Exercise 1

We consider a simple two-layer model as shown in the figure above, where the P-wave velocity of layer 1 and 2 is v_{1} and v_{2}, respectively (note $v_{2}>v_{1}$). In general, a receiver will measure three different wave contributions: direct wave, reflected wave and refracted wave.
(a) Find an expression for the traveltime to an arbitrary receiver for the direct wave in the first layer as a function of offset x (i.e. source-receiver distance).
(b) The refracted wave can only be received after the critical distance $x_{\text {crit. }}$. Find an explicit expression for this distance.
(c) The cross-over distance $x_{\text {cross }}$ is the distance where the refracted wave starts to take over to be the first arrive at a point. Show that this distance can be written as:

$$
x_{\text {cross }}=2 h \sqrt{\frac{v_{1}+v_{2}}{v_{2}-v_{1}}}
$$

(d) Find an expression for the traveltime to an arbitrary receiver for the reflected wave for this 2-layer model.

Exercise 2

Consider a horizontally 3-layered earth model as shown in the figure and assume that 2D marine seismic data are acquired at the surface employing a streamer with 120 hydrophone groups (group interval $\Delta g=\mathbf{2 5} \mathbf{~ m}$). Distance between shot and first hydrophone group is 100 m .

a) Compute the zero-offset reflection coefficient at the seafloor if the density of layer 2 is set to $2.2 \mathrm{~g} / \mathrm{cm}^{3}$. Compute also the maximum normal moveout (i.e. the difference between maximum traveltime recorded and a zero-offset case) for the reflection events from the seafloor.
b) Determine the maximum incidence angle for reflections at the interface between layers 2 and 3 .

