
5/14/2024

1

1

Programming Ubiquitous Things
2023/24 - Spring 2024 - UiO

Prof. Paulo Ferreira

paulofe@ifi.uio.no

UiO/IFI/PT

Replication

2

Contents
• Introduction (3-10):

• Motivation, current scenario, and some examples

• System models (11-38):
• Basic definitions, device-master replication, P2P, pub-sub

• Data consistency (39-49):
• Strong, weak, best effort, eventual, causal, bounded, VFC, session guarantees

• Session Guarantees (50-75):
• Read Your Writes, Monotonic Reads, Writes Follow Reads, Monotonic Writes

• Providing the Session Guarantees (76-89):
• Supporting each guarantee (read-set, write-set), version-vectors, WIDs, finding a server

• Other issues (90-95):
• Protocols, partial replication, conflicts management, examples

1

2

mailto:paulofe@ifi.uio.no

5/14/2024

2

3

Introduction

4

Current Scenario

• Mobility has become increasingly important for both business and casual users of computing technology

• DEVICES - With the widespread adoption of portable computing devices, such as laptops, PDAs, tablet
computers, music players, and smartphones, people can have almost constant access to their personal
data as well as to information that is shared with others:
• a user drinking coffee in a cybercafé in India can access e-mail residing on a mail server in Seattle
• a doctor in New York can monitor the health of patients in remote parts of Africa
• a mother waiting to pick up her children after school can be instantly notified that her daughter’s soccer practice

has been moved to a new location
• teenagers congregating at the mall can use their cell phones to locate not only their buddies but also the hottest

sales

• NETWORK - Advances in wireless technology, such as WiFi:
• allow people to communicate from their computers with friends, colleagues, and services located around the

world
• however, providing users anytime, anywhere access to contextually relevant information presents substantial

challenges to designers of mobile computing systems

3

4

5/14/2024

3

5

Specific Mobile Aspects

• In (traditional wired) distributed systems:
• powerful computers are connected over a fixed networking infrastructure

• The ubiquitous Internet, mobile computing environments differ in a number of fundamental ways

• Specifically, mobile computing systems must accommodate three novel aspects:
• portable devices with limited resources (e.g., displays, CPU resources, storage, battery life, and security)
• intermittent, low-bandwidth, high-latency network connections
• changing environmental conditions and contexts

• Techniques that have been developed specifically for mobile computing systems include:
• replication and caching of data for off-line access,
• remotely accessing data that resides on other machines,
• offloading computation onto servers or surrogate PCs, and
• adapting system policies and mechanisms to users’ changing context and hence changing information needs

6

History

5

6

5/14/2024

4

7

Some Examples 1/4

• offline weather app: AccuWeather
• there is no such thing as a truly offline weather app
• you need to use AccuWeather online at some point
• however, AccuWeather provides an accurate 15-day forecast, which means that even if you are without

internet for two weeks, you should still have some indication of whether you need a sombrero or a ski
mask for your trip outside

• what's more, it does so in an intuitive package which takes just seconds to get to grips with

• offline eBook reader app: Amazon Kindle
• eBook reader apps make excellent offline apps because they can keep you occupied for hours without

needing to reconnect to the internet
• Kindle gives you quick access to thousands of digital books, and it comes with all of the options you

need for an excellent reading experience
• buy a book (or pick up a free one), download it to your device, and then you can happily read it without

ever connecting it to the internet again

8

Some Examples 2/4

• offline travel app: TripAdvisor Hotels Flights
• TripAdvisor is the king of travel apps
• supported by a thriving community, it offers reviews, photos and feedback from fellow travelers, then

ranks attractions and activities based on what those people say
• TripAdvisor used to have dedicated City Guides which could be downloaded externally, but now all of

this functionality is baked into the one app, including offline access to reviews, maps and photos of
more than 300 cities

• offline documents app: Google Drive/One Drive/Dropbox
• Google Drive lets you download files and documents to your device.
• you can then work on these files offline, and they sync straight back up into the cloud when you

get internet again
• to do this, tap the 'i' or Options icon of a file in Google Drive, then tap the switch next to Keep on Device
• you can do this to as many files as you like, and Google Drive will let you work on them away from the

cloud

7

8

5/14/2024

5

9

Some Examples 3/4

• offline app for saving things for later: Pocket
• Pocket is one of the most popular offline reading apps on the Play Store
• you can use it to download articles, videos, and other content you find online to your device, then read

it offline later
• you simply click on the share button on the article you want to save and select Pocket to read it later
• it has a beautifully designed interface and is a great way to make sure you don't miss out on content

that you didn't manage to finish reading or watching the first time

• offline dictionary app: Offline Dictionaries
• if you're in a foreign country and don't speak the language, it's crucial that you have a means of

communicating with locals
• Offline Dictionaries is a free Android app that sets itself apart from the others thanks to its large

database of synonyms and support for more than 50 languages
• upon launching the app, you download all the languages you'll want to refer to, then refer to the app

freely without having to worry about internet connectivity

10

Some Examples 4/4

• offline translation app: Google Translate
• Google Translate is one of the easiest-to-use and most effective translators out there
• you can speak or type into Google Translate to get things translated into more than 90 languages
• these key features are available offline, so long as you download the languages you're looking to

translate between
• you can save your translations as well, so you can refer back to them later

• offline map app: Google Maps
• using the old version of Google Maps offline was a little awkward, but since its most recent update,

this functionality is better than ever
• it's easy to download a by visiting the Offline areas tab in the settings menu
• from there you can download full city maps, including Google's excellent navigation system, for use

without internet
• the best part of all, any maps downloaded in your offline areas will be automatically removed after 30

days, so there's no need to worry about unused apps taking up storage space unnecessarily

9

10

5/14/2024

6

11

System models

12

Basic Definitions – connected device

• System models:
• how data is accessed, where it is stored, who is allowed to update it, how updated data propagates between

devices, and what consistency is maintained

• A mobile system comprises a number of devices:
• with computing, storage, and communication capabilities
• can communicate with each other over a spectrum of networking technologies

• Two devices are connected if they can send messages to each other, either over a wireless or wired network

• Weakly connected devices can communicate, but only using a low-bandwidth, high latency connection

• A device is said to be disconnected if it cannot currently communicate with any other device

• Devices may experience intermittent connectivity characterized by alternating periods in which they are
connected and disconnected

11

12

5/14/2024

7

13

Basic Definitions – items and collections

• An item is the basic unit of information that can be managed, manipulated, and replicated by devices

• Items include:
• photos, songs, playlists, appointments, e-mail messages, files, videos, contacts, tasks, documents, and any other

data objects of interest to mobile users

• Each item can be named by some form of globally unique identifier

• A collection is a set of related items, generally of the same type and belonging to the same person:
• e.g., “Joe’s e-mail” is a collection of e-mail messages, etc.
• it is an abstract entity that is not tied to any particular device or location or physical storage representation
• each collection has a globally unique identifier so devices can refer to specific collections in replication protocols

• Collections can be shared and replicated among devices

14

Basic Definitions – replicas, partial and full

• A replica is a copy of items from a collection that is stored on a given device

• A replica is a full replica if it contains all of the items in a collection

• As new items are added to a collection, copies of these items automatically appear in every full replica of the
collection

• A partial replica contains a subset of the items in a collection

• Devices maintain their replicas in local, persistent storage, called data stores, so that the replicated items
survive device crashes and restarts

13

14

5/14/2024

8

15

Basic Definitions - operations

• Software applications running on a device can access:
• the device’s locally stored replicas, and
• possibly replicas residing on other connected devices

• Such applications can perform several basic classes of operations on a replica:
• read, create, modify, delete, update

• A read operation returns the contents of one or more items from a replica:
• read operations include retrieving an item by its globally unique identifier, as in a conventional file system read

operation, as well as querying items by content

• A create operation generates a new item with fresh contents and adds it to a collection:
• this item is first created in the replica on which the create operation is performed, usually the device’s local replica
• it is then replicated to all other replicas for the same collection

16

Basic Definitions - operations

• A modify operation changes the contents of an item (or set of items) in a replica, producing a new version of
that item:
• a file system write operation is an example of one that modifies an item
• a SQL update statement on a relational database is also a modify operation

• A delete operation directly removes an item from a replica and the associated collection:
• because the item is permanently deleted from its collection, it will be removed from all replicas of that collection
• by contrast, a device holding a partial replica may choose to discard an item from its replica to save space without

causing that item to be deleted from the collection

• An update is a generic term for a create, modify, or delete operation

• Thus, the operations can be said to include:
• reads, and
• updates

15

16

5/14/2024

9

17

Basic Definitions - updates

• Replication protocols are mainly concerned with propagating updates between replicas

• When an update is made directly to an item in a device’s replica, that device is said to have updated the item

• Not all operations can necessarily be performed on all replicas:
• e.g., a read-only replica residing on a device might allow read operations but prevent update operations

• In some system models, items are created but never modified:
• in this case, replicas contain read-only items

18

Models
• Remote data access:

• information on a server machine on which it can be remotely invoked by mobile and wireless devices
(thin-client)

• Master replication:
• authoritative copy resides on a master site
• caching or replication is used

• P2P
• all devices holding a replica play (nearly) identical roles, i.e., there is no master replica

• Pub-Sub:
• small snippets of information, such as news articles, weather reports, and event notifications, are

broadcast from a central site, the publisher, to a number of subscribers

17

18

5/14/2024

10

19

Remote Data Access

• The most basic model for providing anytime, anywhere access to shared information is:
• store such information on a server machine from which it can be remotely fetched by mobile and wireless devices
• this model is sometimes called thin-client

• Key benefits:
• support for arbitrary types of information and
 arbitrary data management systems
• since the data is centrally maintained, access
 controls governing who is allowed to read and
 write various information items can be readily enforced
• data consistency is not an issue since all updates are performed directly at the server; devices that fetch data

directly from the server always get the most recently written version

• Main drawback:
• data is inaccessible if a network connection to the server cannot be established or if the server is temporarily

unavailable
• access time to the data is limited by the round-trip communication latency between the mobile device and the

storage server
• such communication consumes valuable battery life on the mobile device and may incur network charges

20

Master Replication – master site

• Commonly, portable devices store full or partial replicas of data collections whose authoritative copy resides
on a master site

• The master source may be:
• a shared server, such as a mail server, or a private computer to which the portable device is at least occasionally

connected

• Laptops, PDAs, music players, and even cell phones have enough storage capacity to replicate significant
amounts of data from various sources

• Even if a device has continuous connectivity to the master:
• entirely replicating databases, such as a person’s address book and calendar, guarantees instant access to

frequently used information and allows local searching

• For mobile devices that have only occasional connectivity to information sources, replication is essential:
• e.g., a person’s iPod may download music from the home PC (or indirectly from the Internet) only when connected

by a USB cable
• without the ability to store music locally, the iPod would be useless

19

20

5/14/2024

11

21

Master Replication – caching and replication

• Two broad approaches have been taken to ensure that a mobile device has ready access to critical data
obtained from the master:
• devices cache recently accessed data in local storage as a simple extension to the remote data access model, or
• devices maintain an actively managed, user-visible replica of the master’s data

• By caching data, mobile devices:
• can amortize the cost of retrieving that data over several read operations, and
• can retain access to that data when the device becomes
 disconnected from the master storage server

• Example:
• a laptop may cache files that have
 been fetched from a file server along
 with the set of recently browsed Web pages

22

Master Replication – caching (1/2)

• Data is generally fetched into a device’s cache on-demand:
• when the user tries to access a file or Web page, the device’s cache is first consulted to see if the data is already

available
• if the desired data is not cached (or if the cached copy is determined to be out-of-date and the user desires the

most recent data), then the device may contact the appropriate server to fetch the data
• in this case, the fetched data is stored in the cache for future access

• Devices can control the size of their caches and shrink or grow the cache based on their available storage:
• items may need to be discarded to free up space according to some cache replacement policy, such as removing

the items that have been used least recently

• For well-connected devices:
• a small cache may be sufficient to hold their working set of frequently accessed data and
• provide substantial performance benefits by avoiding much (but not all) communication with the server

21

22

5/14/2024

12

23

Master Replication – caching (2/2)

• Drawback of on-demand caching:
• information requested by a user will not be available if it is not cached and the server is not reachable
• such cache misses will occur for data that has not been recently accessed, or perhaps that has never been

accessed

• To minimize cache misses:
• hoarding (or stashing) can be used during periods of server connectivity
• preemptively load data objects into a device’s cache in anticipation of future use

• Hoard profiles indicate which files or data objects a device is likely to access in the near future, perhaps
while disconnected:
• such profiles can be specified by users based on their anticipated needs, or
• automatically generated from observations of past user behavior

24

Master Replication – replication (1/5)

• Replicating data on a mobile device is similar to caching in that the device stores data whose master copy
lives elsewhere

• However, the replication model differs from device-side caching in a number of key aspects:

• in replication, a whole or partial data collection is copied onto a device at one time, rather than as individual
objects are accessed, and explicitly refreshed periodically through a synchronization protocol

• in replication, attempts to read a data object fail if the data is not resident on the accessing device, rather than
resulting in a cache miss and a remote access to the master

• in replication, data objects are implicitly added to a device’s replica when new objects become part of the
replicated data collection

• in replication, when a device deletes a replicated object, that object is removed from the data collection and all of
its other replicas, rather than simply being discarded from the device’s local storage

23

24

5/14/2024

13

25

Master Replication – replication (2/5)

• A wide variety of replication techniques have been developed for non mobile devices:
• quorums and other techniques that provide strong mutual consistency guarantees

• Most of such solutions for distributed systems are not applicable for mobile/ubiquitous computing

• To permit access to data replicated on disconnected devices:
• mobile systems rely on weaker consistency guarantees
• users are typically permitted to read and write any data that is replicated on their devices without coordinating

with other devices that may be sharing the same data

• This read-anywhere, write-anywhere replication model is:
• well suited to mobile devices with high-capacity storage,
• but intermittent or weak connectivity and limited battery life

• It is widely used for both consumer and enterprise applications

26

Master Replication – replication (3/5)

• Updates originating at a mobile device to a cached item are generally:
• not only written to the cached copy, but also
• written directly to the master server, so that
• the updated item is immediately available to other devices.

• If a connection to the server is not currently possible, then:
• updates may be performed locally and queued for later transmission

• Updates made by other devices are not necessarily reflected immediately in a device’s local cache:
• methods can be used for ensuring that caching clients always read the data that was most recently

written, but
• these techniques do not work for intermittently connected devices

• Therefore, in mobile settings, a device usually is permitted to:
• read old items from its cache, and thus the user may see stale information

• Of course, if a user accesses data that only he updates, such as his personal calendar, then consistency is
not an issue

25

26

5/14/2024

14

27

Master Replication – replication (4/5)

• Data:
• updated on a device are uploaded to the master site, and
• updates made on other devices are downloaded from the master site

• Thus:
• all updates are done locally and sent to the master site,
• which then distributes them to other devices holding replicas of the information

• The process of communicating with the master to upload and download updated data objects is called
synchronization

• The term reconciliation or reintegration is also sometimes used for this process

28

Master Replication – replication (5/5)

• Synchronization takes place as connectivity allows and policy dictates

• Device without wireless networking hardware:
• only means of communicating with a PC is through a wired sync cradle
• it synchronizes with the attached PC whenever the device is placed in the cradle

• Device with wireless connectivity to the master site:
• e.g., a cell phone that synchronizes e-mail with a mail server
• it may synchronize its data periodically, say, every
 5 minutes or when explicitly requested by a user

• Consequence of a write-anywhere replication model is:
• two users may independently update the same data item on different devices, thereby introducing conflicting

updates
• even concurrent updates to different objects may conflict if, taken together, they violate some invariant that should

hold on the data

• In a master replication model:
• the master is responsible for detecting when two devices produce conflicting updates
• in some cases, the master may be able to automatically resolve conflicts that arise, whereas in other cases, such

conflicts may require human attention

27

28

5/14/2024

15

29

P2P Replication (1/5)

• All devices holding a replica play (nearly)
 identical roles, i.e., there is no master replica

• Updates are propagated via pairwise synchronization operations:
• relying only on communication between pairs of devices
• P2P replication can effectively deal with varying connectivity between peers

• Devices form an overlay network of arbitrary topology:
• neighbors periodically synchronize with each other to propagate updates
• each node in the overlay network is a fixed or mobile device, and
• each edge represents a synchronization partnership between two devices with at least occasional network

connectivity

• Updated data objects flow between devices via the overlay network

• Compared with the master replication model:
• P2P replication over arbitrary overlay topologies requires more complicated synchronization protocols but offers a

number of key advantages

30

P2P Replication (2/5)

• A device that belongs to a community of replicas can invite others to join the community simply by
establishing local synchronization partnerships

• The overlay topology can grow organically without informing other devices

• Users need not even be aware of the full set of devices that are sharing data

• Synchronization partnerships can come and go as long as the overlay network of replicas remains well-
connected

• If a mobile device opportunistically encounters another device that has data in common:
• these two devices can synchronize with each other without any prior arrangement or synchronization history

29

30

5/14/2024

16

31

P2P Replication (3/5)

• The peer-to-peer replication process is tolerant of failed devices and network outages

• In the master replication model:
• if the master is temporarily unavailable, devices cannot propagate new updates among themselves until the

master recovers or reconnects

• In P2P model:
• the loss of a single device does not prevent updates from propagating along different paths
• it allows updates to propagate among devices that have internal connectivity but no connection to the Internet at

large

• Example:
• colleagues are holding an off-site meeting at a remote location without an Internet connection but want to

collaboratively edit a document and share their edits between their laptops
• the laptops may be connected by a local WiFi network or use point-to-point Bluetooth or infrared connectivity to

exchange new versions of the document

32

P2P Replication (4/5)

• Even when mobile devices are well-connected:
• nontechnical (e.g., political) concerns may lead organizations to favor configurations that do not rely on a master

replica

• Specifically, using peer-to-peer replication, also known as multi-master replication:
• puts all participants on an even footing
• various relief organizations that need to share emergency information wish to be viewed as equal partners.

• P2P replication model supports collaborators operating as peers when managing shared data

• Principal cost of P2P replication:
• it requires more complex protocols for ensuring that updated data objects reach each replica while efficiently using

bandwidth
• update conflicts may be more prevalent than in the device–master model
• conflicts may be detected during synchronization between devices that did not introduce the conflicting updates
• overall, mobile users must deal with a more complex model resulting from the absence of a master replica, the lack

of knowledge about the full replication topology, and decentralized conflict handling

31

32

5/14/2024

17

33

Publish-Subscribe Systems (5/5)

• Characterized primarily by their pattern of information dissemination:
• small snippets of information, such as news articles, weather reports, and event notifications, are broadcast from a

central site, the publisher, to a number of subscribers

• Information is grouped into
 topic-based channels allowing
 devices to subscribe to items
 of interest

• The information may reach subscribers directly or
 via other subscribers

• Subscribers may be organized in a tree topology with the publisher at the root

• The publisher and subscribers may be either mobile or fixed devices with wireless or wired communication
capabilities

34

Publish-Subscribe Systems

• From the perspective of mobile data management:
• a common and increasingly important scenario is a fixed publisher broadcasting information via wireless networks

to mobile devices
• e.g., users may receive sport scores on their cell phones

• Cellular providers offer such information services to attract customers and provide additional revue streams

• Once a user subscribes to a channel, such as news or weather:
• new items published to that channel are automatically replicated to the user’s device(s)
• such items are treated as read-only and created only at the publisher

• Data replicated to mobile devices via a pub–sub system may be only of ephemeral interest:
• the data is often discarded once they have been read by the user

33

34

5/14/2024

18

35

Related Technologies and Models

Delay-Tolerant Networking

Ad Hoc Wireless Sensors Networks

Infostations

36

Summary

• Continuous connectivity:
• does the system only operate when devices are well-connected?

• Update anywhere:
• can any device update data items that then must be propagated to other replicas?

• Consistency:
• does the system require mechanisms to enforce consistency guarantees, such as eventual consistency?

• Topology independence:
• is the connectivity between devices that replicate data unconstrained, i.e., defined by an arbitrary graph?

• Conflict handling:
• may devices perform conflicting updates that need to be detected and resolved

• Partial replication:
• do devices wish to replicate some portion of a data collection?

35

36

5/14/2024

19

37

Summary

Replication Requirements for Basic Data-Oriented Systems

38

Summary

37

38

5/14/2024

20

39

Data consistency

40

Consistency Algorithms

• Strong vs weak

•Best effort

• Eventual

•Causal

•Bounded
• VFC
• Session

39

40

5/14/2024

21

41

Strong Consistency

• Consistency provided by a replicated system:
• it is an indication of the extent to which users must be aware of the replication process and policies

• Systems that provide strong consistency try to exhibit identical behavior to a non
replicated system:
• this property is often referred to as one-copy serializability
• it means that an application program, when performing a read operation, receives the data resulting

from the most recent update operation(s)
• update operations are performed at each device in some well-defined order, at least conceptually
• maintaining strong consistency requires substantial coordination among devices that replicate a data

collection
• typically, all or most replicas must be updated atomically using multiple rounds of messages, such as a

two-phase commit protocol

42

Weak Consistency

• Relaxed/optimistic consistency models have become popular for replicated systems:
• due to their tolerance of network and replica failures and their ability to scale to large numbers of replicas

• Especially important in mobile environments:
• rather than remaining mutually consistent at all times, replicas are allowed to temporarily diverge by accepting

updates to local data items
• such updates propagate lazily to other replicas

• Read operations performed on a device’s local replica may return data that does not reflect recent updates
made by other devices:
• users and applications must be able to tolerate potentially stale information

• Mobile systems generally strive for eventual consistency:
• guaranteeing that each replica eventually receives the latest update for each replicated item

• Other stronger (and weaker) consistency guarantees are possible

41

42

5/14/2024

22

43

Best Effort Consistency

• Simply make a best effort to deliver updates to all replicas:
• read operations performed at different replicas may return different answers

• Replicas may not converge to a mutually consistent state for any of number of reasons:
• all updates may not make it to all replicas (e.g., if updates are sent over a mostly, but not totally, reliable

communication channel)

• Despite reliable delivery, replicas will not converge if:
• updates are performed differently at different replicas (i.e., the application of an update is not deterministic)
• updates are applied in different orders at different replicas and are not commutable
• replicas have different conflict resolution policies
• metadata, such as deletion tombstones, are discarded too early
• replicas lose or corrupt data, such as when a replica is restored from an old backup
• the system is improperly configured, such as when the synchronization topology is not a well-connected graph

44

Eventual Consistency

• A system providing eventual consistency guarantees that:
• replicas would eventually converge to a mutually consistent state, i.e., to identical contents, if update activity

ceased

• Ongoing updates may prevent replicas from ever reaching identical states:
• especially in a mobile system where communication delays between replicas can be large due to intermittent

connectivity

• Practically, a mobile system provides eventual consistency if:
• each update operation is eventually received by each device,
• noncommutative updates are performed in the same order at each replica, and
• the outcome of applying a sequence of updates is the same at each replica

• Eventually consistent systems make no guarantees whatsoever about the freshness of data returned by a
read operation:
• readers are simply assured of receiving items that result from a valid update operation performed sometime in the

past
• e.g., a person might update a phone number from her cell phone and then be presented with the old phone

number when querying the address book on her laptop

43

44

5/14/2024

23

45

Causal Consistency

• In a system providing causal consistency:
• a user may read stale data but is at least guaranteed to observe states of replicas in which causally

related update operations have been performed in the proper order

• Suppose an update originates at some device that had already received and incorporated
a number of other updates into its local replica:
• this new update is said to causally follow all of the previously received updates
• a causally consistent replicated system ensures that

• If two updates are performed concurrently, that is, without knowledge of each other:
• they can be incorporated into different devices in different observable orders

if update U2 follows update U1, then a user is never allowed to observe a

replica that has performed update U2 without also performing update U1

46

Causality (in a network with 3 nodes)

Node 1

Node 2

Node 3

M1

M2

M2M1 M1’

45

46

5/14/2024

24

47

Bounded Consistency

• In some cases, bounds can be placed on the timeliness or inaccuracy of items that are read from a device’s
local replica, providing bounded inconsistency

• For example:
• an application may desire to read data that is no more than an hour old
• in this case, the system would guarantee that any updates made more than an hour ago have been incorporated

into the device’s replica before allowing a local read operation

• Similarly, a system may enforce bounds on numerical error or order error

• This requires replicas to know about updates made elsewhere and generally relies on regular connectivity
between replicas

• Thus, techniques for ensuring bounded inconsistency may not be applicable to all mobile environments

48

Vector Field Consistency

• It unifies:
• i) several forms of consistency enforcement and a multidimensional criteria (time, sequence, and value) to limit

replica divergence with
• ii) techniques based on locality-awareness (w.r.t. players position)

• Selectively and dynamically strengthens/weakens replica consistency based on the ongoing app state while
elegantly managing:
• how the consistency degree changes throughout application (e.g., game) execution w.r.t. each user, and
• how the consistency requirements are specified

Strong Consistency Good Playability

P1

P2

P3
P4

P3

P4

P1

P2

Hard!

47

48

5/14/2024

25

49

Vector Field Consistency – observation points

• By employing locality-awareness techniques VFC considers that throughout the game execution:
• there are certain “observation points” that we call pivots (e.g., the player’s position) around which the consistency

is required to be strong and weakens as the distance from the pivot increases
• since pivots can change with time (e.g., if the player moves), objects’ consistency needs can also change with time

• It provides a three-dimensional vector for specifying consistency degrees, where each dimension bounds the
replica divergence in:
• time (delay),
• sequence (number of operations), and
• value (magnitude of modifications) constraints

• Programmers (or even app/game designers) can parameterize VFC by specifying both the pivots and the
consistency degrees according to game logic

50

Vector Field Consistency

49

50

5/14/2024

26

51

Session Guarantees

52

Session Consistency

• One potential problem faced by users who access data from multiple devices is they may observe data that
fluctuates in its staleness:
• e.g., a user may update a phone number on her cell phone and then read the new phone number from her tablet

but later read the old phone number from her laptop

• Session guarantees have been devised to:
• provide a user (or application) with a view of a replicated database that is consistent with respect to the set of

read and update operations performed by that user while still allowing temporary divergence among replicas

• Unlike causal consistency, which is a system wide property, session guarantees are individually selectable
by each user or application

• Application designers can choose the set of session guarantees that they desire based on the semantics of
the data that they manage and the expected access patterns

51

52

5/14/2024

27

53

System Global View

Server S1 Server S2 Server Sj

Client C1

(1) (2)

Will Client C1 “see” the same state of the session
when accessing Server Sj, as he left it when he acessed Server S1?

Is it really always necessary?
How can this be ensured?

communication

Client Ci

Would like to have the
system behaving as if

there was a single
server and database

(e.g., master replication
with a single server)

54

Definition of Session

• A session is an abstraction for the sequence of read and write operations performed
during the execution of an application

• Sessions are not intended to correspond to atomic transactions that ensure atomicity and
serializability

• Instead, the intent is to:
• present individual applications with a view of the database that is consistent with their own actions,
• even if they read and write from various, potentially inconsistent servers

• We want the results of operations performed in a session to be consistent with:
• the model of a single centralized server,
• possibly being read and updated concurrently by multiple clients

53

54

5/14/2024

28

55

Session Guarantees (1/3)

• Session guarantees can be easily implemented on mobile devices:
• provided some small state can be carried with the user as he switches between devices

• More practically:
• this state can be embedded in applications that access data from mobile devices

• However, systems providing session guarantees on top of an eventually consistent
replication protocol may need to:
• occasionally prevent access to some device’s replica
• i.e., availability may be reduced to enforce the desired consistency properties, which could adversely

affect mobile users.

• One practical option is for the system to simply:
• inform the user (or application) when an operation violates a session guarantee, but
• allow that operation to continue with weaker consistency

56

Session Guarantees (2/3)

• Read Your Writes:
• read operations reflect previous writes

• Monotonic Reads:
• successive reads reflect a non decreasing set of writes

• Writes Follow Reads:
• writes are propagated after reads on which they depend

• Monotonic Writes:
• writes are propagated after writes that logically precede them

avoid: version N is written to some server, and version N+1 to a different server, and on some site
version N+1 is applied before version N

avoid: after changing his password, a user would occasionally type the new
password and receive an “invalid password” response

avoid: on a calendar recently added (or deleted) meetings may appear to come and go

avoid: shared bibliographic database to which users contribute entries; a user reads some
entry, discovers that it is inaccurate, and then issues a Write to update the entry

55

56

5/14/2024

29

57

Session Guarantees (3/3)

• These properties are "guaranteed" in the sense that:
• either the storage system ensures them for each read and write operation belonging to a session, or
• it informs the calling application that the guarantee cannot be met

• The guarantees can easily be layered on top of a weakly-consistent replicated data
system:
• each read or write operation is performed at a single server, and
• the writes are propagated to other servers in a lazy fashion

• To ensure that the guarantees are met:
• the servers at which an operation can be performed must be restricted to a subset of available servers

that are sufficiently up-to-date

58

Terminology (1/7)

• Basic assumption:
• a weakly consistent replicated storage system to which the guarantees will be added
• it consists of a number of servers each holding a full copy of some replicated database, and
• clients that run applications desiring access to the database

• The session guarantees are applicable to systems in which clients and servers may reside on separate
machines and a client accesses different servers over time:
• e.g., a mobile client may choose servers based on which ones are available in its region and can be accessed most

cheaply

• The term “database” is not meant to:
• imply any particular data model or organization, nor
• are the techniques specific to any data model

• A database is simply:
• a set of data items,
• a data item can be anything from a conventional file to a tuple in a relational database

57

58

5/14/2024

30

59

Terminology (2/7)

• Two main operations on a database are considered:
• Read and Write

• Read operation represents a query over the contents of the database:
• a Read could be a simple retrieval operation such as “return the contents of file foo” or a complicated query such as

“return the names of all employees who live in Oslo”

• The Write operation updates the database:
• a Write may involve creating, modifying, or deleting data items
• it may also represent a transaction that atomically updates multiple items in a server’s database

60

Terminology (3/7)

• Definition and implementation of session guarantees:
• it is unaffected by whether Writes are simple database updates or more complicated atomic

transactions

• Each Write has a globally unique identifier:
• it is called a “WID”
• the server that first accepts the Write, for instance, might be responsible for assigning its WID

• Read and Write operations may be performed at any server or set of servers

• The guarantees are presented assuming that each Read or Write is executed against a
single server’s copy of the database:
• i.e., for the most part, we discuss variants of a read-any/write-any replication scheme
• however, the guarantees could also be used in systems that read or write multiple copies, such as all of

the available servers in a partition

59

60

5/14/2024

31

61

Terminology (4/7)

• We define DB(S,t) to be:
• the ordered sequence of Writes that have been received by server S at or before time t
• if t is known to be the current time, then it may be omitted leaving DB(S) to represent the current

contents of the server’s database

• Conceptually:
• server S creates its copy of the database,
• it uses it to answer Read requests,
• it starts with an empty database and applies each Write in DB(S) in the given order

• In practice, a server is allowed to process the Writes in a different order as long as their
effect on the database is unchanged

• The order of Writes in DB(S) does not necessarily correspond to the order in which
server S first received the Writes

62

Terminology (5/7)

• Weak consistency permits database copies at different servers to vary:
• DB(S1,t) is not necessarily equivalent to DB(S2,t) for two servers S1 and S2

• Practical systems generally desire eventual consistency:
• servers converge towards identical database copies in the absence of updates
• thus, relying on two properties: total propagation and consistent ordering

• We assume that the replicated system provides eventual consistency and thus includes mechanisms to
ensure these two properties as follows:
• Writes are propagated among servers by a process called anti-entropy, also referred to in some papers as rumor

mongering, lazy propagation, or update dissemination
• anti-entropy ensures that each Write is eventually received by each server
• i.e, for each Write W there exists a time t such that W is in DB(S,t) for each server S

• There are no other assumptions about:
• the anti-entropy protocol,
• the frequency with which it happens,
• the policy by which servers choose anti-entropy partners, or
• other characteristics of the anti-entropy process

61

62

5/14/2024

32

63

Terminology (6/7)
• All servers apply non-commutative Writes to their databases in the same order:

• let WriteOrder(W1,W2) be a boolean predicate indicating whether Write W1 should be ordered before Write W2
• the system ensures that if WriteOrder(W1,W2) then W1 is ordered before W2 in DB(S) for any server S that has

received both W1 and W2

• In a strongly consistent system:
• WriteOrder would reflect the order in which individual Writes or transactions are committed

• In an eventually consistent system:
• servers could use any of a variety of techniques to agree upon the order of Writes
• e.g., the Grapevine system orders Writes by their origination timestamp
• using timestamps to determine the Write order does not imply that servers have synchronized clocks since there

is no requirement that Writes be ordered by the actual time at which they were performed

• We make no assumption about:
• how servers agree on the ordering of Writes, or
• about how servers make their copies of the database conform to this ordering

64

Terminology (7/7)

• We only assume that:
• the system has some means by which Writes are ordered consistently at every server,
• as required for eventual consistency, and
• uses the WriteOrder predicate to represent this ordering

• Weakly consistent systems often allow conflicting Writes to occur:
• i.e., two clients may make concurrent and incompatible updates to the same data item

• Existing systems resolve conflicting Writes in different ways:
• in some systems the Write order may determine which Write “wins”,
• while other systems rely on humans to resolve detected conflicts

• How the system detects and resolves Write conflicts is important to its users but has no
impact on the session guarantees

63

64

5/14/2024

33

65

Session Guarantees – Read Your Writes

• The Read Your Writes guarantee is motivated by the fact that:
• users and applications find it particularly confusing if they update a database and then immediately read from the

database only to discover that the update appears to be missing

• This guarantee ensures that:
• the effects of any Writes made within a session are visible to Reads within that session
• thus, Reads are restricted to copies of the database that include all previous Writes in this session

• RYW-guarantee:
• if Read R follows Write W in a session, and
• R is performed at server S at time t, then
• W is included in DB(S,t)

• Applications are not guaranteed that:
• a Read following a Write to the same data item will return the previously written value
• in particular, Reads within the session may see other Writes that are performed outside the session

RYW: read operations reflect previous writes

66

Read Your Writes – example 1

• After changing his password, a user would occasionally type the new password and receive an “invalid
password” response:
• this annoying problem would arise because the login process contacted a server to which the new password had

not yet propagated
• the problem can occur in any weakly consistent system that manages passwords

• It can be solved cleanly by having a session per user in which the RYW-guarantee is provided:
• such a session should be created for each new user and must exist for the lifetime of the user’s account
• by performing updates to the user’s password as well as checks of this password within the session, users can use a

new password without regard for the extent of its propagation

• The RYW-guarantee ensures that the login process will always read the most recent password

• Notice that this application requires a session to persist across logouts and machine reboots

RYW: read operations reflect previous writes

65

66

5/14/2024

34

67

Read Your Writes – example 2

• Consider a user whose electronic mail is managed in a weakly consistent replicated
database:
• as the user reads and deletes messages, those messages are removed from the displayed “new mail”

folder
• if the user stops reading mail and returns sometime later, she should not see deleted messages

reappear simply because the mail reader refreshed its display from a different copy of the database

• The RYW-guarantee can be requested within a session used by the mail reader:
• to ensure that the effects of any actions taken, such as deleting a message or moving a message to

another folder, remain visible

RYW: read operations reflect previous writes

68

Session Guarantees – Monotonic Reads

• The Monotonic Reads guarantee permits users to observe a database that is increasingly up-to-date over
time:
• it ensures that Read operations are made only to database copies containing all Writes whose effects were seen

by previous Reads within the session

• Intuitively, a set of Writes completely determines the result of a Read if:
• the set includes “enough” of the database’s Writes
• so that the result of executing the Read against this set is the same as executing it against the whole database

• Specifically, we say a Write set WS is complete for Read R and DB(S,t) if and only if:
• WS is a subset of DB(S,t) and
• for any set WS2 that contains WS and is also a subset of DB(S,t),
• the result of R applied to WS2 is the same as the result of R applied to DB(S,t)

• MR-guarantee:
• if Read R1 occurs before R2 in a session, and
• R1 accesses server S1 at time t1 and R2 accesses server S2 at time t2, then
• RelevantWrites(S1,t1,R1) is a subset of DB(S2,t2)

MR: successive reads reflect a non decreasing set of writes

67

68

5/14/2024

35

69

Monotonic Reads – example 1

• A user’s appointment calendar is stored online in a replicated database:
• where it can be updated by both the user and automatic meeting schedulers

• The user’s calendar program periodically refreshes its display by reading all of today’s
calendar appointments from the database
• if it accesses servers with inconsistent copies of the database, recently added (or deleted) meetings

may appear to come and go

• The MR-guarantee can effectively prevent this since:
• it disallows access to copies of the database that are less current than the previously read copy

t
W1

All previous reads have been seen

W2 W3

All previous reads have been seen

All previous reads have been seen

MR: successive reads reflect a non decreasing set of writes

70

Monotonic Reads – example 2

• Consider a replicated electronic mail database

• The mail reader issues a query to retrieve all new mail messages and displays summaries
of these to the user

• When the user issues a request to display one of these messages, the mail reader issues
another Read to retrieve the message’s contents

• The MR-guarantee can be used by the mail reader to ensure that:
• the second Read is issued to a server that holds a copy of the message

• Otherwise, the user, upon trying to display the message, might incorrectly be informed
that the message does not exist

MR: successive reads reflect a non decreasing set of writes

69

70

5/14/2024

36

71

Session Guarantees – Writes Follows Reads

• The Writes Follow Reads guarantee ensures that traditional Write/Read dependencies are preserved in the
ordering of Writes at all servers:
• in every copy of the database, Writes made during the session are ordered after any Writes whose effects were

seen by previous Reads in the session

• WFR-guarantee:
• if Read R1 precedes Write W2 in a session and
• R1 is performed at server S1 at time t1, then,
• for any server S2, if W2 is in DB(S2) then any W1 in RelevantWrites(S1,t1,R1) is also in DB(S2) and

WriteOrder(W1,W2)

• This guarantee is different in nature from the previous two guarantees in that it affects users outside the
session:
• not only does the session observe that the Writes it performs occur after any Writes it had previously seen, but
• also all other clients will see the same ordering of these Writes regardless of whether they request session

guarantees

WFR: writes are propagated after reads on which they depend

72

Writes Follows Reads – example

• Imagine a shared bibliographic database to which users contribute entries describing published papers:
• suppose that a user reads some entry, discovers that it is inaccurate, and then issues a Write to update the entry
• e.g., the person might discover that the page numbers for a paper are wrong and then correct them with a Write

such as “UPDATE bibdb SET pages = ‘45-53’ WHERE bibid = ‘Jones93’.”

• The WFR-guarantee can ensure that:
• the new Write updates the previous bibliographic entry at all servers

• The WFR-guarantee, as defined, associates two constraints on Write operations:
• a constraint on Write order ensures that a Write properly follows previous relevant Writes in the global ordering

that all database replicas will eventually reflect
• a constraint on propagation ensures that all servers (and hence all clients) only see a Write after they have seen all

the previous Writes on which it depends

• This example requires both of these properties

WFR: writes are propagated after reads on which they depend

71

72

5/14/2024

37

73

Monotonic Writes

• The Monotonic Writes guarantee says that Writes must follow previous Writes within the
session

• In other words:
• a Write is only incorporated into a server’s database copy if the copy includes all previous session Writes
• the Write is ordered after the previous Writes

• MW-guarantee:
• if Write W1 precedes Write W2 in a session, then,
• for any server S2, if W2 in DB(S2) then W1 is also in DB(S2) and WriteOrder(W1,W2)

• This guarantee provides assurances that are relevant both to the user of a session as well
as to users outside the session

MW: writes are propagated after writes that logically precede them

74

Monotonic Writes – example 1

• The MW-guarantee could be used by a text editor when editing replicated files to ensure
that:
• if the user saves version N of the file and later saves version N+1 then version N+1 will replace version

N at all servers

• In particular, it avoids the situation in which:
• version N is written to some server, and
• version N+1 to a different server, and
• the versions get propagated such that version N is applied after N+1

MW: writes are propagated after writes that logically precede them

73

74

5/14/2024

38

75

Monotonic Writes – example 2

• Consider a replicated database containing software source code

• Suppose that a programmer updates a library to add functionality in an upward
compatible way:
• this new library can be propagated to other servers in a lazy fashion since it will not cause any existing

client software to break
• however, suppose that the programmer also updates an application to make use of the new library

functionality
• if the new application code gets written to servers that have not yet received the new library, then the

code will not compile successfully

• To avoid this potential problem, the programmer can:
• create a new session that provides the MW-guarantee, and
• issue the Writes containing new versions of both the library and application code within this session

MW: writes are propagated after writes that logically precede them

76

Session Guarantees - summary

• Read Your Writes:
• the effects of any Writes made within a session are visible to Reads within that session

• Monotonic Reads:
• Read operations are made only to database copies containing all Writes whose effects were seen by

previous Reads within the session

• Writes Follow Reads:
• in every copy of the database, Writes made during the session are ordered after any Writes whose

effects were seen by previous Reads in the session

• Monotonic Writes:
• a Write is only incorporated into a server’s database copy if the copy includes all previous session Writes

75

76

5/14/2024

39

77

Providing the Session Guarantees

78

Providing the Guarantees

• The implementations require only minor cooperation from the servers that process Read and Write
operations

• Specifically, a server must be willing to return information about the:
• unique identifier (WID) assigned to a new Write,
• the set of WIDs for Writes that are relevant to a given Read, and
• the set of WIDs for all Writes in its database

• The burden of providing the guarantees lies primarily with the session manager:
• it is a component of the client stub that mediates communication with available servers
• through which all of a session’s Read and Write operations are serialized

• For each session, the session manager maintains two sets of WIDs:
• read-set = set of WIDs for the Writes that are relevant to session Reads
• write-set = set of WIDs for those Writes performed in the session

Client Ci

Session
Manager

App
Code

77

78

5/14/2024

40

79

Providing Read Your Writes

• It ensures that:
• the effects of any Writes made within a session are visible to Reads within that session
• thus, Reads are restricted to copies of the database that include all previous Writes in this session

• It involves two basic steps:
• whenever a Write is accepted by a server, its assigned WID is added to the session’s write-set
• before each Read to server S at time t, the session manager must check that the write-set is a subset of DB(S,t)

• This check could be done:
• on the server by passing the write-set to it, or
• on the client by retrieving the server’s list of WIDs

• The session manager can continue trying available servers until it discovers one for which the check
succeeds:
• if it cannot find a suitable server, then it reports that the guarantee cannot be provided

read-set = set of WIDs for the Writes that are relevant to session Reads

write-set = set of WIDs for those Writes performed in the session

RYW: read operations reflect previous writes

Ex: it avoids that after changing his password, a user would
occasionally type the new password and receive an “invalid
password” response

80

Providing Monotonic Reads

• It ensures that:
• Read operations are made only to database copies containing all Writes whose effects were seen by

previous Reads within the session

• It involves two basic steps:
• before each Read to server S at time t, the session manager must ensure that the read-set is a subset

of DB(S,t)
• after each Read R to server S, the WIDs for each Write in RelevantWrites(S,t,R) should be added to the

session’s read-set

• This presumes that the server can compute the relevant Writes and return this
information along with the Read result

read-set = set of WIDs for the Writes that are relevant to session Reads

write-set = set of WIDs for those Writes performed in the session

MR: successive reads reflect a non decreasing set of writes

Ex.: it avoids that on a calendar recently added (or deleted)
meetings may appear to come and go

79

80

5/14/2024

41

81

Providing WFR and MW
• Providing the Writes Follow Reads and Monotonic Writes guarantees requires:

• two additional, but reasonable, constraints (C1 and C2) on the servers’ behavior

• Constraint C1:
• when a server S accepts a new Write W2 at time t, it ensures that WriteOrder(W1,W2) is true
 (for any W1 already in DB(S,t))
• that is, new Writes are ordered after Writes that are already known to a server

• Constraint C2:
• anti-entropy (i.e., communication between servers) is performed such that if W2 is propagated from server S1 to

server S2 at time t then any W1 in DB(S1,t) such that WriteOrder(W1,W2) is also propagated to S2

• Strictly speaking, the two constraints discussed above must hold for any Write W1 in the session’s read-set
or write-set rather than for any Write in DB(S,t):
• this subtle distinction is not likely to have a practical consequence since the weaker requirements would require a

server to keep track of clients’ read-sets and write-sets
• the stronger requirements allow a server’s behavior to be independent of the session state maintained by clients

read-set = set of WIDs for the Writes that are relevant to session Reads

write-set = set of WIDs for those Writes performed in the session

WFR: writes are propagated after reads on which they depend

MW: writes are propagated after writes that logically
precede them

82

Providing Writes Follows Reads

• It ensures that traditional Write/Read dependencies are preserved in the ordering of
Writes at all servers:
• in every copy of the database, Writes made during the session are ordered after any Writes whose

effects were seen by previous Reads in the session

• It involves two basic steps:
• each read R to server S at time t results in RelevantWrites(S,t,R) being added to the session’s read-set
• before each Write to server S at time t, the session manager checks that this read-set is a subset of

DB(S,t)

read-set = set of WIDs for the Writes that are relevant to session Reads

write-set = set of WIDs for those Writes performed in the session

WFR: writes are propagated after reads on which they depend

Ex: consider a shared bibliographic database to which
users contribute entries; a user reads some entry,
discovers that it is inaccurate, and then issues a Write
to update the entry

81

82

5/14/2024

42

83

Providing Monotonic Writes

• It says that:
• a Write is only incorporated into a server’s database copy if the copy includes all previous session Writes

• It involves two basic steps:
• in order for a server S to accept a Write at time t, the server’s database DB(S,t) must include the

session’s write-set
• also, whenever a Write is accepted by a server, its assigned WID is added to the write-set

read-set = set of WIDs for the Writes that are relevant to session Reads

write-set = set of WIDs for those Writes performed in the session

MW: writes are propagated after writes that logically precede them

Ex: it avoids that version N is written to some server, and
version N+1 to a different server, and on some site
version N+1 is applied before version N

84

Read / Write Guarantees

• Operations on which a session is updated or checked
• Read Your Writes:

• the effects of any Writes made within a
session are visible to Reads within that
session

• Monotonic Reads:
• Read operations are made only to

database copies containing all Writes
whose effects were seen by previous
Reads within the session

• Writes Follow Reads:
• in every copy of the database, Writes

made during the session are ordered
after any Writes whose effects were
seen by previous Reads in the session

• Monotonic Writes:
• a Write is only incorporated into a

server’s database copy if the copy
includes all previous session Writes

read-set = set of WIDs for the Writes that are relevant to session Reads

write-set = set of WIDs for those Writes performed in the session

83

84

5/14/2024

43

85

Version Vectors

• A version vector is a sequence of <server, clock> pairs, one for each server

• The server portion is simply a unique identifier for a particular copy of the replicated
database

• The clock is a value from the given server’s monotonically increasing logical clock

• The only constraint on this logical clock is that it must increase for each Write accepted
by the server:
• a Lamport clock
• a real-time clock or
• simply a counter

• A <server,clock> pair serves nicely as a WID, and we assume that WIDs are assigned in
this manner by the server that first accepts the Write

86

Version Vectors at Each Server

• Each server maintains its own version vector with the following invariant:
• if a server has <S,C> in its version vector, then it has received all Writes that were assigned a WID by

server S before or at logical time C on S’s clock

• For this invariant to hold, during anti-entropy:
• servers must transfer Writes in the order of their assigned WIDs

• A server’s version vector is updated as part of the anti-entropy process so that:
• it precisely specifies the set of Writes in its database

• Assuming the use of version vectors by servers:
• more practical implementations of the guarantees are possible in which the sets of WIDs are replaced

by version vectors (next slide)

85

86

5/14/2024

44

87

Replacing set of WIDs by Version Vectors

• To obtain a version vector V providing a representation for a set of WIDs, WS:
• set V[S] = the time of the latest WID assigned by server S in WS (or 0 if no Writes are from S)

• To obtain a version vector V that represents the union of two sets of WIDs, WS1 and WS2:
• first obtain V1 from WS1 and V2 from WS2 as above
• then, set V[S] = MAX(V1[S], V2[S]) for all S

• To check if one set of WIDs, WS1, is a subset of another, WS2:
• first obtain V1 from WS1 and V2 from WS2 as above.
• then, check that V2 “dominates” V1, where dominance is defined as one vector being greater or equal to the

other in all components

• With these rules, the state maintained for each session compacts into two version vectors:
• one to record the session’s Writes, and
• one to record the session’s Reads (actually, the Writes that are relevant to the session’s Reads)

read-set = set of WIDs for the Writes that are relevant to session Reads

write-set = set of WIDs for those Writes performed in the session

88

Finding a Server

• To find an acceptable server:
• the session manager must check that one or both of these session vectors are dominated by the server’s version

vector

• Which session vectors are checked depends on the operation being performed and the guarantees being
provided within the session

• Servers return a version vector along with Read results to indicate the relevant Writes:
• in practice, servers may have difficulty computing the set of relevant Writes
• 1) determining the relevant Writes for a complex query, such as one written in SQL, may be costly
• 2) it may require servers to maintain substantial bookkeeping of which Writes produced or deleted which database

items

• In real systems, servers typically do not remember deleted database entries:
• they just store a copy of the database along with a version vector
• for such systems, a server is allowed to return its current version vector as a gross estimation of the relevant Writes
• this may cause the session manager to be overly conservative when choosing acceptable servers

87

88

5/14/2024

45

89

Performance Improvement (1/2)

• Checks for a suitable server can be amortized over many operations within a session:
• in particular, the previously contacted server is always an acceptable choice for the server at which to

perform the next Read or Write operation
• if the session manager "latches on" to a given server, then the checks can be skipped
• only when the session manager switches to a different server, like when the previous server becomes

unavailable, must a server's current version vector be compared to the session's vectors

• To facilitate finding a server that is sufficiently up-to-date:
• the session manager can cache the version vectors of various servers

• Since a server’s database can only grow over time in terms of the numbers of Writes it has
received and incorporated:
• cached version vectors represent a lower bound on a server’s knowledge

90

Performance Improvement (2/2)

• Caching of data at clients can also be used to improve overall performance and data availability

• Data may be available in the cache but:
• cannot be read by an application because it does not meet the application’s session guarantees
• such a situation can arise when applications with different consistency requirements are sharing the cache

• Example:
• suppose a client machine is executing two applications, a mail reader and a program that collects statistics on the

mail messages that the user receives
• the statistics gathering program has no consistency requirements and hence requests no session guarantees
• the mail reader requires the Monotonic Reads and Read Your Writes guarantees
• if at some point the statistics program reads from a server that holds an outdated copy of the user’s mail

database, thereby filling the cache with old data
• when the mail reader executes, allowing it to retrieve data from the cache would likely violate its Monotonic

Reads guarantee

• This type of scenario can occur for any weakly consistent replicated system with client caching, regardless of
the existence of mobile clients

89

90

5/14/2024

46

91

Other Issues

92

Relevant Issues

• The designer of a replication protocol must deal with:
• Consistency: What consistency guarantees are desired and how are they provided?

• Update format: Do replicas exchange data items or update operations?

• Change tracking: How do devices record updates that need to be propagated to other devices?

• Metadata: What metadata is stored and communicated about replicated items?

• Sync state: What state is maintained at a device for each synchronization partnership?

• Change enumeration: How do devices determine which updates still need to be sent to which other devices?

• Communication: What transport protocols are used for sending updates between devices?

• Ordering: How do devices decide on the order in which received updates should be applied?

• Filtering: How are the contents of a partial replica specified and managed?

• Conflicts: How are conflicting updates detected and resolved? representing,

recording, sending,

and ordering updates

91

92

5/14/2024

47

93

Other Issues – Partial Replication

• The replication protocols and techniques previously described ignore issues that arise with
partial replicas:
• How do devices decide which items to retain in their partial replicas, i.e., specify the items of interest?

• When and where are filters applied to items propagating between replicas?

• What happens when a device changes its interests?

• What happens when items are updated causing them to move in or out of a device’s interest set?

• What constraints must be placed on synchronization topologies that include partial replicas?

access-based caching, policy-based hoarding,

topic-based channels, hierarchical sub-collections,

content-based filters, context-based filters

94

Other Issues – Conflicts Management

• What is a conflict?

• Conflict detection:
• no detection, version histories, previous versions, version vectors, made-with-

knowledge, read-sets, operation conflict tables, integrity constraints, dependency
checks

• Conflict resolution:
• how conflicts can be resolved, where are conflicts resolved, who/what resolves the

conflicts

93

94

5/14/2024

48

95

Examples

96

Conclusions

• Seamless computing requires that people have ready access to their data at any time from anywhere

• Centralized approach to data management is infeasible:
• non-uniform network connectivity and latencies as well as device limitations and regulatory restrictions

• “optimistic” or “update-anywhere” replication:
• which replicas are allowed to behave autonomously

• System models:
• basic definitions, device-master replication, P2P, pub-sub

• Data consistency
• strong, weak, best effort, eventual, causal, bounded, VFC, session guarantees

• Other issues:
• protocols, partial replication, conflicts management, examples

95

96

	Slide 1
	Slide 2: Contents
	Slide 3: Introduction
	Slide 4: Current Scenario
	Slide 5: Specific Mobile Aspects
	Slide 6: History
	Slide 7: Some Examples 1/4
	Slide 8: Some Examples 2/4
	Slide 9: Some Examples 3/4
	Slide 10: Some Examples 4/4
	Slide 11: System models
	Slide 12: Basic Definitions – connected device
	Slide 13: Basic Definitions – items and collections
	Slide 14: Basic Definitions – replicas, partial and full
	Slide 15: Basic Definitions - operations
	Slide 16: Basic Definitions - operations
	Slide 17: Basic Definitions - updates
	Slide 18: Models
	Slide 19: Remote Data Access
	Slide 20: Master Replication – master site
	Slide 21: Master Replication – caching and replication
	Slide 22: Master Replication – caching (1/2)
	Slide 23: Master Replication – caching (2/2)
	Slide 24: Master Replication – replication (1/5)
	Slide 25: Master Replication – replication (2/5)
	Slide 26: Master Replication – replication (3/5)
	Slide 27: Master Replication – replication (4/5)
	Slide 28: Master Replication – replication (5/5)
	Slide 29: P2P Replication (1/5)
	Slide 30: P2P Replication (2/5)
	Slide 31: P2P Replication (3/5)
	Slide 32: P2P Replication (4/5)
	Slide 33: Publish-Subscribe Systems (5/5)
	Slide 34: Publish-Subscribe Systems
	Slide 35: Related Technologies and Models
	Slide 36: Summary
	Slide 37: Summary
	Slide 38: Summary
	Slide 39: Data consistency
	Slide 40: Consistency Algorithms
	Slide 41: Strong Consistency
	Slide 42: Weak Consistency
	Slide 43: Best Effort Consistency
	Slide 44: Eventual Consistency
	Slide 45: Causal Consistency
	Slide 46: Causality (in a network with 3 nodes)
	Slide 47: Bounded Consistency
	Slide 48: Vector Field Consistency
	Slide 49: Vector Field Consistency – observation points
	Slide 50: Vector Field Consistency
	Slide 51: Session Guarantees
	Slide 52: Session Consistency
	Slide 53: System Global View
	Slide 54: Definition of Session
	Slide 55: Session Guarantees (1/3)
	Slide 56: Session Guarantees (2/3)
	Slide 57: Session Guarantees (3/3)
	Slide 58: Terminology (1/7)
	Slide 59: Terminology (2/7)
	Slide 60: Terminology (3/7)
	Slide 61: Terminology (4/7)
	Slide 62: Terminology (5/7)
	Slide 63: Terminology (6/7)
	Slide 64: Terminology (7/7)
	Slide 65: Session Guarantees – Read Your Writes
	Slide 66: Read Your Writes – example 1
	Slide 67: Read Your Writes – example 2
	Slide 68: Session Guarantees – Monotonic Reads
	Slide 69: Monotonic Reads – example 1
	Slide 70: Monotonic Reads – example 2
	Slide 71: Session Guarantees – Writes Follows Reads
	Slide 72: Writes Follows Reads – example
	Slide 73: Monotonic Writes
	Slide 74: Monotonic Writes – example 1
	Slide 75: Monotonic Writes – example 2
	Slide 76: Session Guarantees - summary
	Slide 77: Providing the Session Guarantees
	Slide 78: Providing the Guarantees
	Slide 79: Providing Read Your Writes
	Slide 80: Providing Monotonic Reads
	Slide 81: Providing WFR and MW
	Slide 82: Providing Writes Follows Reads
	Slide 83: Providing Monotonic Writes
	Slide 84: Read / Write Guarantees
	Slide 85: Version Vectors
	Slide 86: Version Vectors at Each Server
	Slide 87: Replacing set of WIDs by Version Vectors
	Slide 88: Finding a Server
	Slide 89: Performance Improvement (1/2)
	Slide 90: Performance Improvement (2/2)
	Slide 91: Other Issues
	Slide 92: Relevant Issues
	Slide 93: Other Issues – Partial Replication
	Slide 94: Other Issues – Conflicts Management
	Slide 95: Examples
	Slide 96: Conclusions

