Tutorial solutions:

Basic questions

1. The motion of the radar or the object is used to create/synthesize a larger aperture and thus to improve the cross-range resolution. Information in cross-range is obtained by the evolution of the phase (Doppler shift) during the time of analysis.
2. Range resolution depends of the signal bandwidth: $\Delta \mathrm{r}=\frac{\mathrm{C}}{2 \mathrm{~B}}$.
3. $\mathrm{a}: \Delta \mathrm{cr} \approx \mathrm{r} \lambda / \mathrm{d}$. The larger is the aperture, the smaller is the resolution.
b: $\Delta \mathrm{cr} \approx \mathrm{d} / 2$
4. a: see above. Resolution deteriorates with distance.
b : resolution independent of range.
5. When an object is approaching or moving away from the radar it changes the phase of the transmitted signal which results in a frequency shift at the receiver.
6. Range resolution: $\Delta \mathrm{r}=\frac{\mathrm{c}}{2 \mathrm{~B}}=1.5 \mathrm{~m}$. Cross-range resolution: $\Delta \mathrm{cr} \approx \mathrm{r} \lambda / \mathrm{d}=500 \mathrm{~m}$ with $\lambda=5 \mathrm{~cm}$ (real aperture), $\Delta \mathrm{cr} \approx \mathrm{d} / 2=50 \mathrm{~cm}$ (synthetic aperture)
7. Foreshortening: range differences between two points located at different altitudes (i.e. foreslopes of mountains) are smaller than they are at the ground. Layover: extreme case of foreshortening when foreslope is "reversed" in the range dimension.

Doppler effect

1. $\mathrm{R}(\mathrm{t})=\sqrt{\mathrm{R}_{0}+(\mathrm{vt})^{2}}=\mathrm{R}_{0}\left[1+\left(\frac{\mathrm{vt}}{\mathrm{R}_{0}}\right)^{2}\right]^{1 / 2}$
2. $\mathrm{R}(\mathrm{t})=\mathrm{R}_{0}\left[1+\frac{1}{2}\left(\frac{\mathrm{vt}}{\mathrm{R}_{0}}\right)^{2}-\frac{1}{8}\left(\frac{\mathrm{vt}}{\mathrm{R}_{0}}\right)^{4}+\ldots\right] \approx \mathrm{R}_{0}+\left(\frac{\mathrm{v}^{2}}{2 \mathrm{R}_{0}}\right) \mathrm{t}^{2}$
3. $\phi(\mathrm{t})=2 \pi \frac{2 \mathrm{R}(\mathrm{t})}{\lambda}=\frac{4 \pi}{\lambda}\left[\mathrm{R}_{0}+\left(\frac{\mathrm{v}^{2}}{2 \mathrm{R}_{0}}\right) \mathrm{t}^{2}\right]=\frac{4 \pi}{\lambda} \mathrm{R}_{0}+\frac{2 \pi}{\lambda}\left(\frac{\mathrm{v}^{2}}{\mathrm{R}_{0}}\right) \mathrm{t}^{2}$
$\mathrm{f}_{\mathrm{d}}(\mathrm{t})=-\frac{1}{2 \pi} \frac{\mathrm{~d} \Phi}{\mathrm{dt}}=-\frac{1}{\lambda} \frac{2 \mathrm{v}^{2}}{\mathrm{R}_{0}} \mathrm{t}$
Quadratic relation between phase and time, linear relation between Doppler shift and time
4. Using $\mathrm{x}=\mathrm{vt}, \mathrm{f}_{\mathrm{d}}(\mathrm{t})=-\frac{1}{2 \pi} \frac{\mathrm{~d} \Phi}{\mathrm{dt}}=-\frac{1}{\lambda} \frac{2 \mathrm{v}}{\mathrm{R}_{0}} \mathrm{x}=-\frac{1}{0.05} \frac{140}{10000} \mathrm{x}=11.2 \mathrm{~Hz}(\mathrm{x}=-200 \mathrm{~m})$ or $=-11.2 \mathrm{~Hz}(\mathrm{x}=200 \mathrm{~m})$

5. The total path is covered in 2.9 s , thus the Doppler resolution is $0.37 \mathrm{~Hz}\left(\Delta \mathrm{f}_{\mathrm{d}}=1 / \mathrm{T}\right)$.

From the former equation, the Doppler resolution can also be expressed as:
$\Delta f_{d}=-\frac{1}{\lambda} \frac{2 v}{R_{0}} \Delta x \Rightarrow \Delta x=-\frac{\lambda R_{0}}{2 \mathrm{v}} \Delta \mathrm{f}_{\mathrm{d}}=-\frac{\lambda \mathrm{R}_{0}}{2 \mathrm{vT}}=-\frac{0.05 \times 10000}{2 \times 400}=60 \mathrm{~cm}$

Note that the minimum cross range resolution of 50 cm is achieved when the platform covers a distance equal to the size of the antenna beam at R_{0} (here 500 m).

Image interpretation

Image of a mountaneous area (Udine, Italy). We see foreshortening and layover distortion effects

