INF1060:
Introduction to Operating Systems and Data Communication

Operating Systems:

Introduction

Pal Halvorsen

Thursday, October 3, 2013

I Overview

= Basic execution environment — an Intel example
= What is an operating system (OS)?

= OS components and services
(extended in later lectures)

= Booting

= Kernel organization

‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

| Hardware

* Central Processing Units (CPUs)

= Memory
(cache(s), RAM, ROM, Flash, ...)

= 1/0O Devices
(network cards, disks, CD, keyboard, mouse, ...)

= Links
(interconnects, busses, ...)

‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

Example:

Intel Hub Architecture (850 Chi set)
Intel D850MD Motherboard:

Source: Intel® Desktop Board D850MD/D850MV Technical Product Specification

‘\@@ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory]

Example:

Intel Hub Architecture (850 Chipset

mouse, keyboard, parallel, serial,

Intel DS850MD M()t.herboa.rd: i ‘/netw rk and USB connectors

Pentium 4 socket

I/O Controller Hub g

Firmware Hub —
including BIOS

IDE drlve connectors

& \,” . . -
‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

' ixﬁr’Epelei Hub Architecture (850 Chipset)

application

% file system

system bus
(64-bit, 400/533 MHz
>n~24-32 Gbps)

1-l=c s/ B8 RAM interface

o(e)1in e | = B8 (two 64-bit, 200 MHz
hub > ~24 Gbps)

RDRAM
RDRAM
RDRAM
.......... »
...... RDRAM

hub interface
(four 8-bit, 66 MHz
- 2 Gbps)

I/0
controller
hub PCI bus
32-bit, 33 MH I
(9 1 Glbps) ‘ dISk

/T University of Oslo INF1060, Pal Halvorsen [simula.research laboratory |

Example:
' Intel Platform Controller Hub Architecture

Sandy Bridge
E integrated
memory
controller

iGraphics

controller
hub

Controller
Hub

”‘ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

Example:

AMD Opteron & Intel Xeon

AMD Opteron” Processor-based 4P Server Intel Xeon MP Processor-based 4P

HyperTransport™ HyperTransport™ Technology Buses

for Glueless /O or CPU Expansion Maximum of Four Processors Processors Share FSB Bus
Technology Buses Enable Memory Capacity per Memory Controller Hub Bandwidth
Glueless Expansion for up | | Scales w/ Number
to 8-way Servers Ia_>) n of Processors Intel Intel Intel Intel
Xeon MP Xeon MP Xeon MP Xeon MP
/ Processor Processor Processor Processor
r
DDR. DDR' - - - I - - -
144-bit 144-bit H
-------------- - 'm:
: |
H > —— /O & Memory Share
DR DR DDR2 : | FSB Bus Bandwidth
144-bit :
I44-bit I44-bit ¢ —{] Pci-x
fe—2 PCI-X
DDR2 [l S GBE 62)
Separate Memory and Processors are HyperTransport Ha-bit “North Bridge’™ = |
I/O Paths Eliminates Most Directly Connected to | > <— Link Has Ample s =u On-MCH
Bus Contention Processors; Cores are Bandwidth For DDR2 LLLLL) - PCl Interface Limits
Connected On-die /O Devices 144-bit i ﬂ Express PCI Express
= Expansion
] PCl : _’ﬂ P
PCI'X Express DDR2 S LTTTT] E
144-bit Fibre
Channel
IDE, USB, SCSI (x2
IDE; LSt IDE, SIO, (x2)

USB, Etc. — I I PCI-X

Bandwidth Bottlenecks:
Link Bandwidth < Attached Device Bandwidth

@ Different hardware may have different bottlenecks
==, nice to have an operating system to control the HW?

INF1060, Pal Halvorsen [simula.research laboratory |

I Different Hardware

OpeAgtigtictiem OpékppligaGigstem

Hardware X Hardware Y

‘?‘\‘é"’?f%\?” — ;
‘ﬁ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory]

| Intel 32-bit Architecture (IA32): Basic Execution Environment

= Address space: 1 — 23% (64 GB),

each process may have a linear address space of 4 GB (2°?)

= Basic program execution registers:
— 8 general purpose registers (data: EAX, EBX, ECX, EDX, address: ESI, EDI, EBP, ESP)

— 6 segment registers (CS, DS, SS, ES, FS and GS)

— 1 flag register (EFLAGS)

— 1 instruction pointer register (EIP)

= Stack — a continuous array of memory locations

— Current stack is referenced by the SS register

— ESP register — stack pointer

— EBP register — stack frame base pointer (fixed reference)

— PUSH - stack grows, add item (esp decrement)
— POP — remove item, stack shrinks (esp increment)

= Several other registers like Control, MMX/FPU,

Memory Type Range Registers (MTRRS),
SSEx (XMM), performance monitoring, ...

‘@ University of Oslo

INF1060, Pal Halvorsen

PUSH %eax
PUSH %ebx
PUSH %ecx
<do something>
POP %ecx

POP %ebx

POP %eax

1

. (\’@(
o
¢°

GPRs:
EAX:
EBX:
ECX:
EDX:
ESI:
EDI:
EBP:
ESP:

>

<

N

:STACK: . 0%0...

N

=<

Oxfff...

imula . research laboratory |

Intel 32-bit Architecture (IA32): Basic Execution Environment

code segment:

= Example:
8048314 <main>:
==eea>MAIN (VOId) b3 qum —p | 8048314: push Sebp
{ % —p | 8048315: mov Sesp, Sebp
ey NtA=4,b=2,¢c=0; —p | 8048317: sub $0x18, $esp
e C = a + b; —> | 804831a: and _ $OxfEfffff0,%esp
m}} =P | 304831c: mov $0x0, $eax
insert value 4 in variable a on stack: P | 8048322: sub %eax, sesp
YA S SIS S —p | 8048324: movl $0x4,O0xfffffffc (%ebp)
a’s memory address = EBP - 4 =P | 804832b: mov1 $0x2, Oxffffff£8 (Sebp)
stack: 0x0... —p | 8048332: movl $0x0,0xfffffff4 ($ebp)
=P | 3048339: mov Oxfffffff8 (%ebp), seax
- sub 24 (0x18) bytes = | 804833c: add Oxfffffffc (%ebp), $eax
—_— (add space for 24 bytes) =5 | 804833f: mov Seax, OXfFFEEFF4 (Sebp)
= | 8048342: leave
alignment — sub "X" (here 8) byteS ===p | 3048343 : e
;] —l
2
4
r— old EBP
EAX: EBP:
o Accumulator for operands and results data | 7] | | OxAPAFO | Pointer to data on stack (base)
ESP: EPI:
OXfff... Stack pointer | Oxffffi® | | 80483BB | Pointer to next instruction to be executed

‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

C Function Calls & Stack

= A calling function does

— push the parameters into stack in reverse order
— push return address (current EIP value) onto stack

= When called, a C function does
— push frame pointer (EBP) into stack - saves frame pointer register and gives easy return if necessary
— let frame pointer point at the stack top, i.e., point at the saved stack pointer (EBP = ESP)
— shift stack pointer (ESP) upward (to lower addresses) to allocate space for local variables

= When returning, a C function does
— put return value in the return value register (EAX)
— copy frame pointer into stack pointer - stack top now contains the saved frame pointer
— pop stack into frame pointer (restore), leaving the return program pointer on top of the stack

— the RET instruction pops the stack top into the program counter register (EIP), causing the CPU to
execute from the "return address" saved earlier

= When returned to calling function, it does
— copy the return value into right place
— pop parameters — restore the stack

‘@/ University of Oslo INF1060, Pal Halvorsen [-research laboratory |

C Function Calls & Stack

5 3
Qe

code segment:

_ int add (int a, int b)
Example: {
8048314 <add>:
return a + b; b —> |8048314: push 3ebp
b dump _, 8048315: mov %esp,3%ebp
8048317: mgv Oxc (%ebp) , $eax
main (void) 804831a;~ |d 0x8(%ebp) ,%eax
{ 1. Pop return instruction pointer L %/el’/
int into the EIP register M %
_ 2. Release parameters (ESP
C=3 R e caller execution
} be nice if TS fy
stack: utoma\-_'\ca\\y <o
=P | “main” EBP aged“?? — _‘\,%‘:Sp
—> | 804834a ting syste™ 050, eeax
els Su %eax, sesp
2 \ﬁZf' movl $0x0,0xfffffffc (%ebp)
8048336: movl $0x2,0x4 (%esp)
804833e: movl S50x4, (%esp)
procedure’in the EIP register 8048345: call 8048314 <add>
3. Begin execution 804834a: mov %eax,Oxfffffffc (%ebp)
;] 804834d: leave
— old EBP 804834e: ret
804834f: nop
| I i

University of Oslo INF1060, Pal Halvorsen

.research laboratory |

C Function Calls & Stack or 42 Cop,

a,
_ _ _ code segment: /70'01 J
int add (int a, int b) y
{ 8048314 <add>:
return a + b; 8048314: push %ebp
} 8048315: mov %esp, $ebp
8048317: mov Oxc (%ebp) , $eax
main (VOId) 804831la: add 0x8 (%ebp) , $eax
{ 1. Pop return instruction pointer 804831d: pop $ebp
intc = 0; into the EIP register 804831le: ret
_) 2. Release parameters (ESP) :
Cc=add(4,2); 3 Resume caller execution 804831f <main>:
} 804831f: push %ebp
8048320: % , %5eb
Stack: mov esp eop
0:0... 8048322: sub $0x18, Sesp
=P | “main” EBP 8048325: and SOXEEEfEELO, Sesp
= | 804834a 8048328: mov $0x0, $eax
> 4 804832d: sub %eax, sesp
2 804832f: movl $0x0,0xfffffffc (%ebp)
8048336: movl S0x2,0x4 (%esp)
1. Push EIP register 804833e: movl $0x4, (3esp)
2. Loads the offset of the called R 11 8048314 <add>
procedure in the EIP register I a
3. Begin execution 804834a: mov %eax,0xfffffffc (%ebp)
06 804834d: leave
r— old EBP 804834e: ret
804834f: nop
OXFF...

g @ University of Oslo INF1060, Pal Halvorsen [.research laboratory |

Many Concurrent Tasks

= Better use & utilization

— many concurrent
Processes

» performing different Web browser Spreadsheet
tasks

 using different parts of

the machine Word Presentation

Processor graphics
— many concurrent users

[simula.research laboratory |

‘@ University of Oslo INF1060, Pal Halvorsen

Qe
| Many Concurrent Tasks or 00,
OUZ'

= Better use & utilization

— many concurrent
Processes

» performing different Web browser Spreadsheet
tasks

 using different parts of

the machine Word Presentation

Processor graphics
— many concurrent users

= Challenges
— “concurrent” access
— protection/security
— fairness

Operating System Layer

Hardware layer

‘\ﬁ/’ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory]

I What is an Operating System (OS)?

= "“An operating system (OS) is a collection of programs that acts as an
intermediary between the hardware and its user(s), providing a high-level
interface to low level hardware resources, such as the CPU, memory, and
I/O devices. The operating system provides various facilities and services
that make the use of the hardware convenient, efficient and safe”

Lazowska, E. D.: Contemporary Issues in Operating Systems , in: Encyclopedia of Computer Science, Ralston, A., Reilly, E. D. (Editors), IEEE Press, 1993, pp.980

= [t is an extended machine (top-down view) user
— Hides the messy details I
— Presents a virtual machine, easier to use

application

= [tis a resource manager (bottom-up view) _

— Each program gets time/space on the resource I

‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

| Where do we find OSes?

Game Boxes ..

Computers

cameras,
other vehicles/crafts,
set-top boxes,

watches,
SEensors,
‘\ﬁ/\ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory]

I Operating System Categories

= Single-user, single-task:
historic, and rare (only a few PDAs use this)

= Single-user, multi-tasking:
PCs and workstations may be configured like this

= Multi-user, multi-tasking:
used on large, old mainframes; and handhelds, PCs, workstations and servers today

= Distributed OSes:

support for administration of distributed resources

= Real-time OSes:
support for systems with real-time requirements like cars, nuclear reactors, etc.

= Embedded OSes:

built into a device to control a specific type of equipment like cellular phones, micro
waves, etc.

‘@ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory |

| History

= OSes have evolved over the last 60 years

= Early history ("40s and early ‘50s):
—first machines did not include OSes
—programmed using mechanical switches or wires

= Second generation ('50s and '60s):
—transistors introduced in mid-'50s
—batch systems
—card readers

@/ University of Oslo INF1060, Pal Halvorsen [-research laboratory |

| History

* Third generation (mid-'60s to the '80s)
—integrated circuits and simple multiprogramming
—timesharing
—graphical user interface
—UNIX ('69-'70)

—BSD ('77)

" Newer times ('80s to present)

—personal computers & workstations
—MS-DOS ('82), Win ('85), Minix (‘87), Linux ('91), Win95, ...

@/ University of Oslo INF1060, Pal Halvorsen [-research laboratory |

| Why Study OSes?

* Understand how computers work under the hood
— “you need to understand the system at all abstraction levels or you dont” (Yale Patt)

= Easier to do things right and efficient if one knows what happens

- Ma(?lc to provide infinite CPU cycles, memory, devices
networked computing

= Tradeoffs between performance and functionality,
division of labor between HW and SW

= An OS is therefore a key component in many systems

@ University of Oslo INF1060, Pal Halvorsen [-research laboratory |

‘I Primary Components

= "Visible" to user
— Shell

— File system
— Device management

Operating system layer

User interface File Device
(shell) management management

= "(Semi)Transparent" Eo— o
Memory Communication

— Processor management r(ri:nla)lrg(::lsei)t management services
— Memory management

— Communication services

Hardware layer

& xﬂ . . -
‘\@@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

Primary Components

File Management (file system):
provides a mechanism for the user to
create, delete, modify and manipulate files

\ Device Management:

provides the system with means to
control the systems peripheral devices
like keyboard, display, printer and disk

User Interface:

provides a mechanism for user and
application to communicate with OS

and use the machine resources

management

Communication:

provides a mechanism for the system
communicate with other processes (on
same or another machine)

Management of processes:
provides a mechanism for the system
to efficiently and fair manage the

machine CPU cycles for the running

processes
Note: this list of components is
Memory Management: not complete. Some OSes have
provides a mechanism for the system fewer others more. Some have
to efficiently manage the sy_stem S sub-components
memory recourses — allocating space
- to processes
‘@\ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory |

| Device Management

= The OS must be able to control pheripal devices such as disk, keyboard,
network cards, screen, speakers, mouse, memory sticks, camera, DVD,
michrophone, printers, joysticks, ...

— large diversity
— varying speeds

— different access modes

- S B
Device .
driver
3‘:;",':? < Rest of the
: operating
E system
Device |_!
driver L)

& T
‘\ﬁi University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

Device Management

= Device controllers often have
registers to hold status, give commands, ...

— port I/O — special instructions to talk to device memory

— memory mapped I/O — registers mapped into regular memory

= Each device may be different and require device-spesific software

/

A

— usually runnin e ' | Device
_ _ , | driver
— mostly provided by the devi :

— translating deyiessi endent commands; e.g., *

read from file —~deVice interface
evice

= The software tal-ne_-ndi_divl?@"t@n‘ :‘andc
driver .| driver

driver
= A huge amount 95% of the Linux code!!??)

‘Q@/ University of Oslo INF1060, Pal Halvorsen

-

is often called a device

Rest of the
operating
system

b (device, cylinder, head, sector(s))

J

[simula.research laboratory |

. Q
| Device Management or 42 0,
OUZ.

= Device controllers often have
registers to hold status, give commands, ...

— port I/O — special instructions to talk to device memory

— memory mapped I/O — registers mapped into regular memory

= Each device may be different and require device-spesific software

= The software talking to the controller and giving commands is often called a device
driver

— usually running within the kernel
— mostly provided by the device vendors

— translating device-independent commands, e.g.,
read from file on disk: logical block number = device, cylinder, head, sector(s)

= A huge amount of code (95% of the Linux code!!??)

‘@/ University of Oslo INF1060, Pal Halvorsen [-research laboratory |

| Interfaces

A point of connection between components

The OS incorporates logic that support interfaces with both
hardware and applications, e.q.,

command line interface, e.g., a shell

graphical user interface (GUI)
interface consisting of windows, icons, menus and pointers
often not part of the OS (at least not kernel), but an own program

Example: X (see man X)

network transparent window system running on most ANSI C and POSIX
(portable OS interface for UNIX) compliant systems

uses inter-process communication to get input from and send output to
various client programs

xdm (X Display Manager) — usually set by administrator to run
automatically at boot time

xinit — manually starting X (startx, x11, xstart, ...)

@ University of Oslo INF1060, Pal Halvorsen [-research laboratory |

| Windows Interfaces

The GUI incorporates a
<~ command line shell similar
to the MS-DOS interface

Applications access HW
through the API consisting of
a set of routines, protocols and
Operating system layer other tools

Other operating system components

Hardware layer

& "'.\‘ --— -
‘@@ University of Oslo INF1060, Pal Halvorsen [simula.research laboratory]

The WinXP Desktop Interface

-

S .
Hummingbird
NNeighborhood

~

/gl Internet) My Documents P
Internet Explorer
E-mail b My Recent Documents »
Microsoft Outlook &
&) My Pictures &
‘Windows Media Player . X
@ J My Music

@ windows Movie Maker 9 My Computer

'@ Tour Windows XP Control Panel

. Files and Settings Transfer =
Wizard y
&é Printers and Faxes

@) Help and Support
}) Search

All Programs D Keep in touch with HP

Log Off [.6| Turn Off Computer

4 start #& Fullshot 99

f f \

Start button Taskbar Notification area

/- University of Oslo INF1060, Pal Halvorsen [simula.research laboratory]

I UNIX Interfaces

Applications are accessed HW through Application <
the API consisting of a set of routines, program \/
protocols and other tools (e.g., POSIX — User

portable OS interface for UNIX)

A user can interact with the system
through the application interface or
using a command line prosessed by
a shell (not really a part of the OS)

Other operating system components

A plain command line interface may

be hard to use. Many UNIX systems

therefore have a standard graphical

interface (X Windows) which can run
a desktop system (like KDE, Ghome,
Fvwm, Afterstep, ...)

Operating system layer

Hardware layer

Windows is more or less similar...

L @ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

_H (=]
Adresse Rediger Vis Gatil Bokmerker Verktey Innstillinger Vindu Hjelp
% o8 0 & R
2Eo RN %0 FOhS QABREE :
B> Adresse: ‘ _J file:fififeinmyriafa00/paalh/INTEL-forum '] E
Al Navn T |Strrelse Filtype Endret |Eier |Gruppe
[interact INTEL-forum-presentation- XP. ppt 2.2 MB Microsoft PowerPoint “zkument 2004 17-16 12:51 nwxr-xr-x paalh paalh
% UiO-logo-e.gif 3.7 KB GIF-bilde 20040517 050, 1w paalh paalh
= xp W UiO-storlogol. gif 8.1 KB GIF-bilde 2004-03-17 08:07 | & paalh paalh

Q [Jinteract2003
.

3

s

~ketil
+ JKURS

a

v
S|kl [Tl ([T k10|
{J o 3 elementer - 3 filer (2.2 MB Totalt) - 0 kataloger

=) all - Konsole BICIE
[vizzini]|~ o -
[vizzini]ji
A 4
DU adliC alt
L
—~
b 2

¢4 0 - gxine 0.3.3 2 emacs @vizzini.ifi.uio.no

Skall - Konsole <3>

_ file:fififeinmyriafa00/paalh/IN
\ @ Skall - Konsole <2

(534 [3]12:58

2004-07-16

INF1060, Pal Halvorsen [.research laboratory |

I Typical (UNIX) Line Commands

S command [-options] [arguments ...]

this symbol indicates
a list of file names

generally, file- or pathnames

one or more single-letter options

the minus sign distinguishes the options
from the arguments

command name

system prompt ($ for Bourne shell, % for C shell)

‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

Svstem Calls Linux system calls
(2.4.19):

" The interface between the OS and s e e

is defined b t of syst R
§y§;_ : Y efdhinftticbladrifittafhame, char *optval, int optlen)
§
use rS IS e Ine y a Se O Sys em Ve g ﬁmthfdexzehstltbmm‘amé char *optval, int *optlen)
88| 3:' ihidpelity,unsigned int count)
calls e
sys_stil) o et i
§Y§_ et LAY u' Wil
S S et)
gys ot ﬁnbmmmm;rr& ﬁtb statbuf)
. - = . . §y§: it et piobicst)atct i
Making a system call is similar to a s cg"‘“g.w‘é":;fiﬁiiﬁ?ﬂ St o 159
i o Sl e)
procedure/function call, but system e oty iy wcneor o

id_t user, old_gid_t group)

phinoiigtseaitnonie)
calls enter the kernel: e mwm@gﬁg@ﬁ@?ﬁ@ﬁu;)gmum

8y8_ gs
§ys et Lm_ intsigeteal/lon)g arg)
8y8_| igiigh uijgned long arg)
88 Mmmm@m@w
sys_ ; m&mm.@@%@w
8y8_ rt“‘ﬁl&l“?ﬂ—”ﬁi@m@}ewd old_uid_t *suid)
§y8 Wﬂ% tlenamadiniane pddenid 4RNt sqid)

7 7 7 7 7 7 §y8 F&H‘%IH‘ o8ekgid, old_gid_t *sgid)

application application application 85 ez o)

tame)size_t | d | t)
user Space 88 4 ize_t len, unsigned long pro

N / 8ys_| c@astt d%uﬂ]@y’name)
5 HEBRNSE! r*
__ a— kerne| Spa ce gzg:m 'qgﬂ)char * slliatmife}e;:m1§§uszh;';mgrieﬁ nagname)

system call interface §¥@§£§;‘,’1‘;§;}§§ds “our)

LinuX="
[/ - X86 v2.4.19 entry.S > 242

Il . x86 v3.0-rc4 syscall_table _32.5 > 347
L L S L L L
|

. FreeBSD:
V9 syscalls.c > 531

OS components

@ University of Oslo INF1060, Pal Halvorsen

sys:shmét (iht s'h_mid,“char ;shmaddr, int shm-ﬂ'g, ulong *addr)
sys_shmdt (char *shmaddr)
sys_shmctl (int shmid, int cmd, struct shmid_ds *buf)

System Calls: read

= Cexample:
count = read(fd,buffer,nbyte)

1. push parameters on stack
2. call library code

3. put system call number in register

user space
kernel space

4. call kernel (TRAP)
v" kernel examines system call number
v" finds requested system call handler
v' execute requested operation

5. return to library and clean up
v"increase instruction pointer
v remove parameters from stack

6. resume process

‘\ﬁ; University of Oslo INF1060, Pal Halvorsen [simula . research laboratory |

| Interrupt Program Execution

)
"’%%

;:“T"‘f}," L
‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

| Interrupts

= Interrupts are electronic signals that (usually) result in a forced
transfer of control to an interrupt handling routine

— alternative to polling

— caused by asynchronous events like finished disk operations, incoming
network packets, expired timers, ...

— an interrupt descriptor table (IDT) associates each interrupt with a code
descriptor (pointer to code segment)

— can be disabled or masked out

‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

| Exceptions

= Another way for the processor to interrupt program
execution is exceptions

— caused by synchronous events generated when the processor detects a
predefined condition while executing an instruction

— TRAPS: the processor reaches a condition the exception handler can
handle (e.qg., overflow, break point in code like making a system call, ...)

— FAULTS: the processor reaches a fault the exception handler can correct
(e.g., division by zero, wrong data format, ...)

— ABORTS: terminate the process due to an unrecoverable error
(e.g., hardware failure) which the process itself cannot correct

— the processor responds to exceptions (i.e., traps and faults) essentially as
for interrupts

@/ University of Oslo INF1060, Pal Halvorsen [-research laboratory |

| Interrupt (and Exception) Handling

= The IA-32 has an interrupt description table (IDT) with 256 entries for
interrupts and exceptions
— 32 (0 - 31) predefined and reserved
— 224 (32 - 255) is "user" (operating system) defined

= Each interrupt is associated with a code segment through
the IDT and a unique index value giving management like this:

Interrupt routines:

2. capture state, switch control
and find right interrupt handler

user
kernel

3. execute the interrupt handler

disk interrupt (x)
4. restore interrupted process [T
% ’

5. continue execution /A“

@/ University of Oslo INF1060, Pal Halvorsen [-research laboratory |

IBooﬁng

= Memory is a volatile, limited resource: OS usually on disk

* Most motherboards contain a basic input/output system (BIOS)
chip (often flash RAM) — stores instructions for basic HW
initialization and management, and initiates the ...

= ... bootstrap: loads the OS into memory

— read the boot program from a known location on secondary storage
typically first sector(s), often called master boot record (MBR)
— run boot program
» read root file system and locate file with OS kernel
* load kernel into memory
* run kernel

‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

Bootin

Gather HW information and set up system
Load data from boot sector

Execute boot program an CPU

Load OS from disk

Run OS

Intel® Pentium® 4
Processor

4.2 or 3.2 GB/s

uhwnh=

~ boot
RDRAM ‘

Intel®* Hub J Architecture

6 Channel
ATA 100 MB/s Y Audio
2 IDE Channels
\/ :;
LAN
Interface 4 USB Ports

Flash BIOS

4¥. University of Oslo INF1060, Pal Halvorsen [simula.research laboratory]

| User Level vs. Kernel Level (Protection)

= Many OSes distinguish user and kernel level,
i.e., due to security and protection

Least privileged

= Usually, applications and many sub-systems
run in user mode (pentium level 3)

— protected mode

— not allowed to access HW or device drivers
directly, only through an API

— access to assigned memory only
— limited instruction set

]

Most privileged

Device drivers

Applications

= (OSes run in kernel mode
(under the virtual machine abstraction, pentium level 0)

— real mode

— access to the entire memory

— all instructions can be executed
— bypass security

‘@ University of Oslo INF1060, Pal Halvorsen [simula . research laboratory]

| OS Organization

= No standard describing how to organize a kernel (as it is for compilers,
communication protocols, etc.) and several approaches exist, e.q.:

= Monolithic kernels (“the big mess”): shell e
— written as a collection of functions linked into a single object
— usually efficient (no boundaries to cross)
— large, complex, easy to crash
— UNIX, Linux, ...
= Micro kernels
— kernel with minimal functionality (managing interrupts, memory, processor)
— other services are implemented in server processes running in user space
used in a client-server model et syt s
— lot of m INg 7 e e
gagfﬁcigﬁi? o PR ool I i = e ol O
— small, modular, T . i . i sl sl R
extensible, portable, ... T /, """"""""" Voo { T kel mode
— MACH, L4, Chorus, ... T mimlke“”e'

hardware

‘@/ University of Oslo INF1060, Pal Halvorsen [-research laboratory |

| Summary

= (OSes are found “everywhere” and provide virtual machines and
work as a resource managers

= Many components providing different services
= Users access the services using an interface like system calls

= In the next lectures, we look closer at some of the main
components and abstractions in an OS
— Processes management
— memory management
— storage management
— local inter-process communication

— inter-computer network communication is covered in the
last part of the course

‘@/ University of Oslo INF1060, Pal Halvorsen [-research laboratory |

