
Pål Halvorsen

Thursday, October 3, 2013

INF1060:
Introduction to Operating Systems and Data Communication

INF1060, Pål Halvorsen University of Oslo

Overview

  Basic execution environment – an Intel example

 What is an operating system (OS)?

  OS components and services
(extended in later lectures)

  Booting

  Kernel organization

INF1060, Pål Halvorsen University of Oslo

Hardware

  Central Processing Units (CPUs)

  Memory
(cache(s), RAM, ROM, Flash, …)

  I/O Devices
(network cards, disks, CD, keyboard, mouse, …)

  Links
(interconnects, busses, …)

INF1060, Pål Halvorsen University of Oslo

Example:

Intel Hub Architecture (850 Chipset)

Intel D850MD Motherboard:
Source: Intel® Desktop Board D850MD/D850MV Technical Product Specification

INF1060, Pål Halvorsen University of Oslo

Example:

Intel Hub Architecture (850 Chipset)

Intel D850MD Motherboard:
Source: Intel® Desktop Board D850MD/D850MV Technical Product Specification

Pentium 4 socket

RAMBUS RDRAM –
2 banks (4 slots)

Memory Controller
Hub

PCI Connectors (slots)

I/O Controller Hub RDRAM
interface PCI

bus

Firmware Hub –
including BIOS

Battery

Speaker

Power connector

Diskette connector

IDE drive connectors

AGP slot

Video

mouse, keyboard, parallel, serial,
network and USB connectors

INF1060, Pål Halvorsen University of Oslo

Pentium 4
Processor

registers

cache(s)

Example:

Intel Hub Architecture (850 Chipset)

I/O
controller

hub

memory
controller

hub

RDRAM
RDRAM

RDRAM
RDRAM

PCI slots
PCI slots
PCI slots

system bus
(64-bit, 400/533 MHz

~24-32 Gbps)

hub interface
(four 8-bit, 66 MHz

 2 Gbps)

PCI bus
(32-bit, 33 MHz
 1 Gbps)

RAM interface
(two 64-bit, 200 MHz
 ~24 Gbps)

disk

file system

application

disk

INF1060, Pål Halvorsen University of Oslo

Flexible Display
Interface (FDI)

Pentium 4
Processor

registers

cache(s)

Example:

Intel Platform Controller Hub Architecture

PCI slots
PCI slots
PCI slots

Core i7

registers

cache(s)

PCIe iGraphics

RDRAM
RDRAM

I/O
controller

hub

PCH

Platform
Controller

Hub
PCIe slots
PCIe slots
PCIe slots

Direct Media Interface (DMI) /
QuickPath Interconnect (QPI)

Peripherals

Sandy Bridge

RDRAM
RDRAM

integrated
memory

controller

memory
controller

hub

INF1060, Pål Halvorsen University of Oslo

Example:

AMD Opteron & Intel Xeon

Intel Xeon MP Processor-based 4P

  Different hardware may have different bottlenecks
 ==>	
 nice to have an operating system to control the HW?

INF1060, Pål Halvorsen University of Oslo

Different Hardware

Hardware X Hardware Y

Operating System

Application program

Operating System

Application program

 Application Application

INF1060, Pål Halvorsen University of Oslo

  Address space: 1 – 236 (64 GB),
 each process may have a linear address space of 4 GB (232)

  Basic program execution registers:
－  8 general purpose registers (data: EAX, EBX, ECX, EDX, address: ESI, EDI, EBP, ESP)
－  6 segment registers (CS, DS, SS, ES, FS and GS)
－  1 flag register (EFLAGS)
－  1 instruction pointer register (EIP)

  Stack – a continuous array of memory locations
－  Current stack is referenced by the SS register
－  ESP register – stack pointer
－  EBP register – stack frame base pointer (fixed reference)
－  PUSH – stack grows, add item (ESP decrement)

－  POP – remove item, stack shrinks (ESP increment)

  Several other registers like Control, MMX/FPU,
Memory Type Range Registers (MTRRs),
SSEx (XMM), performance monitoring, … ...

STACK:

PUSH %eax

X
Y
Z

PUSH %ebx
PUSH %ecx

POP %ecx

EAX:
EBX:
ECX:
EDX:
ESI:
EDI:
EBP:
ESP: see arrow

GPRs:
X
Y
Z

POP %ebx
POP %eax

<do something>

0xfff...

0x0...

Intel 32-bit Architecture (IA32): Basic Execution Environment

INF1060, Pål Halvorsen University of Oslo

insert value 4 in variable a on stack:
0xfffffffc = -(0xffffffff – 0xfffffffc) = -0x4

a’s memory address = EBP - 4

  Example:

main (void)
{
 int a = 4, b = 2, c = 0;
 c = a + b;
}

…

…

code segment:

8048314 <main>:

8048314: push %ebp

8048315: mov %esp,%ebp

8048317: sub $0x18,%esp

804831a: and $0xfffffff0,%esp

804831c: mov $0x0,%eax

8048322: sub %eax,%esp

8048324: movl $0x4,0xfffffffc(%ebp)

804832b: movl $0x2,0xfffffff8(%ebp)

8048332: movl $0x0,0xfffffff4(%ebp)

8048339: mov 0xfffffff8(%ebp),%eax

804833c: add 0xfffffffc(%ebp),%eax

804833f: mov %eax,0xfffffff4(%ebp)

8048342: leave

8048343: ret

objdump -d

...

...

...

stack:

0
2
4

6

0xfff...

0x0...

ESP:

EBP:

EPI:

EAX:
Accumulator for operands and results data

Stack pointer

Pointer to data on stack (base)

Pointer to next instruction to be executed 8048314

old EBP

8048315 8048317 804831a 804831c 8048322 8048324 804832b 8048332 8048339 804833c 804833f 8048342 0xfffffff4

???

0xfffffff0

0xfffffff0

0xffffffd8 0xffffffd0

0 2 6

…

sub 24 (0x18) bytes
(add space for 24 bytes)

alignment – sub "X" (here 8) bytes

8048343

Intel 32-bit Architecture (IA32): Basic Execution Environment

INF1060, Pål Halvorsen University of Oslo

C Function Calls & Stack

  A calling function does
－  push the parameters into stack in reverse order
－  push return address (current EIP value) onto stack

  When called, a C function does
－  push frame pointer (EBP) into stack - saves frame pointer register and gives easy return if necessary
－  let frame pointer point at the stack top, i.e., point at the saved stack pointer (EBP = ESP)
－  shift stack pointer (ESP) upward (to lower addresses) to allocate space for local variables

  When returning, a C function does
－  put return value in the return value register (EAX)
－  copy frame pointer into stack pointer - stack top now contains the saved frame pointer
－  pop stack into frame pointer (restore), leaving the return program pointer on top of the stack
－  the RET instruction pops the stack top into the program counter register (EIP), causing the CPU to

execute from the "return address" saved earlier

  When returned to calling function, it does
－  copy the return value into right place
－  pop parameters – restore the stack

INF1060, Pål Halvorsen University of Oslo

…

...

C Function Calls & Stack
  Example:

int add (int a, int b)
{
 return a + b;
}

main (void)
{
 int c = 0;
 c = add(4 , 2);
}

code segment:

objdump -d

...

...

0

2
4

804834a

6

stack:

0xfff...

0x0...

old EBP

1.  Push EIP register
2.  Loads the offset of the called

procedure in the EIP register
3.  Begin execution

“main” EBP

1.  Pop return instruction pointer
into the EIP register

2.  Release parameters (ESP)
3.  Resume caller execution

8048314 <add>:

8048314: push %ebp

8048315: mov %esp,%ebp

8048317: mov 0xc(%ebp),%eax

804831a: add 0x8(%ebp),%eax

804831d: pop %ebp

804831e: ret

804831f <main>:

804831f: push %ebp

8048320: mov %esp,%ebp

8048322: sub $0x18,%esp

8048325: and $0xfffffff0,%esp

8048328: mov $0x0,%eax

804832d: sub %eax,%esp

804832f: movl $0x0,0xfffffffc(%ebp)

8048336: movl $0x2,0x4(%esp)

804833e: movl $0x4,(%esp)

8048345: call 8048314 <add>

804834a: mov %eax,0xfffffffc(%ebp)

804834d: leave

804834e: ret

804834f: nop

Wouldn't it be nice if this

could be automatically

managed!!??

 operating system

INF1060, Pål Halvorsen University of Oslo

…

...

C Function Calls & Stack
int add (int a, int b)
{
 return a + b;
}

main (void)
{
 int c = 0;
 c = add(4 , 2);
}

code segment:

...

...

0

2
4

804834a

6

stack:

0xfff...

0x0...

old EBP

1.  Push EIP register
2.  Loads the offset of the called

procedure in the EIP register
3.  Begin execution

“main” EBP

1.  Pop return instruction pointer
into the EIP register

2.  Release parameters (ESP)
3.  Resume caller execution

8048314 <add>:

8048314: push %ebp

8048315: mov %esp,%ebp

8048317: mov 0xc(%ebp),%eax

804831a: add 0x8(%ebp),%eax

804831d: pop %ebp

804831e: ret

804831f <main>:

804831f: push %ebp

8048320: mov %esp,%ebp

8048322: sub $0x18,%esp

8048325: and $0xfffffff0,%esp

8048328: mov $0x0,%eax

804832d: sub %eax,%esp

804832f: movl $0x0,0xfffffffc(%ebp)

8048336: movl $0x2,0x4(%esp)

804833e: movl $0x4,(%esp)

8048345: call 8048314 <add>

804834a: mov %eax,0xfffffffc(%ebp)

804834d: leave

804834e: ret

804834f: nop

INF1060, Pål Halvorsen University of Oslo

Many Concurrent Tasks
  Better use & utilization
－  many concurrent

processes
•  performing different

tasks
•  using different parts of

the machine

－  many concurrent users

  Challenges
－  “concurrent” access
－  protection/security
－  fairness
－  …

Operating System Layer

INF1060, Pål Halvorsen University of Oslo

Many Concurrent Tasks
  Better use & utilization
－  many concurrent

processes
•  performing different

tasks
•  using different parts of

the machine

－  many concurrent users

  Challenges
－  “concurrent” access
－  protection/security
－  fairness
－  …

Operating System Layer

INF1060, Pål Halvorsen University of Oslo

What is an Operating System (OS)?
  “An operating system (OS) is a collection of programs that acts as an

intermediary between the hardware and its user(s), providing a high-level
interface to low level hardware resources, such as the CPU, memory, and
I/O devices. The operating system provides various facilities and services
that make the use of the hardware convenient, efficient and safe”

 Lazowska, E. D.: Contemporary Issues in Operating Systems , in: Encyclopedia of Computer Science, Ralston, A., Reilly, E. D. (Editors), IEEE Press, 1993, pp.980

  It is an extended machine (top-down view)
－ Hides the messy details
－  Presents a virtual machine, easier to use

  It is a resource manager (bottom-up view)
－  Each program gets time/space on the resource

hardware

user

application

operating system

INF1060, Pål Halvorsen University of Oslo

Where do we find OSes?

Computers

Cars

Game Boxes
Phones

cameras,
other vehicles/crafts,
set-top boxes,
watches,
sensors,
…

INF1060, Pål Halvorsen University of Oslo

Operating System Categories

  Single-user, single-task:
historic, and rare (only a few PDAs use this)

  Single-user, multi-tasking:
PCs and workstations may be configured like this

  Multi-user, multi-tasking:
used on large, old mainframes; and handhelds, PCs, workstations and servers today

  Distributed OSes:
support for administration of distributed resources

  Real-time OSes:
support for systems with real-time requirements like cars, nuclear reactors, etc.

  Embedded OSes:
built into a device to control a specific type of equipment like cellular phones, micro
waves, etc.

INF1060, Pål Halvorsen University of Oslo

History

  OSes have evolved over the last 60 years

  Early history (’40s and early ’50s):
－ first machines did not include OSes
－ programmed using mechanical switches or wires

  Second generation (’50s and ’60s):
－ transistors introduced in mid-’50s
－ batch systems
－ card readers

INF1060, Pål Halvorsen University of Oslo

History

  Third generation (mid-’60s to the ’80s)
－ integrated circuits and simple multiprogramming
－ timesharing
－ graphical user interface
－ UNIX (’69-’70)
－ BSD (’77)

  Newer times (’80s to present)
－ personal computers & workstations
－ MS-DOS (’82), Win (’85), Minix (’87), Linux (’91), Win95, …

INF1060, Pål Halvorsen University of Oslo

Why Study OSes?

  Understand how computers work under the hood
－  “you need to understand the system at all abstraction levels or you don’t” (Yale Patt)

  Easier to do things right and efficient if one knows what happens

  Magic to provide infinite CPU cycles, memory, devices
and networked computing

  Tradeoffs between performance and functionality,
division of labor between HW and SW

  An OS is therefore a key component in many systems

INF1060, Pål Halvorsen University of Oslo

Primary Components

User interface
(shell) Device

management File
management

Memory
management

Processor
(or process)
management

Communication
services

Operating system layer

Application program layer

Hardware layer

  "Visible" to user
－  Shell
－  File system
－ Device management

  "(Semi)Transparent"
－  Processor management
－ Memory management
－  Communication services

INF1060, Pål Halvorsen University of Oslo

User interface
(shell) Device

management File
management

Memory
management

Processor
(or process)
management

Communication
services

Operating system layer

Primary Components

Application program layer

Hardware layer

File Management (file system):
provides a mechanism for the user to
create, delete, modify and manipulate files

Memory Management:
provides a mechanism for the system
to efficiently manage the system’s
memory recourses – allocating space
to processes

User Interface:
provides a mechanism for user and
application to communicate with OS
and use the machine resources

Management of processes:
provides a mechanism for the system
to efficiently and fair manage the
machine CPU cycles for the running
processes

Communication:
provides a mechanism for the system
communicate with other processes (on
same or another machine)

Device Management:
provides the system with means to
control the systems peripheral devices
like keyboard, display, printer and disk

Note: this list of components is
not complete. Some OSes have
fewer, others more. Some have
sub-components

INF1060, Pål Halvorsen University of Oslo

Device Management
  The OS must be able to control pheripal devices such as disk, keyboard,

network cards, screen, speakers, mouse, memory sticks, camera, DVD,
michrophone, printers, joysticks, ...

－  large diversity

－  varying speeds

－  different access modes

Rest of the
operating
system

Device
driver

Device
driver

.

.

.
Device
driver

Device
controller

Device
controller

. . .

Device
controller

Device

Device

Device

Device

INF1060, Pål Halvorsen University of Oslo

Device Management

Rest of the
operating
system

Device
driver

Device
driver

.

.

.
Device
driver

Device
controller

Device
controller

. . .

Device
controller

Device

Device

Device

Device

  Device controllers often have
registers to hold status, give commands, …

－  port I/O – special instructions to talk to device memory

－  memory mapped I/O – registers mapped into regular memory

  Each device may be different and require device-spesific software

  The software talking to the controller and giving commands is often called a device
driver

－  usually running within the kernel

－  mostly provided by the device vendors

－  translating device-independent commands, e.g.,
read from file on disk: logical block number  device interface (device, cylinder, head, sector(s))

  A huge amount of code (95% of the Linux code!!??)

INF1060, Pål Halvorsen University of Oslo

Device Management
  Device controllers often have

registers to hold status, give commands, …

－  port I/O – special instructions to talk to device memory

－  memory mapped I/O – registers mapped into regular memory

  Each device may be different and require device-spesific software

  The software talking to the controller and giving commands is often called a device
driver

－  usually running within the kernel

－  mostly provided by the device vendors

－  translating device-independent commands, e.g.,
read from file on disk: logical block number  device, cylinder, head, sector(s)

  A huge amount of code (95% of the Linux code!!??)

INF1060, Pål Halvorsen University of Oslo

Interfaces
  A point of connection between components

  The OS incorporates logic that support interfaces with both
hardware and applications, e.g.,
－  command line interface, e.g., a shell
－  graphical user interface (GUI)

•  interface consisting of windows, icons, menus and pointers
•  often not part of the OS (at least not kernel), but an own program

－ …

  Example: X (see man X)
－  network transparent window system running on most ANSI C and POSIX

(portable OS interface for UNIX) compliant systems
－  uses inter-process communication to get input from and send output to

various client programs
－  xdm (X Display Manager) – usually set by administrator to run

automatically at boot time
－  xinit – manually starting X (startx, x11, xstart, …)

INF1060, Pål Halvorsen University of Oslo

Windows Interfaces

The GUI incorporates a
command line shell similar
to the MS-DOS interface

Applications access HW
through the API consisting of
a set of routines, protocols and
other tools

INF1060, Pål Halvorsen University of Oslo

Taskbar

The WinXP Desktop Interface

Start button Notification area

INF1060, Pål Halvorsen University of Oslo

UNIX Interfaces

Applications are accessed HW through
the API consisting of a set of routines,
protocols and other tools (e.g., POSIX –
portable OS interface for UNIX)

A user can interact with the system
through the application interface or
using a command line prosessed by
a shell (not really a part of the OS)

A plain command line interface may
be hard to use. Many UNIX systems
therefore have a standard graphical
interface (X Windows) which can run
a desktop system (like KDE, Gnome,
Fvwm, Afterstep, …)

Windows is more or less similar…

INF1060, Pål Halvorsen University of Oslo

A Linux (KDE) Desktop Interface

Application Starter

Virtual Desktops

Panel Taskbar

Desktop

INF1060, Pål Halvorsen University of Oslo

Typical (UNIX) Line Commands

INF1060, Pål Halvorsen University of Oslo

System Calls
  The interface between the OS and

users is defined by a set of system
calls

  Making a system call is similar to a
procedure/function call, but system
calls enter the kernel:

sys_acct(const char *name)
sys_acct(const char * filename)
sys_capget(cap_user_header_t header, cap_user_data_t dataptr)
sys_capset(cap_user_header_t header, const cap_user_data_t data)
sys_exit(int error_code)
sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru)
sys_waitpid(pid_t pid,unsigned int * stat_addr, int options)
sys_futex(void *uaddr, int op, int val, struct timespec *utime)
sys_sysinfo(struct sysinfo *info)
sys_getitimer(int which, struct itimerval *value)
sys_setitimer(int which, struct itimerval *value,
sys_sync(void); /* it's really int */
sys_syslog(int type, char * buf, int len)
sys_nice(int increment)
sys_sched_setscheduler(pid_t pid, int policy,
sys_sched_setparam(pid_t pid, struct sched_param *param)
sys_sched_getscheduler(pid_t pid)
sys_sched_getparam(pid_t pid, struct sched_param *param)
sys_sched_setaffinity(pid_t pid, unsigned int len,
sys_sched_getaffinity(pid_t pid, unsigned int len,
sys_sched_yield(void)
sys_sched_get_priority_max(int policy)
sys_sched_get_priority_min(int policy)
sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
sys_ni_syscall(void)
sys_setpriority(int which, int who, int niceval)
sys_getpriority(int which, int who)
sys_reboot(int magic1, int magic2, unsigned int cmd, void * arg)
sys_setregid(gid_t rgid, gid_t egid)
sys_setgid(gid_t gid)
sys_setreuid(uid_t ruid, uid_t euid)
sys_setuid(uid_t uid)
sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
sys_getresuid(uid_t *ruid, uid_t *euid, uid_t *suid)
sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
sys_getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid)
sys_setfsuid(uid_t uid)
sys_setfsgid(gid_t gid)
sys_times(struct tms * tbuf)
sys_setpgid(pid_t pid, pid_t pgid)
sys_getpgid(pid_t pid)
sys_getpgrp(void)
sys_getsid(pid_t pid)
sys_setsid(void)
sys_getgroups(int gidsetsize, gid_t *grouplist)
sys_setgroups(int gidsetsize, gid_t *grouplist)
sys_newuname(struct new_utsname * name)
sys_sethostname(char *name, int len)
sys_gethostname(char *name, int len)
sys_setdomainname(char *name, int len)
sys_getrlimit(unsigned int resource, struct rlimit *rlim)
sys_old_getrlimit(unsigned int resource, struct rlimit *rlim)
sys_setrlimit(unsigned int resource, struct rlimit *rlim)
sys_getrusage(int who, struct rusage *ru)
sys_umask(int mask)

sys_socket(int family, int type, int protocol)
sys_socketpair(int family, int type, int protocol, int usockvec[2])
sys_bind(int fd, struct sockaddr *umyaddr, int addrlen)
sys_listen(int fd, int backlog)
sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen)
sys_connect(int fd, struct sockaddr *uservaddr, int addrlen)
sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
sys_sendto(int fd, void * buff, size_t len, unsigned flags,
sys_send(int fd, void * buff, size_t len, unsigned flags)
sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags,
sys_recv(int fd, void * ubuf, size_t size, unsigned flags)
sys_setsockopt(int fd, int level, int optname, char *optval, int optlen)
sys_getsockopt(int fd, int level, int optname, char *optval, int *optlen)
sys_shutdown(int fd, int how)
sys_sendmsg(int fd, struct msghdr *msg, unsigned flags)
sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags)
sys_socketcall(int call, unsigned long *args)
sys_tux (unsigned int action, user_req_t *u_info)
sys_io_setup(unsigned nr_reqs, aio_context_t *ctxp)
sys_io_destroy(aio_context_t ctx)
sys_io_submit(aio_context_t ctx_id, long nr,
sys_io_cancel(aio_context_t ctx_id, struct iocb *iocb,
sys_io_getevents(aio_context_t ctx_id,
sys_sync(void)
sys_fsync(unsigned int fd)
sys_fdatasync(unsigned int fd)
sys_bdflush(int func, long data)
sys_getcwd(char *buf, unsigned long size)
sys_uselib(const char * library)
sys_dup2(unsigned int oldfd, unsigned int newfd)
sys_dup(unsigned int fildes)
sys_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg)
sys_fcntl64(unsigned int fd, unsigned int cmd, unsigned long arg)
sys_nfsservctl(int cmd, void *argp, void *resp)
sys_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
sys_flock(unsigned int fd, unsigned int cmd)
sys_mknod(const char * filename, int mode, dev_t dev)
sys_mkdir(const char * pathname, int mode)
sys_rmdir(const char * pathname)
sys_unlink(const char * pathname)
sys_symlink(const char * oldname, const char * newname)
sys_link(const char * oldname, const char * newname)
sys_rename(const char * oldname, const char * newname)
sys_umount(char * name, int flags)
sys_oldumount(char * name)
sys_mount(char * dev_name, char * dir_name, char * type,
sys_pivot_root(const char *new_root, const char *put_old)
sys_statfs(const char * path, struct statfs * buf)
sys_fstatfs(unsigned int fd, struct statfs * buf)
sys_truncate(const char * path, unsigned long length)
sys_ftruncate(unsigned int fd, unsigned long length)
sys_truncate64(const char * path, loff_t length)
sys_ftruncate64(unsigned int fd, loff_t length)

sys_fchdir(unsigned int fd)
sys_chroot(const char * filename)
sys_open(const char * filename, int flags, int mode)
sys_creat(const char * pathname, int mode)
sys_close(unsigned int fd)
sys_vhangup(void)
sys_lseek(unsigned int fd, off_t offset, unsigned int origin)
sys_llseek(unsigned int fd, unsigned long offset_high,
sys_read(unsigned int fd, char * buf, size_t count)
sys_write(unsigned int fd, const char * buf, size_t count)
sys_readv(unsigned long fd, const struct iovec * vector,
sys_writev(unsigned long fd, const struct iovec * vector,
sys_pread(unsigned int fd, char * buf,
sys_pwrite(unsigned int fd, const char * buf,
sys_getdents(unsigned int fd, void * dirent, unsigned int count)
sys_getdents64(unsigned int fd, void * dirent, unsigned int count)
sys_poll(struct pollfd * ufds, unsigned int nfds, long timeout)
sys_stat(char * filename, struct __old_kernel_stat * statbuf)
sys_newstat(char * filename, struct stat * statbuf)
sys_lstat(char * filename, struct __old_kernel_stat * statbuf)
sys_newlstat(char * filename, struct stat * statbuf)
sys_fstat(unsigned int fd, struct __old_kernel_stat * statbuf)
sys_newfstat(unsigned int fd, struct stat * statbuf)
sys_readlink(const char * path, char * buf, int bufsiz)
sys_stat64(char * filename, struct stat64 * statbuf, long flags)
sys_lstat64(char * filename, struct stat64 * statbuf, long flags)
sys_fstat64(unsigned long fd, struct stat64 * statbuf, long flags)
sys_sysfs(int option, unsigned long arg1, unsigned long arg2)
sys_ustat(dev_t dev, struct ustat * ubuf)
sys_sendfile(int out_fd, int in_fd, off_t *offset, size_t count)
sys_readahead(int fd, loff_t offset, size_t count)
sys_msync(unsigned long start, size_t len, int flags)
sys_madvise(unsigned long start, size_t len, int behavior)
sys_mincore(unsigned long start, size_t len,
sys_mlock(unsigned long start, size_t len)
sys_munlock(unsigned long start, size_t len)
sys_mlockall(int flags)
sys_munlockall(void)
sys_brk(unsigned long brk)
sys_munmap(unsigned long addr, size_t len)
sys_mprotect(unsigned long start, size_t len, unsigned long prot)
sys_mremap(unsigned long addr,
sys_swapoff(const char * specialfile)
sys_swapon(const char * specialfile, int swap_flags)
sys_msgget (key_t key, int msgflg)
sys_msgctl (int msqid, int cmd, struct msqid_ds *buf)
sys_msgsnd (int msqid, struct msgbuf *msgp, size_t msgsz, int msgflg)
sys_msgrcv (int msqid, struct msgbuf *msgp, size_t msgsz,
sys_semget (key_t key, int nsems, int semflg)
sys_semctl (int semid, int semnum, int cmd, union semun arg)
sys_semop (int semid, struct sembuf *tsops, unsigned nsops)
sys_shmget (key_t key, size_t size, int shmflg)
sys_shmctl (int shmid, int cmd, struct shmid_ds *buf)
sys_shmat (int shmid, char *shmaddr, int shmflg, ulong *raddr)
sys_shmdt (char *shmaddr)
sys_semget (key_t key, int nsems, int semflg)
sys_semop (int semid, struct sembuf *sops, unsigned nsops)
sys_semctl (int semid, int semnum, int cmd, union semun arg)
sys_msgget (key_t key, int msgflg)
sys_msgsnd (int msqid, struct msgbuf *msgp, size_t msgsz, int msgflg)
sys_msgrcv (int msqid, struct msgbuf *msgp, size_t msgsz, long msgtyp,
sys_msgctl (int msqid, int cmd, struct msqid_ds *buf)
sys_shmget (key_t key, size_t size, int shmflag)
sys_shmat (int shmid, char *shmaddr, int shmflg, ulong *addr)
sys_shmdt (char *shmaddr)
sys_shmctl (int shmid, int cmd, struct shmid_ds *buf)
sys_ioperm(unsigned long from, unsigned long num, int turn_on)

sys_prctl(int option, unsigned long arg2, unsigned long arg3,
sys_sysctl(struct __sysctl_args *args)
sys_sysctl(struct __sysctl_args *args)
ys_time(int * tloc)
sys_stime(int * tptr)
sys_gettimeofday(struct timeval *tv, struct timezone *tz)
sys_settimeofday(struct timeval *tv, struct timezone *tz)
sys_adjtimex(struct timex *txc_p)
sys_alarm(unsigned int seconds)
sys_getpid(void)
sys_getppid(void)
sys_getuid(void)
sys_geteuid(void)
sys_getgid(void)
sys_getegid(void)
sys_gettid(void)
sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
sys_chown(const char *, uid_t,gid_t);
sys_lchown(const char *, uid_t,gid_t);
sys_fchown(unsigned int, uid_t,gid_t);
sys_setregid(gid_t, gid_t);
sys_setgid(gid_t);
sys_setreuid(uid_t, uid_t);
sys_setuid(uid_t);
sys_setresuid(uid_t, uid_t, uid_t);
sys_setresgid(gid_t, gid_t, gid_t);
sys_setfsuid(uid_t);
sys_setfsgid(gid_t);
sys_chown16(const char * filename, old_uid_t user, old_gid_t group)
sys_lchown16(const char * filename, old_uid_t user, old_gid_t group)
sys_fchown16(unsigned int fd, old_uid_t user, old_gid_t group)
sys_setregid16(old_gid_t rgid, old_gid_t egid)
sys_setgid16(old_gid_t gid)
sys_setreuid16(old_uid_t ruid, old_uid_t euid)
sys_setuid16(old_uid_t uid)
sys_setresuid16(old_uid_t ruid, old_uid_t euid, old_uid_t suid)
sys_getresuid16(old_uid_t *ruid, old_uid_t *euid, old_uid_t *suid)
sys_setresgid16(old_gid_t rgid, old_gid_t egid, old_gid_t sgid)
sys_getresgid16(old_gid_t *rgid, old_gid_t *egid, old_gid_t *sgid)
sys_setfsuid16(old_uid_t uid)
sys_setfsgid16(old_gid_t gid)
sys_getgroups16(int gidsetsize, old_gid_t *grouplist)
sys_setgroups16(int gidsetsize, old_gid_t *grouplist)
sys_getuid16(void)
sys_geteuid16(void)
sys_getgid16(void)
sys_getegid16(void)
sys_utime(char * filename, struct utimbuf * times)
sys_utimes(char * filename, struct timeval * utimes)
sys_access(const char * filename, int mode)
sys_chdir(const char * filename)
sys_fchmod(unsigned int fd, mode_t mode)
sys_chmod(const char * filename, mode_t mode)
sys_chown(const char * filename, uid_t user, gid_t group)
sys_lchown(const char * filename, uid_t user, gid_t group)
sys_fchown(unsigned int fd, uid_t user, gid_t group)

Linux system calls
(2.4.19):

application application application
user space

kernel space
system call interface

OS components

Linux:
x86 v2.4.19 entry.S  242
x86 v3.0-rc4 syscall_table_32.S  347

FreeBSD:
v9 syscalls.c  531

INF1060, Pål Halvorsen University of Oslo

  C example:
count = read(fd,buffer,nbyte)

1.  push parameters on stack

2.  call library code

3.  put system call number in register

4.  call kernel (TRAP)
  kernel examines system call number
  finds requested system call handler
  execute requested operation

5.  return to library and clean up
  increase instruction pointer
  remove parameters from stack

6.  resume process

application

user space

kernel space

count = read (fd , buffer , nbytes)

read library
procedure

register

memory (stack) buffer

nbytes
buffer
fd

X (read)

system call
handler

X

sys_read()

System Calls: read

INF1060, Pål Halvorsen University of Oslo

CPU

Interrupt Program Execution

INF1060, Pål Halvorsen University of Oslo

Interrupts
  Interrupts are electronic signals that (usually) result in a forced

transfer of control to an interrupt handling routine

－  alternative to polling

－  caused by asynchronous events like finished disk operations, incoming
network packets, expired timers, …

－  an interrupt descriptor table (IDT) associates each interrupt with a code
descriptor (pointer to code segment)

－  can be disabled or masked out

INF1060, Pål Halvorsen University of Oslo

Exceptions
  Another way for the processor to interrupt program

execution is exceptions

－  caused by synchronous events generated when the processor detects a
predefined condition while executing an instruction

－  TRAPS: the processor reaches a condition the exception handler can
handle (e.g., overflow, break point in code like making a system call, …)

－  FAULTS: the processor reaches a fault the exception handler can correct
(e.g., division by zero, wrong data format, …)

－  ABORTS: terminate the process due to an unrecoverable error
(e.g., hardware failure) which the process itself cannot correct

－  the processor responds to exceptions (i.e., traps and faults) essentially as
for interrupts

INF1060, Pål Halvorsen University of Oslo

  The IA-32 has an interrupt description table (IDT) with 256 entries for
interrupts and exceptions
－  32 (0 - 31) predefined and reserved
－  224 (32 - 255) is "user" (operating system) defined

  Each interrupt is associated with a code segment through
the IDT and a unique index value giving management like this:

1.  process running while interrupt occur

2.  capture state, switch control
and find right interrupt handler

3.  execute the interrupt handler

4.  restore interrupted process

5.  continue execution

Interrupt (and Exception) Handling

user

kernel
IDT:

disk interrupt (x)
Interrupt routines:

INF1060, Pål Halvorsen University of Oslo

Booting
  Memory is a volatile, limited resource: OS usually on disk

  Most motherboards contain a basic input/output system (BIOS)
chip (often flash RAM) – stores instructions for basic HW
initialization and management, and initiates the …

  ... bootstrap: loads the OS into memory
－  read the boot program from a known location on secondary storage

typically first sector(s), often called master boot record (MBR)
－  run boot program

•  read root file system and locate file with OS kernel
•  load kernel into memory
•  run kernel

INF1060, Pål Halvorsen University of Oslo

Booting

boot

OS

boot

OS

1.  Gather HW information and set up system
2.  Load data from boot sector
3.  Execute boot program an CPU
4.  Load OS from disk
5.  Run OS

INF1060, Pål Halvorsen University of Oslo

User Level vs. Kernel Level (Protection)
  Many OSes distinguish user and kernel level,

i.e., due to security and protection

  Usually, applications and many sub-systems
run in user mode (pentium level 3)
－  protected mode
－  not allowed to access HW or device drivers

directly, only through an API
－  access to assigned memory only
－  limited instruction set

  OSes run in kernel mode
(under the virtual machine abstraction, pentium level 0)
－  real mode
－  access to the entire memory
－  all instructions can be executed
－  bypass security

INF1060, Pål Halvorsen University of Oslo

OS Organization
  No standard describing how to organize a kernel (as it is for compilers,

communication protocols, etc.) and several approaches exist, e.g.:

  Monolithic kernels (“the big mess”):
－  written as a collection of functions linked into a single object
－  usually efficient (no boundaries to cross)
－  large, complex, easy to crash
－  UNIX, Linux, …

  Micro kernels
－  kernel with minimal functionality (managing interrupts, memory, processor)
－  other services are implemented in server processes running in user space

used in a client-server model
－  lot of message passing

(inefficient)
－  small, modular,

extensible, portable, …
－  MACH, L4, Chorus, …

INF1060, Pål Halvorsen University of Oslo

Summary
  OSes are found “everywhere” and provide virtual machines and

work as a resource managers

  Many components providing different services

  Users access the services using an interface like system calls

  In the next lectures, we look closer at some of the main
components and abstractions in an OS
－  processes management
－ memory management
－  storage management
－  local inter-process communication

－  inter-computer network communication is covered in the
last part of the course

