

UNIVERSITY OF OSLO

Introduction to Imaging Radar INF-GEO 4310

Yoann Paichard 22.9.2011

Yoann Paichard INFGEO 4310

Literature

- Contact: <u>voann.paichard@ffi.no</u>
- Suggested readings:
 - Fundamentals of Radar Signal Processing, M.A. Richards, McGraw-Hill, 2005
 - High Resolution Radar, D.R. Wehner, Artech House, 2nd Edition, 1995
 - High Resolution Radar Cross-Section Imaging, Mensa, D.L.,, Boston: Artech House, 1991.
 - Digital Processing of Synthetic Aperture Radar Data, I.G. Cumming and F.H. Won, Artech House, 2005
 - Spotlight Synthetic Aperture Radar, W.S Carrara, R.M.
 Majewski, R.S. Goodman, Artech House, 1995

Outline

- Introduction
- Radar overview
- ISAR Inverse Synthetic Aperture Radar
- SAR Synthetic Aperture Radar
- GPR Ground Penetration Radar

Yoann Paichard INFGEO 4310

Introduction

RADAR = ⁽⁽⁾ RAdio Detection And Ranging

1886	Heinrich Hertz confirmed radio wave propagation			
1904	Hülsmeyer patented ship collision-avoidance system			
1922	Ship detection methods at NRL (Taylor & Young, 700MHz)			
1930s	England and Germany radar programs developed:			
	Chain Home early warning system (22-50 MHz)			
	fire control systems			
	aircraft navigation systems			
	cavity magnetron to transmit high-power microwaves			
1940s	Establishment of MIT Rad Lab (British + American) radar for tracking, U-boat detection			

UNIVERSITY OF OSLO

Why Radar

- Works day or night (unlike optical imaging)
- Works in all weather
- Penetrates clouds and rain
- Some radars can penetrate foliage, buildings, soil, human tissue
- Can provide very accurate distance measurements
- Sensitive to objects whose length scales are cm to m
- Can measure velocities (Moving targets)

Electromagnetic Waves

- An electromagnetic wave comprises two orthogonal vector components:
 - Electric field intensity E
 - Magnetic field intensity H
- Sinusoidal EM wave:

- Electric field oscillates back and forth.
- EM wave propagation is in the direction orthogonal to oscillation of both electric and magnetic fields.

The RF/Radar Spectrum

Band	Frequencies	Wavelengths	
HF	3–30 MHz	100–10 m	
VHF	30-300 MHz	10–1 m	
UHF	300 MHz-1 GHz	1–30 cm	
L	1–2 GHz	30–15 cm	
S	2–4 GHz	15–7.5 cm	
С	4–8 GHz	7.5–3.75 cm	
X	8–12 GHz	3.75–2.5 cm	
Ku	12–18 GHz	2.5–1.67 cm	
K	18–27 GHz	1.67–1.11 cm	
Ka	27–40 GHz	1.11 cm-7.5 mr	
mm	40–300 GHz 7.5–1 mm		

Maxwell's equations

Yoann Paichard INFGEO 4310

Radar Overview

Range resolution

- Range resolution: defines the radar ability to separate 2 close targets
- Echoes can be separated in range if the width of the transmitted pulse is short enough:

Range resolution

The spectrum of a rectangular pulse of length $\boldsymbol{\tau}$

$$f(t) = A\cos\omega_0 t \qquad -\frac{\tau}{2} \le t \le \frac{\tau}{2}$$

is a sinc function centred on ω_0

$$F(\omega) = \frac{\tau}{2} \left(\frac{\sin(\omega + \omega_0)\tau/2}{(\omega + \omega_0)\tau/2} \right)$$

whose bandwidth (at -3.9 dB) is $B = 1/\tau$

So we can write the range resolution as $\Delta r = \frac{c}{2B}$

High range resolution

- For radar imaging, High Range Resolution (HRR) is required
- The range resolution must be smaller than the area or object of interest
- A bandwidth of (at least) 150 MHz is required to achieve 1m resolution

Yoann Paichard INFGEO 4310

Radar waveforms

- Impulse Radar
- Step-frequency
- LFM-Chirp

UNIVERSITY OF OSLO

Impulse Radar

Linear Frequency Modulated Signal (Chirp)

Basic Radar Circuit

Doppler effect

- Doppler effect is the change in phase when an object is approaching • or moving away from the radar
- Also true when the radar is on a moving platform (airborne radar) and • looking at the ground
- We see a shift between the transmitted frequency and the received frequency since the rate of phase change is frequency change

UNIVERSITY OF OSLO **Doppler effect** velocity r

Radar target

The phase represented by the two-way path from radar to target is

$$\phi = 2\pi \frac{2r}{\lambda}$$

The Doppler shift is

$$f_D = -\frac{1}{2\pi} \frac{d\phi}{dt}$$

(- sign because an increase in path length represents a phase lag)

$$= -\frac{1}{2\pi} \frac{d}{dt} \left(\frac{4\pi r}{\lambda} \right) = -\frac{2}{\lambda} \frac{dr}{dt} \qquad = -\frac{2vf_0}{c}$$

Yoann Paichard INFGEO 4310

Cross-range (angular) resolution

- Cross-range resolution
 - degrades in proportion to range
 - is too coarse for useful images: airborne radar with 1m antenna at 10GHz (X-band) give a resolution of 300m at 10km range
 - No possibility to increase physical antenna size, esp. on airborne radars

Yoann Paichard
INFGEO 4310

Synthetic Aperture Concept

- We can use the motion of the radar or the object to improve the cross-range resolution
- SAR: Synthetic Aperture Radar: The motion of the • platform is used to synthesize a larger antenna
- ISAR: Inverse Synthetic Aperture Radar. The motion of the object is used to synthesize a larger antenna

Inverse Synthetic Aperture Radar (ISAR)

Yoann Paichard INFGEO 4310

ISAR

- Relative motion of the object makes a change in aspect angle
- Starts with High Range Resolution Profiles
- Main difficulty is accurate tracks

Range-Doppler Imaging

- The object rotation gives cross range resolution
- Range
 - $r = r_a + x_0 \sin \Omega t + y_0 \cos \Omega t$ $\approx r_a + y_0$
- Doppler:

$$f_{d} = \frac{2}{\lambda} \frac{dr}{dt} = \frac{2x_{0}\Omega}{\lambda} \cos \Omega t - \frac{2y_{0}\Omega}{\lambda} \sin \Omega t$$
$$\approx \frac{2x_{0}\Omega}{\lambda}$$

Yoann Paichard INFGEO 4310

Resolution

Distance (range) Δ

$$\Delta y = \frac{c}{2B}$$

Azimut (Doppler)

 $\lambda = 1.8 \,\mathrm{cm}, \Omega = 0.5^{\circ}/\mathrm{s}$

$$\Delta f = \frac{1}{T}$$

$$\Delta x = \frac{\lambda}{T} \quad \Delta f = -\frac{\lambda}{T} \quad -$$

$$\Delta x = \frac{\lambda}{2\Omega} \Delta f = \frac{\lambda}{2\Omega T} = \frac{\lambda}{2\theta_p}$$

Example:

T = 5s

 $B = 800 \,\mathrm{MHz}$

 $\theta_p = 2.5^{\circ}$

 $\Delta y = 18.75 \,\mathrm{cm}$

UNIVERSITY OF OSLO

Yoann Paichard INFGEO 4310 $\Delta x = 20.6 \,\mathrm{cm}$

ISAR example

	Total	Start	Stop	Step Size	Total Steps
Frequency (GHz)	4.0	8.0	12.0	0.01	401
Azimuth (deg)	25.0	167.5	192.5	0.1	251
Elevation (deg)	18.0	67.0	85.0	0.2	91

Yoann Paichard INFGEO 4310

Courtesy from CompuQuest, inc.

Synthetic Aperture Radar (SAR)

Doppler

Cross-Range Resolution

Comparison of resolution

Real aperture

Distance:	10 km
Antenna:	1 m
Wavelenght:	X-band
Resolution:	300 m
Distance:	100 km
Resolution:	3 km
Distance:	1000 km
Resolution:	30 km

Synthetic aperture

SAR (Stripmap)Antenna:1 mWavelenght:X-bandResolution:0.5 m

SAR (Spotlight) Theoretical Resolution: 7.5 mm

Independent of distance!

Figure 8.12 One meter resolution spotlight SAR image of the Pentagon. (Courtesy of Sandia National Laboratories.)

Yo_____ INFGEO 4310

UNIVERSITY OF OSLO

SAR images interpretation

- SAR images are coded in **grey levels** which are related to the microwave **backscattering properties of the surface**.
- The intensity of the backscattered signal varies according to roughness, dielectric properties and local slope. Thus the radar signal refers mainly to geometrical properties of the target.
- The following parameters are used during radar imagery interpretation:

 -tone : high intensity returns appear as light tones on a positive image, while low signal returns appear as dark tones on the imagery.
 -shape: some features (streets, bridges, airports...) can be distinguished by their shape. Note that shape is as seen by the oblique illumination.
 -size. The size of an object may be used as a qualitative recognition element on radar imagery. The size of known features on the imagery provides a relative evaluation of scale and dimensions of other terrain features.
 - texture: presence of speckles
 - structure: presence of recurrent structures on image (fields, building,...)

Special effects in SAR-images

- Geometrical distortion 3 types:
 - Foreshortening
 - Layover
 - Shadow
- All related to that the ground is not flat.
- Can have a large influence for interpretation in areas where the topography is large.
- Speckle

Yoann Paichard INFGEO 4310

Foreshortening

- For steep slopes, when projected on radar range axis, range differences between two points located on foreslopes of mountains are smaller than they would be at the ground
- As a result the mountains seem to "lean" towards the sensor.

Layover

 R_1 $R_2 > R_1$

Yoann Paichard INFGEO 4310

- Extreme case of foreshortening
- For a very steep slope, the foreslope is "reversed" in the range dimension
- Generally, these layover zones, appear as bright features on the image due to the low incidence angle.

- A slope away from the radar illumination with an angle that is steeper than the sensor depression angle provokes radar shadows
- Radar shadows are longer in the far range than in the near range

- 1 look
- 2 looks
- 3 looks

9 looks

- SAR images exhibit grainy texture. This effect is caused by the • coherent radiation used by radar systems. Each resolution cell contains several scattering centers whose elementary returns, by positive or negative interference, originate light or dark image brightness.
- Speckles create a "salt and pepper" appearance that can be reduced by • averaging results from different frequency bands

Yoann Paichard INFGEO 4310

_

Interferometry

- Interferometry is a method that use the phase difference resulting from two measurements taken at different observation points
 - General radar method not only usable for SAR
 - Very much used in SAR

- SAR-interferometry makes it possibly to resolve the altitude coordinate and thereby measure height.
 - Very sensitive since using the radar phase
 - The radar system needs to be accurate and stable
- Makes GEOCODING possible, that is reference image pixels to geographical reference system.

Meters - 2536

Produced by DLR

Ground Penetrating Radar (GPR)

Aerial photographs

Uversøyra Field Test Area

2 meter thick sediment layer

20 meter thick ice

Layering inside the ice

