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Overview 

  Basic execution environment – an Intel example 

 What is an operating system (OS)? 

  OS components and services  
(extended in later lectures) 

  Booting 

  Kernel organization  
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Hardware 

  Central Processing Units (CPUs) 

  Memory  
(cache(s), RAM, ROM, Flash, …) 

  I/O Devices  
(network cards, disks, CD, keyboard, mouse, …) 

  Links  
(interconnects, busses, …) 
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Example:  

Intel Hub Architecture (850 Chipset)  

Intel D850MD Motherboard: 
Source: Intel® Desktop Board D850MD/D850MV Technical Product Specification 
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Example:  

Intel Hub Architecture (850 Chipset)  

Intel D850MD Motherboard: 
Source: Intel® Desktop Board D850MD/D850MV Technical Product Specification 

Pentium 4 socket 

RAMBUS RDRAM –  
2 banks (4 slots) 

Memory Controller 
Hub 

PCI Connectors (slots) 

I/O Controller Hub RDRAM  
interface PCI 

bus 

Firmware Hub  – 
including BIOS 

Battery 

Speaker 

Power connector 

Diskette connector 

IDE drive connectors 

AGP slot 

Video 

mouse, keyboard, parallel, serial, 
network and USB connectors 
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Pentium 4 
Processor 

registers 

cache(s) 

Example:  

Intel Hub Architecture (850 Chipset) 

I/O 
controller 

hub 

memory 
controller 

hub 

RDRAM 
RDRAM 

RDRAM 
RDRAM 

PCI slots 
PCI slots 
PCI slots 

system bus 
(64-bit, 400/533 MHz 

~24-32 Gbps) 

hub interface 
(four  8-bit, 66 MHz 

 2 Gbps) 

PCI bus 
(32-bit, 33 MHz 
 1 Gbps) 

RAM interface 
(two 64-bit, 200 MHz 
 ~24 Gbps) 

disk 

file system 

application 

disk 
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Flexible Display  
Interface (FDI) 

Pentium 4 
Processor 

registers 

cache(s) 

Example:  

Intel Platform Controller Hub Architecture 

PCI slots 
PCI slots 
PCI slots 

Core i7 

registers 

cache(s) 

PCIe iGraphics 

RDRAM 
RDRAM 

I/O 
controller 

hub 

PCH 

Platform 
Controller 

Hub 
PCIe  slots 
PCIe  slots 
PCIe  slots 

Direct Media Interface (DMI) / 
QuickPath Interconnect (QPI) 

Peripherals 

Sandy Bridge 

RDRAM 
RDRAM 

integrated 
memory 

controller 

memory 
controller 

hub 
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Example:  

AMD Opteron & Intel Xeon 

Intel Xeon MP Processor-based 4P 

  Different hardware may have different bottlenecks 
    ==>	
 nice to have an operating system to control the HW? 
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Different Hardware   

Hardware X Hardware Y 

Operating System 

Application program 

Operating System 

Application program 

           Application      Application 



INF1060,  Pål Halvorsen University of Oslo 

  Address space: 1 – 236 (64 GB),  
    each process may have a linear address space of 4 GB (232) 

  Basic program execution registers: 
－  8 general purpose registers (data: EAX, EBX, ECX, EDX, address: ESI, EDI, EBP, ESP) 
－  6 segment registers (CS, DS, SS, ES, FS and GS) 
－  1 flag register (EFLAGS) 
－  1 instruction pointer register (EIP) 

  Stack – a continuous array of memory locations 
－  Current stack is referenced by the SS register 
－  ESP register – stack pointer 
－  EBP register – stack frame base pointer (fixed reference) 
－  PUSH – stack grows, add item (ESP decrement) 

－  POP – remove item, stack shrinks (ESP increment) 

  Several other registers like Control, MMX/FPU,  
Memory Type Range Registers (MTRRs),  
SSEx (XMM), performance monitoring, … ... 

STACK: 

PUSH %eax 

X 
Y 
Z 

PUSH %ebx 
PUSH %ecx 

POP %ecx 

EAX: 
EBX: 
ECX: 
EDX: 
ESI: 
EDI: 
EBP: 
ESP: see arrow 

GPRs: 
X 
Y 
Z 

POP %ebx 
POP %eax 

<do something> 

0xfff... 

0x0... 

Intel 32-bit Architecture (IA32): Basic Execution Environment 
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insert value 4 in variable a on stack: 
0xfffffffc = -(0xffffffff – 0xfffffffc) = -0x4   

a’s memory address = EBP - 4 

  Example: 

main (void) 
{   
    int a = 4, b = 2, c = 0;   
    c = a + b; 
} 

… 

… 

code segment: 

8048314 <main>:  

8048314:   push   %ebp  

8048315:   mov    %esp,%ebp  

8048317:   sub    $0x18,%esp  

804831a:   and    $0xfffffff0,%esp  

804831c:   mov    $0x0,%eax  

8048322:   sub    %eax,%esp  

8048324:   movl   $0x4,0xfffffffc(%ebp)  

804832b:   movl   $0x2,0xfffffff8(%ebp)  

8048332:   movl   $0x0,0xfffffff4(%ebp)  

8048339:   mov    0xfffffff8(%ebp),%eax  

804833c:   add    0xfffffffc(%ebp),%eax  

804833f:   mov    %eax,0xfffffff4(%ebp)  

8048342:   leave  

8048343:   ret 

objdump -d 

... 

... 

... 

stack: 

0 
2 
4 

6 

0xfff... 

0x0... 

ESP: 

EBP: 

EPI: 

EAX: 
Accumulator for operands and results data 

Stack pointer 

Pointer to data on stack (base) 

Pointer to next instruction to be executed 8048314 

old EBP 

8048315 8048317 804831a 804831c 8048322 8048324 804832b 8048332 8048339 804833c 804833f 8048342 0xfffffff4 

??? 

0xfffffff0 

0xfffffff0 

0xffffffd8 0xffffffd0 

0 2 6 

… 

sub 24 (0x18) bytes 
(add space for 24 bytes) 

alignment – sub "X"  (here 8) bytes 

8048343 

Intel 32-bit Architecture (IA32): Basic Execution Environment 
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C Function Calls & Stack 

  A calling function does 
－  push the parameters into stack in reverse order 
－  push return address (current EIP value) onto stack 

  When called, a C function does 
－  push frame pointer (EBP) into stack - saves frame pointer register and gives easy return if necessary  
－  let frame pointer point at the stack top, i.e., point at the saved stack pointer (EBP = ESP)  
－  shift stack pointer (ESP) upward (to lower addresses) to allocate space for local variables 

  When returning, a C function does 
－  put return value in the return value register (EAX) 
－  copy frame pointer into stack pointer - stack top now contains the saved frame pointer 
－  pop stack into frame pointer (restore), leaving the return program pointer on top of the stack       
－  the RET instruction pops the stack top into the program counter register (EIP), causing the CPU to 

execute from the "return address" saved earlier 

  When returned to calling function, it does 
－  copy the return value into right place 
－  pop parameters – restore the stack 
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… 

... 

C Function Calls & Stack 
  Example: 

int add (int a, int b) 
{   
    return a + b; 
} 

main (void) 
{   
    int c = 0;   
    c = add(4 , 2); 
} 

code segment: 

objdump -d 

... 

... 

0 

2 
4 

804834a 

6 

stack: 

0xfff... 

0x0... 

old EBP 

1.  Push EIP register 
2.  Loads the offset of the called  

procedure in the EIP register 
3.  Begin execution 

“main” EBP 

1.  Pop return instruction pointer 
into the EIP register 

2.  Release parameters (ESP) 
3.  Resume caller execution 

8048314 <add>: 

8048314:  push   %ebp 

8048315:  mov    %esp,%ebp  

8048317:  mov    0xc(%ebp),%eax  

804831a:  add    0x8(%ebp),%eax  

804831d:  pop    %ebp 

804831e:  ret 

804831f <main>:  

804831f:  push   %ebp  

8048320:  mov    %esp,%ebp  

8048322:  sub    $0x18,%esp  

8048325:  and    $0xfffffff0,%esp  

8048328:  mov    $0x0,%eax  

804832d:  sub    %eax,%esp 

804832f:  movl   $0x0,0xfffffffc(%ebp)  

8048336:  movl   $0x2,0x4(%esp) 

804833e:  movl   $0x4,(%esp) 

8048345:  call   8048314 <add>  

804834a:  mov    %eax,0xfffffffc(%ebp)  

804834d:  leave  

804834e:  ret  

804834f:  nop 

Wouldn't it be nice if this 

could be automatically 

managed!!?? 

 operating system 
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… 

... 

C Function Calls & Stack 
int add (int a, int b) 
{   
    return a + b; 
} 

main (void) 
{   
    int c = 0;   
    c = add(4 , 2); 
} 

code segment: 

... 

... 

0 

2 
4 

804834a 

6 

stack: 

0xfff... 

0x0... 

old EBP 

1.  Push EIP register 
2.  Loads the offset of the called  

procedure in the EIP register 
3.  Begin execution 

“main” EBP 

1.  Pop return instruction pointer 
into the EIP register 

2.  Release parameters (ESP) 
3.  Resume caller execution 

8048314 <add>: 

8048314:  push   %ebp 

8048315:  mov    %esp,%ebp  

8048317:  mov    0xc(%ebp),%eax  

804831a:  add    0x8(%ebp),%eax  

804831d:  pop    %ebp 

804831e:  ret 

804831f <main>:  

804831f:  push   %ebp  

8048320:  mov    %esp,%ebp  

8048322:  sub    $0x18,%esp  

8048325:  and    $0xfffffff0,%esp  

8048328:  mov    $0x0,%eax  

804832d:  sub    %eax,%esp 

804832f:  movl   $0x0,0xfffffffc(%ebp)  

8048336:  movl   $0x2,0x4(%esp) 

804833e:  movl   $0x4,(%esp) 

8048345:  call   8048314 <add>  

804834a:  mov    %eax,0xfffffffc(%ebp)  

804834d:  leave  

804834e:  ret  

804834f:  nop 
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Many Concurrent Tasks 
  Better use & utilization 
－  many concurrent 

processes 
•  performing different 

tasks 
•  using different parts of 

the machine 

－  many concurrent users 

  Challenges 
－  “concurrent” access 
－  protection/security 
－  fairness 
－  … 

Operating System Layer 
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What is an Operating System (OS)? 
  “An operating system (OS) is a collection of programs that acts as an 

intermediary between the hardware and its user(s), providing a high-level 
interface to low level hardware resources, such as the CPU, memory, and  
I/O devices. The operating system provides various facilities and services 
that make the use of the hardware convenient, efficient and safe”  

                     Lazowska, E. D.:  Contemporary Issues in Operating Systems , in: Encyclopedia of Computer Science, Ralston, A., Reilly, E. D. (Editors), IEEE Press, 1993, pp.980 

  It is an extended machine (top-down view) 
－ Hides the messy details 
－  Presents a virtual machine, easier to use 

  It is a resource manager (bottom-up view) 
－  Each program gets time/space on the resource 

hardware 

user 

application 

operating system 
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Where do we find OSes? 

Computers 

Cars 

Game Boxes 
Phones 

cameras, 
other vehicles/crafts, 
set-top boxes, 
watches, 
sensors, 
… 
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Operating System Categories 

  Single-user, single-task: 
historic, and rare (only a few PDAs use this) 

  Single-user, multi-tasking: 
PCs and workstations may be configured like this 

  Multi-user, multi-tasking: 
used on large, old mainframes; and handhelds, PCs, workstations and servers today 

  Distributed OSes: 
support for administration of distributed resources 

  Real-time OSes: 
support for systems with real-time requirements like cars, nuclear reactors, etc. 

  Embedded OSes: 
built into a device to control a specific type of equipment like cellular phones, micro 
waves, etc.  
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History 

  OSes have evolved over the last 60 years 

  Early history (’40s and early ’50s): 
－ first machines did not include OSes 
－ programmed using mechanical switches or wires 

  Second generation (’50s and ’60s): 
－ transistors introduced in mid-’50s 
－ batch systems 
－ card readers 
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History 

  Third generation (mid-’60s to the ’80s) 
－ integrated circuits and simple multiprogramming 
－ timesharing 
－ graphical user interface 
－ UNIX (’69-’70) 
－ BSD (’77) 

  Newer times (’80s to present) 
－ personal computers & workstations 
－ MS-DOS (’82), Win (’85), Minix (’87), Linux (’91), Win95, … 
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Why Study OSes? 

  Understand how computers work under the hood 
－  “you need to understand the system at all abstraction levels or you don’t”  (Yale Patt)     

  Easier to do things right and efficient if one knows what happens 

  Magic to provide infinite CPU cycles, memory, devices  
and networked computing 

  Tradeoffs between performance and functionality,  
division of labor between HW and SW  

  An OS is therefore a key component in many systems 
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Primary Components 

User interface 
(shell) Device 

management File 
management 

Memory 
management 

Processor 
(or process) 
management 

Communication 
services 

Operating system layer 

Application program layer 

Hardware layer 

  "Visible" to user 
－  Shell 
－  File system 
－ Device management 

  "(Semi)Transparent" 
－  Processor management 
－ Memory management 
－  Communication services 
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User interface 
(shell) Device 

management File 
management 

Memory 
management 

Processor 
(or process) 
management 

Communication 
services 

Operating system layer 

Primary Components 

Application program layer 

Hardware layer 

File Management (file system): 
provides a mechanism for the user to  
create, delete, modify and manipulate files 

Memory Management: 
provides a mechanism for the system 
to efficiently manage the system’s  
memory recourses – allocating space  
to processes  

User Interface: 
provides a mechanism for user and  
application to communicate with OS  
and use the machine resources 

Management of processes: 
provides a mechanism for the system 
to efficiently and fair manage the  
machine CPU cycles for the running  
processes  

Communication: 
provides a mechanism for the system 
communicate with other processes (on 
same or another machine)  

Device Management: 
provides the system with means to  
control the systems peripheral devices 
like keyboard, display, printer and disk 

Note: this list of components is  
not complete. Some OSes have  
fewer, others more. Some have  
sub-components 
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Device Management 
  The OS must be able to control pheripal devices such as disk, keyboard, 

network cards, screen, speakers, mouse, memory sticks, camera, DVD, 
michrophone, printers, joysticks, ... 

－  large diversity 

－  varying speeds 

－  different access modes 

Rest of the 
operating 
system 

Device 
driver 

Device 
driver 

.

.

.
Device 
driver 

Device 
controller 

Device 
controller 

. . . 

Device 
controller 

Device 

Device 

Device 

Device 
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Device Management 

Rest of the 
operating 
system 

Device 
driver 

Device 
driver 

.

.

.
Device 
driver 

Device 
controller 

Device 
controller 

. . . 

Device 
controller 

Device 

Device 

Device 

Device 

  Device controllers often have  
registers to hold status, give commands, … 

－  port I/O – special instructions to talk to device memory 

－  memory mapped I/O – registers mapped into regular memory 

  Each device may be different and require device-spesific software 

  The software talking to the controller and giving commands is often called a device 
driver  

－  usually running within the kernel 

－  mostly provided by the device vendors 

－  translating device-independent commands, e.g.,  
read from file on disk: logical block number  device interface (device, cylinder, head, sector(s))  

  A huge amount of code (95% of the Linux code!!??) 
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Device Management 
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  A huge amount of code (95% of the Linux code!!??) 
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Interfaces 
  A point of connection between components 

  The OS incorporates logic that support interfaces with both 
hardware and applications, e.g.,  
－  command line interface, e.g., a shell 
－  graphical user interface (GUI) 

•  interface consisting of windows, icons, menus and pointers 
•  often not part of the OS (at least not kernel), but an own program 

－ … 

  Example: X (see man X) 
－  network transparent window system running on most ANSI C and POSIX 

(portable OS interface for UNIX) compliant systems 
－  uses inter-process communication to get input from and send output to 

various client programs 
－  xdm (X Display Manager) – usually set by administrator to run 

automatically at boot time 
－  xinit – manually starting X (startx, x11, xstart, …) 
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Windows Interfaces 

The GUI incorporates a  
command line shell similar  
to the MS-DOS interface 

Applications access HW 
through the API consisting of  
a set of routines, protocols and 
other tools 
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Taskbar 

The WinXP Desktop Interface 

Start button Notification area 
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UNIX Interfaces 

Applications are accessed HW through  
the API consisting of a set of routines,  
protocols and other tools (e.g., POSIX –  
portable OS interface for UNIX) 

A user can interact with the system  
through the application interface or  
using a command line prosessed by  
a shell (not really a part of the OS) 

A plain command line interface may 
be hard to use. Many UNIX systems  
therefore have a standard graphical 
interface (X Windows) which can run 
a desktop system (like KDE, Gnome,  
Fvwm, Afterstep, …) 

Windows is more or less similar… 
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A Linux (KDE) Desktop Interface 

Application Starter 

Virtual Desktops 

Panel Taskbar 

Desktop 
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Typical (UNIX) Line Commands 
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System Calls 
  The interface between the OS and 

users is defined by a set of system 
calls 

  Making a system call is similar to a 
procedure/function call, but system 
calls enter the kernel: 

sys_acct(const char *name) 
sys_acct(const char * filename) 
sys_capget(cap_user_header_t header, cap_user_data_t dataptr) 
sys_capset(cap_user_header_t header, const cap_user_data_t data) 
sys_exit(int error_code) 
sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru) 
sys_waitpid(pid_t pid,unsigned int * stat_addr, int options) 
sys_futex(void *uaddr, int op, int val, struct timespec *utime) 
sys_sysinfo(struct sysinfo *info) 
sys_getitimer(int which, struct itimerval *value) 
sys_setitimer(int which, struct itimerval *value, 
sys_sync(void); /* it's really int */ 
sys_syslog(int type, char * buf, int len) 
sys_nice(int increment) 
sys_sched_setscheduler(pid_t pid, int policy, 
sys_sched_setparam(pid_t pid, struct sched_param *param) 
sys_sched_getscheduler(pid_t pid) 
sys_sched_getparam(pid_t pid, struct sched_param *param) 
sys_sched_setaffinity(pid_t pid, unsigned int len, 
sys_sched_getaffinity(pid_t pid, unsigned int len, 
sys_sched_yield(void) 
sys_sched_get_priority_max(int policy) 
sys_sched_get_priority_min(int policy) 
sys_sched_rr_get_interval(pid_t pid, struct timespec *interval) 
sys_ni_syscall(void) 
sys_setpriority(int which, int who, int niceval) 
sys_getpriority(int which, int who) 
sys_reboot(int magic1, int magic2, unsigned int cmd, void * arg) 
sys_setregid(gid_t rgid, gid_t egid) 
sys_setgid(gid_t gid) 
sys_setreuid(uid_t ruid, uid_t euid) 
sys_setuid(uid_t uid) 
sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 
sys_getresuid(uid_t *ruid, uid_t *euid, uid_t *suid) 
sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 
sys_getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid) 
sys_setfsuid(uid_t uid) 
sys_setfsgid(gid_t gid) 
sys_times(struct tms * tbuf) 
sys_setpgid(pid_t pid, pid_t pgid) 
sys_getpgid(pid_t pid) 
sys_getpgrp(void) 
sys_getsid(pid_t pid) 
sys_setsid(void) 
sys_getgroups(int gidsetsize, gid_t *grouplist) 
sys_setgroups(int gidsetsize, gid_t *grouplist) 
sys_newuname(struct new_utsname * name) 
sys_sethostname(char *name, int len) 
sys_gethostname(char *name, int len) 
sys_setdomainname(char *name, int len) 
sys_getrlimit(unsigned int resource, struct rlimit *rlim) 
sys_old_getrlimit(unsigned int resource, struct rlimit *rlim) 
sys_setrlimit(unsigned int resource, struct rlimit *rlim) 
sys_getrusage(int who, struct rusage *ru) 
sys_umask(int mask) 

sys_socket(int family, int type, int protocol) 
sys_socketpair(int family, int type, int protocol, int usockvec[2]) 
sys_bind(int fd, struct sockaddr *umyaddr, int addrlen) 
sys_listen(int fd, int backlog) 
sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen) 
sys_connect(int fd, struct sockaddr *uservaddr, int addrlen) 
sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len) 
sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len) 
sys_sendto(int fd, void * buff, size_t len, unsigned flags, 
sys_send(int fd, void * buff, size_t len, unsigned flags) 
sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags, 
sys_recv(int fd, void * ubuf, size_t size, unsigned flags) 
sys_setsockopt(int fd, int level, int optname, char *optval, int optlen) 
sys_getsockopt(int fd, int level, int optname, char *optval, int *optlen) 
sys_shutdown(int fd, int how) 
sys_sendmsg(int fd, struct msghdr *msg, unsigned flags) 
sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags) 
sys_socketcall(int call, unsigned long *args) 
sys_tux (unsigned int action, user_req_t *u_info) 
sys_io_setup(unsigned nr_reqs, aio_context_t *ctxp) 
sys_io_destroy(aio_context_t ctx) 
sys_io_submit(aio_context_t ctx_id, long nr, 
sys_io_cancel(aio_context_t ctx_id, struct iocb *iocb, 
sys_io_getevents(aio_context_t ctx_id, 
sys_sync(void) 
sys_fsync(unsigned int fd) 
sys_fdatasync(unsigned int fd) 
sys_bdflush(int func, long data) 
sys_getcwd(char *buf, unsigned long size) 
sys_uselib(const char * library) 
sys_dup2(unsigned int oldfd, unsigned int newfd) 
sys_dup(unsigned int fildes) 
sys_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg) 
sys_fcntl64(unsigned int fd, unsigned int cmd, unsigned long arg) 
sys_nfsservctl(int cmd, void *argp, void *resp) 
sys_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg) 
sys_flock(unsigned int fd, unsigned int cmd) 
sys_mknod(const char * filename, int mode, dev_t dev) 
sys_mkdir(const char * pathname, int mode) 
sys_rmdir(const char * pathname) 
sys_unlink(const char * pathname) 
sys_symlink(const char * oldname, const char * newname) 
sys_link(const char * oldname, const char * newname) 
sys_rename(const char * oldname, const char * newname) 
sys_umount(char * name, int flags) 
sys_oldumount(char * name) 
sys_mount(char * dev_name, char * dir_name, char * type, 
sys_pivot_root(const char *new_root, const char *put_old) 
sys_statfs(const char * path, struct statfs * buf) 
sys_fstatfs(unsigned int fd, struct statfs * buf) 
sys_truncate(const char * path, unsigned long length) 
sys_ftruncate(unsigned int fd, unsigned long length) 
sys_truncate64(const char * path, loff_t length) 
sys_ftruncate64(unsigned int fd, loff_t length) 

sys_fchdir(unsigned int fd) 
sys_chroot(const char * filename) 
sys_open(const char * filename, int flags, int mode) 
sys_creat(const char * pathname, int mode) 
sys_close(unsigned int fd) 
sys_vhangup(void) 
sys_lseek(unsigned int fd, off_t offset, unsigned int origin) 
sys_llseek(unsigned int fd, unsigned long offset_high, 
sys_read(unsigned int fd, char * buf, size_t count) 
sys_write(unsigned int fd, const char * buf, size_t count) 
sys_readv(unsigned long fd, const struct iovec * vector, 
sys_writev(unsigned long fd, const struct iovec * vector, 
sys_pread(unsigned int fd, char * buf, 
sys_pwrite(unsigned int fd, const char * buf, 
sys_getdents(unsigned int fd, void * dirent, unsigned int count) 
sys_getdents64(unsigned int fd, void * dirent, unsigned int count) 
sys_poll(struct pollfd * ufds, unsigned int nfds, long timeout) 
sys_stat(char * filename, struct __old_kernel_stat * statbuf) 
sys_newstat(char * filename, struct stat * statbuf) 
sys_lstat(char * filename, struct __old_kernel_stat * statbuf) 
sys_newlstat(char * filename, struct stat * statbuf) 
sys_fstat(unsigned int fd, struct __old_kernel_stat * statbuf) 
sys_newfstat(unsigned int fd, struct stat * statbuf) 
sys_readlink(const char * path, char * buf, int bufsiz) 
sys_stat64(char * filename, struct stat64 * statbuf, long flags) 
sys_lstat64(char * filename, struct stat64 * statbuf, long flags) 
sys_fstat64(unsigned long fd, struct stat64 * statbuf, long flags) 
sys_sysfs(int option, unsigned long arg1, unsigned long arg2) 
sys_ustat(dev_t dev, struct ustat * ubuf) 
sys_sendfile(int out_fd, int in_fd, off_t *offset, size_t count) 
sys_readahead(int fd, loff_t offset, size_t count) 
sys_msync(unsigned long start, size_t len, int flags) 
sys_madvise(unsigned long start, size_t len, int behavior) 
sys_mincore(unsigned long start, size_t len, 
sys_mlock(unsigned long start, size_t len) 
sys_munlock(unsigned long start, size_t len) 
sys_mlockall(int flags) 
sys_munlockall(void) 
sys_brk(unsigned long brk) 
sys_munmap(unsigned long addr, size_t len) 
sys_mprotect(unsigned long start, size_t len, unsigned long prot) 
sys_mremap(unsigned long addr, 
sys_swapoff(const char * specialfile) 
sys_swapon(const char * specialfile, int swap_flags) 
sys_msgget (key_t key, int msgflg) 
sys_msgctl (int msqid, int cmd, struct msqid_ds *buf) 
sys_msgsnd (int msqid, struct msgbuf *msgp, size_t msgsz, int msgflg) 
sys_msgrcv (int msqid, struct msgbuf *msgp, size_t msgsz, 
sys_semget (key_t key, int nsems, int semflg) 
sys_semctl (int semid, int semnum, int cmd, union semun arg) 
sys_semop (int semid, struct sembuf *tsops, unsigned nsops) 
sys_shmget (key_t key, size_t size, int shmflg) 
sys_shmctl (int shmid, int cmd, struct shmid_ds *buf) 
sys_shmat (int shmid, char *shmaddr, int shmflg, ulong *raddr) 
sys_shmdt (char *shmaddr) 
sys_semget (key_t key, int nsems, int semflg) 
sys_semop (int semid, struct sembuf *sops, unsigned nsops) 
sys_semctl (int semid, int semnum, int cmd, union semun arg) 
sys_msgget (key_t key, int msgflg) 
sys_msgsnd (int msqid, struct msgbuf *msgp, size_t msgsz, int msgflg) 
sys_msgrcv (int msqid, struct msgbuf *msgp, size_t msgsz, long msgtyp, 
sys_msgctl (int msqid, int cmd, struct msqid_ds *buf) 
sys_shmget (key_t key, size_t size, int shmflag) 
sys_shmat (int shmid, char *shmaddr, int shmflg, ulong *addr) 
sys_shmdt (char *shmaddr) 
sys_shmctl (int shmid, int cmd, struct shmid_ds *buf) 
sys_ioperm(unsigned long from, unsigned long num, int turn_on) 

sys_prctl(int option, unsigned long arg2, unsigned long arg3, 
sys_sysctl(struct __sysctl_args *args) 
sys_sysctl(struct __sysctl_args *args) 
ys_time(int * tloc) 
sys_stime(int * tptr) 
sys_gettimeofday(struct timeval *tv, struct timezone *tz) 
sys_settimeofday(struct timeval *tv, struct timezone *tz) 
sys_adjtimex(struct timex *txc_p) 
sys_alarm(unsigned int seconds) 
sys_getpid(void) 
sys_getppid(void) 
sys_getuid(void) 
sys_geteuid(void) 
sys_getgid(void) 
sys_getegid(void) 
sys_gettid(void) 
sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp) 
sys_chown(const char *, uid_t,gid_t); 
sys_lchown(const char *, uid_t,gid_t); 
sys_fchown(unsigned int, uid_t,gid_t); 
sys_setregid(gid_t, gid_t); 
sys_setgid(gid_t); 
sys_setreuid(uid_t, uid_t); 
sys_setuid(uid_t); 
sys_setresuid(uid_t, uid_t, uid_t); 
sys_setresgid(gid_t, gid_t, gid_t); 
sys_setfsuid(uid_t); 
sys_setfsgid(gid_t); 
sys_chown16(const char * filename, old_uid_t user, old_gid_t group) 
sys_lchown16(const char * filename, old_uid_t user, old_gid_t group) 
sys_fchown16(unsigned int fd, old_uid_t user, old_gid_t group) 
sys_setregid16(old_gid_t rgid, old_gid_t egid) 
sys_setgid16(old_gid_t gid) 
sys_setreuid16(old_uid_t ruid, old_uid_t euid) 
sys_setuid16(old_uid_t uid) 
sys_setresuid16(old_uid_t ruid, old_uid_t euid, old_uid_t suid) 
sys_getresuid16(old_uid_t *ruid, old_uid_t *euid, old_uid_t *suid) 
sys_setresgid16(old_gid_t rgid, old_gid_t egid, old_gid_t sgid) 
sys_getresgid16(old_gid_t *rgid, old_gid_t *egid, old_gid_t *sgid) 
sys_setfsuid16(old_uid_t uid) 
sys_setfsgid16(old_gid_t gid) 
sys_getgroups16(int gidsetsize, old_gid_t *grouplist) 
sys_setgroups16(int gidsetsize, old_gid_t *grouplist) 
sys_getuid16(void) 
sys_geteuid16(void) 
sys_getgid16(void) 
sys_getegid16(void) 
sys_utime(char * filename, struct utimbuf * times) 
sys_utimes(char * filename, struct timeval * utimes) 
sys_access(const char * filename, int mode) 
sys_chdir(const char * filename) 
sys_fchmod(unsigned int fd, mode_t mode) 
sys_chmod(const char * filename, mode_t mode) 
sys_chown(const char * filename, uid_t user, gid_t group) 
sys_lchown(const char * filename, uid_t user, gid_t group) 
sys_fchown(unsigned int fd, uid_t user, gid_t group) 

Linux system calls 
(2.4.19): 

application application application 
user space 

kernel space 
system call interface 

OS components 

Linux: 
x86 v2.4.19 entry.S  242 
x86 v3.0-rc4 syscall_table_32.S  347 

FreeBSD: 
v9 syscalls.c  531  
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  C example:   
count = read(fd,buffer,nbyte) 

1.  push parameters on stack 

2.  call library code 

3.  put system call number in register 

4.  call kernel (TRAP) 
  kernel examines system call number  
  finds requested system call handler  
  execute requested operation 

5.  return to library and clean up 
  increase instruction pointer 
  remove parameters from stack 

6.  resume process 

application 

user space 

kernel space 

count = read (fd , buffer , nbytes) 

read library 
procedure 

register 

memory (stack) buffer 

nbytes 
buffer 
fd 

X (read) 

system call 
handler 

X 

sys_read() 

System Calls: read 
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CPU 

Interrupt Program Execution
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Interrupts 
  Interrupts are electronic signals that (usually) result in a forced 

transfer of control to an interrupt handling routine 

－  alternative to polling 

－  caused by asynchronous events like finished disk operations, incoming 
network packets, expired timers, … 

－  an interrupt descriptor table (IDT) associates each interrupt with a code 
descriptor (pointer to code segment) 

－  can be disabled or masked out 
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Exceptions 
  Another way for the processor to interrupt program  

execution is exceptions 

－  caused by synchronous events generated when the processor detects a 
predefined condition while executing an instruction 

－  TRAPS: the processor reaches a condition the exception handler can 
handle (e.g., overflow, break point in code like making a system call, …) 

－  FAULTS: the processor reaches a fault the exception handler can correct 
(e.g., division by zero, wrong data format, …)   

－  ABORTS: terminate the process due to an unrecoverable error  
(e.g., hardware failure) which the process itself cannot correct 

－  the processor responds to exceptions (i.e., traps and faults) essentially as 
for interrupts 
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  The IA-32 has an interrupt description table (IDT) with 256 entries for 
interrupts and exceptions 
－  32 (0 - 31) predefined and reserved  
－  224 (32 - 255) is "user" (operating system) defined 

  Each interrupt is associated with a code segment through  
the IDT and a unique index value giving management like this: 

1.  process running while interrupt occur 

2.  capture state, switch control  
and find right interrupt handler 

3.  execute the interrupt handler 

4.  restore interrupted process 

5.  continue execution  

Interrupt (and Exception) Handling 

user 

kernel 
IDT: 

disk interrupt (x) 
Interrupt routines: 
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Booting 
  Memory is a volatile, limited resource: OS usually on disk 

  Most motherboards contain a basic input/output system (BIOS) 
chip (often flash RAM) – stores instructions for basic HW 
initialization and management, and initiates the … 

  ... bootstrap: loads the OS into memory 
－  read the  boot program from a known location on secondary storage 

typically first sector(s), often called master boot record (MBR) 
－  run boot program 

•  read root file system and locate file with OS kernel 
•  load kernel into memory 
•  run kernel 
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Booting 

boot 

OS 

boot 

OS 

1.  Gather HW information and set up system  
2.  Load data from boot sector 
3.  Execute boot program an CPU 
4.  Load OS from disk 
5.  Run OS  
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User Level vs. Kernel Level (Protection) 
  Many OSes distinguish user and kernel level,  

i.e., due to security and protection 

  Usually, applications and many sub-systems 
run in user mode (pentium level 3)  
－  protected mode 
－  not allowed to access HW or device drivers  

directly, only through an API 
－  access to assigned memory only 
－  limited instruction set 

  OSes run in kernel mode  
(under the virtual machine abstraction, pentium level 0) 
－  real mode 
－  access to the entire memory 
－  all instructions can be executed 
－  bypass security 
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OS Organization 
  No standard describing how to organize a kernel (as it is for compilers, 

communication protocols, etc.) and several approaches exist, e.g.: 

  Monolithic kernels (“the big mess”): 
－  written as a collection of functions linked into a single object 
－  usually efficient (no boundaries to cross) 
－  large, complex, easy to crash  
－  UNIX, Linux, … 

  Micro kernels 
－  kernel with minimal functionality (managing interrupts, memory, processor) 
－  other services are implemented in server processes running in user space  

used in a client-server model 
－  lot of message passing  

(inefficient) 
－  small, modular,  

extensible, portable, … 
－  MACH, L4, Chorus, … 
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Summary 
  OSes are found “everywhere” and provide virtual machines and 

work as a resource managers 

  Many components providing different services 

  Users access the services using an interface like system calls 

  In the next lectures, we look closer at some of the main 
components and abstractions in an OS 
－  processes management 
－ memory management 
－  storage management 
－  local inter-process communication 

－  inter-computer network communication is covered in the  
last part of the course 


