log(1−D(G(zi)))] (2.1)

over a mini-batch of size m, as shown in the lecture slides for week 13. This is a sum
of two binary-cross-entropy loss functions; one where the discriminator output on
real images xi is compared against 1, and one where the discriminator output on
generated images G(zi) is compared against 0. For the discriminator network, we
use the Adam optimisation method with the same hyperparameter values as in the
DCGAN paper. The discriminator update can be implemented as.

6

1 binary_ce = torch .nn. BCELoss ()
2 discriminator_optimiser = torch . optim .Adam(
3 discriminator . parameters () ,
4 lr =0.0002 ,
5 betas =(0.5 , 0.999) ,
6)
7 for image_batch , _ in data_loader :
8 discriminator . zero_grad ()
9 image_batch = image_batch .to(device)

10 batch_size = image_batch . shape [0]
11
12 # Disriminator wrt true images
13 real_label_batch = torch .full ((batch_size ,), real_label , device = device)
14 discriminator_output_real = discriminator . forward (image_batch).view (-1)
15 discriminator_loss_real = binary_ce (
16 discriminator_output_real , real_label_batch
17)
18 discriminator_loss_real . backward ()
19
20 # Disriminator wrt generated images
21 noise = torch . randn (batch_size , latent_length , 1, 1, device = device)
22 fake_batch = generator . forward (noise)
23 fake_label_batch = torch .full ((batch_size ,), fake_label , device = device)
24 discriminator_output_fake = discriminator \
25 . forward (fake_batch . detach ())\
26 .view (-1)
27 discriminator_loss_fake = binary_ce (
28 discriminator_output_fake , fake_label_batch
29)
30 discriminator_loss_fake . backward ()
31
32 discriminator_optimiser .step ()

Listing 7: Discriminator network update

Note that he binary cross entropy for a single example between a label y ∈ {0,1} and
a prediction ŷ ∈ [0,1] is

l =−[y log ŷ + (1− y) log(1− ŷ)].

Since, for the discriminator loss, the labels for real examples are 1 and for gen-
erated examples are 0, we end up with the expression in eq. (2.1). Also note the
fake_batch.detach() on line 25 in the listing 7, this tells PyTorch not to compute
gradients for the generator here.

The generator will be updated similarly. Note that we already have computed
the forward pass of the generator (line 22 in listing 7). Since we have updated the
discriminator, we evaluate it again on the generated images (line 8 in listing 8). From
the lectures, we have that the generator loss is

LG =− 1

m

m∑
i=1

logD(G(zi)). (2.2)

This is the binary cross entropy loss comparing generated images G(zi) with the
label 1. Remember that the objective is to guide the generator to generate images
that looks like they are from the same distribution as the real images.

7

1 generator_optimiser = torch . optim .Adam(
2 generator . parameters () ,
3 lr =0.0002 ,
4 betas =(0.5 , 0.999) ,
5)
6 for image_batch , _ in data_loader :
7 generator . zero_grad ()
8 discriminator_output_fake = discriminator . forward (fake_batch).view (-1)
9 generator_loss = binary_ce (discriminator_output_fake , real_label_batch)

10 generator_loss . backward ()
11
12 generator_optimiser .step ()

Listing 8: Generator network update

3 Restore a trained model

The point of this exercise is to train the above adversarial network so that we can use
the trained generator to generate new examples from the training data distribution.
For us to be able to restore the generator, we need to save its parameter values. This
can be achieved by

1 torch .save(generator . state_dict () , "Path where you want to save your model ")

Listing 9: Save generator parameter values

which needs to be written inside the for-loop in listing 7, and activated at appro-
priate times, for example at every n steps. The generator can then be restored with

1 noise = torch . randn (64 , latent_length , 1, 1, device = device)
2 generator . load_state_dict (torch .load("Path with desired checkpoint "))
3 generator .eval ()
4 generated_images = generator . forward (noise)

Listing 10: Restore generator

4 Example results

You can display the generated images with the code in listing 11.

1 def plot_mosaic (images , filename):
2 num_cols = 8
3 num_rows = min(images . shape [0] // num_cols , 8)
4 plt. figure ()
5 images = images [: num_rows *num_cols , :, :, :]
6 images = images * 0.5 + 0.5 # Invert normalisation
7 image_grid = np. transpose (
8 torchvision . utils . make_grid (images , padding =2).cpu (). detach (). numpy () ,
9 (1, 2, 0)

10)
11 plt.axis(’off ’)
12 plt. imsave (filename , image_grid)
13 plot_mosaic (generated_images , " Location you want to put output images ")

Listing 11: Restore generator

8

Figure 4.1: Generated images from generator restored after training 1 000 steps

Figure 4.2: Generated images from generator restored after training 2 000 steps

9

Figure 4.3: Generated images from generator restored after training 3 000 steps

Figure 4.4: Generated images from generator restored after training 4 000 steps

10

Figure 4.5: Generated images from generator restored after training 5 000 steps

Figure 4.6: Generated images from generator restored after training 6 000 steps

11

Figure 4.7: Generated images from generator restored after training 7 000 steps

Figure 4.8: Generated images from generator restored after training 8 000 steps

12

Figure 4.9: Generated images from generator restored after training 9 000 steps

Figure 4.10: Generated images from generator restored after training 10 000 steps

13

References

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks. In ICLR
2016, pages 1–16, 2016. URL http://arxiv.org/abs/1511.06434.

14

http://arxiv.org/abs/1511.06434

	1 Import data
	2 Training
	2.1 Network implementation
	2.2 Parameter initialisation
	2.3 Adversarial training

	3 Restore a trained model
	4 Example results

