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Overview 

  Processes 
－ primitives for creation and termination 
－ states 
－ context switches 
－ (processes vs. threads) 

  CPU scheduling 
－ classification 
－ timeslices 
－ algorithms 



Processes 
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 What is a process? 
   The "execution" of a program is often called a process 

  Process table entry (process control block, PCB): 

Processes 

Process 
Program 
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  A process can create another process using the  
pid_t fork(void) system call (see man 2 fork) : 

－ makes a duplicate of the calling process including a copy of virtual 
address space, open file descriptors, etc… 
(only PIDs are different – locks and signals are not inherited) 

－  return value if …  
•  …parent: child process’ PID when successful, -1 otherwise 
•  …child:    0  (if successful - if not, there will not be a child) 

－  both processes continue in parallel 

  Other possibilities include  
－  int clone(…) – shares memory, descriptors, signals (see man 2 clone) 

－  pid_t vfork(void) – suspends parent in clone() (see man 2 vfork)  

Process Creation 
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Prosess 1 

Process control block (process descriptor) 
•  PID 
•  address space (text, data, stack) 
•  state 
•  allocated resources 
•  … 

Process Creation – fork() 

Prosess 2 
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after termination 
(or any later time) 

right after fork() 
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Program Execution 
  To make a process execute a program, one might use the  

int execve(char *filename, char *params[], char *envp[]) system 
call (see man 2 execve): 

－  executes the program pointed to by filename (binary or script) using the 
parameters given in params and in the environment given by envp 

－  return value 
•  no return value on success, actually no process to return to  
•  -1 is returned on failure (and errno set) 

  Many other versions (frontends to execve) exist, e.g.,  
execl, execlp, execle, execv and execvp (see man 3 exec) 

process 1: 

process 2: 



INF1060,  Pål Halvorsen University of Oslo 

Process Waiting 
  To make a process wait for another process, one can use the  

pid_t wait(int *status) system call (see man 2 wait): 

－  waits until any of the child processes terminates (if there are running child 
processes) 

－  returns  
•  -1 if no child processes exist 

•  PID of the terminated child process and puts the status of the process in status 

－  see also wait4, waitpid 

process 1: 

process 2: 
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Process Termination 
  A process can terminate in several different ways: 

－  no more instructions to execute in the program –   
unknown status value  

－  a function in a program finishes with a return – 
parameter to return the status value  

－  the system call void exit(int status) terminates a process and 
returns the status value  (see man 3 exit)  

－  the system call int kill(pid_t pid, int sig) sends a signal to a 
process to terminate it (see man 2 kill, man 7 signal)  

  A status value of 0 indicates success,  
other values indicate errors 



INF1060,  Pål Halvorsen University of Oslo 

Process States 

Termination 

Creation 
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Context Switches 

  Context switch: the process of switching one running process to another 

1.  stop running process 1 

2.  storing the state (like registers, instruction pointer) of process 1  
(usually on stack or PCB) 

3.  restoring state of process 2 

4.  resume operation on program counter for process 2 

－  essential feature of multi-tasking systems 

－  computationally intensive, important to optimize the use of context switches 

－  some hardware support, but usually only for general purpose registers 

  Possible causes: 
－  scheduler switches processes (and contexts) due to algorithm and time slices 

－  interrupts 

－  required transition between user-mode and kernel-mode   



INF1060,  Pål Halvorsen University of Oslo 

Process 

Processes vs. Threads 
  Processes: resource grouping and execution 
  Threads (light-weight processes)  
－  enable more efficient cooperation among execution units 
－  share many of the process resources (most notably address space)   
－  have their own state, stack, processor registers and program counter 

Process 
- address space 
- registers 
- program counter 
- stack  
- … 

- address space 
- registers 
- program counter 
- stack 
- …  

- address space 
- other global process data 

- state 
- registers 
- program counter 
- stack 

- state 
- registers 
- program counter 
- stack 

information global to  
all threads in a process 

information local 
to each thread ... 
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Process 

Processes vs. Threads 
  Processes: resource grouping and execution 
  Threads (light-weight processes)  
－  enable more efficient cooperation among execution units 
－  share many of the process resources (most notably address space)   
－  have their own state, stack, processor registers and program counter 

－  no memory address switch 
－  thread switching is much cheaper 
－  parallel execution of concurrent tasks within a process  

  No standard, several implementations (e.g., Win32 threads, Pthreads, C-threads) 
(see man 3 pthreads)  

- address space 
- other global process data 

- state 
- registers 
- program counter 
- stack 

- state 
- registers 
- program counter 
- stack ... 

Example: time using futex to suspend and resume 
processes (incl. systemcall overhead): 

Intel 5150:     ~1900ns/process switch,   ~1700ns/thread switch 
Intel E5440:    ~1300ns/process switch,  ~1100ns/thread switch 
Intel E5520:    ~1400ns/process switch,  ~1300ns/thread switch 
Intel X5550:    ~1300ns/process switch,  ~1100ns/thread switch 
Intel L5630:    ~1600ns/process switch,  ~1400ns/thread switch 
Intel E5-2620: ~1600ns/process switch,  ~1300ns/thread contex 

http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html 
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Example 
#include <stdio.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <unistd.h> 

int main(void){  
   pid_t pid, n;   
   int status = 0;     

   if ((pid = fork()) == -1) {printf("Failure\n"); exit(1);}     

   if (pid != 0) {  /* Parent */     
      printf("parent PID=%d, child PID = %d\n",         

     (int) getpid(), (int) pid); 

      printf("parent going to sleep (wait)...\n");     

      n = wait(&status);     

      printf("returned child PID=%d, status=0x%x\n", 
    (int)n, status);     

      return 0;   
   } else {  /* Child */     
      printf("child PID=%d\n", (int)getpid());     
      printf("executing /store/bin/whoami\n");     
      execve("/store/bin/whoami", NULL, NULL);     
      exit(0);   /* Will usually not be executed */ 
   } 
} 

[vizzini] > ./testfork 
parent PID=2295, child PID=2296 
parent going to sleep (wait)... 
child PID=2296 
executing /store/bin/whoami 
paalh 
returned child PID=2296, status=0x0 

[vizzini] > ./testfork 
child PID=2444 
executing /store/bin/whoami 
parent PID=2443, child PID=2444 
parent going to sleep (wait)... 
paalh 
returned child PID=2444, status=0x0 

Two concurrent processes  
running, scheduled differently 



CPU Scheduling 
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Scheduling   
  A task is a schedulable entity/something that can run  

(a process/thread executing a job, e.g.,  
a packet through the communication  
system or a disk request through the file system)  

  In a multi-tasking system, several  
tasks may wish to use a resource  
simultaneously 

  A scheduler decides which task  
that may use the resource,  
i.e., determines order  
by which requests are serviced,  
using a scheduling algorithm 

resource 

requests 

scheduler 
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Why Spend Time on Scheduling? 
  Scheduling is difficult and takes time – RT vs NRT example  
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Why Spend Time on Scheduling? 

－  Bursts of CPU usage alternate with periods of I/O wait 

  Optimize the system to the given goals 
－  e.g., CPU utilization, throughput, response time, waiting time, fairness, … 

  Example: CPU-Bound vs. I/O-Bound Processes: 
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  Example: CPU-Bound vs. I/O-Bound Processes (cont.) – observations: 

－  schedule all CPU-bound processes first, then I/O-bound 

－  schedule all I/O-bound processes first, then CPU-bound? 

－  possible solution:  
mix of CPU-bound and I/O-bound: overlap slow I/O devices with fast CPU 

CPU DISK 

Why Spend Time on Scheduling? 
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FIFO and Round Robin 
FIFO: 

  Run 
－  to completion (old days) 
－  until blocked, yield or exit 

  Advantages 
－  simple 

  Disadvantage 
－ when short jobs get behind long 

Round-Robin (RR): 

  FIFO queue 

  Each process runs a timeslice  
－  each process gets 1/n of the CPU 

in max t time units at a time 
－  the preempted process is put 

back in the queue 
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FIFO and Round Robin 
  Example: 10 jobs and each takes 100 seconds 

  FIFO – the process runs until finished, no overhead (!!??) 
－  start:  job1:    0s, job2: 100s, ... , job10: 900s    average 450s 
－  finished:  job1: 100s, job2: 200s, ... , job10: 1000s  average 550s 
－  unfair, but some are lucky 

  RR - time slice of 1s, no overhead (!!??)  
－  start:  job1:    0s, job2: 1s, ... , job10: 9s           average 4.5s 
－  finished:  job1: 991s, job2: 992s, ... , job10: 1000s  average 995.5s 
－  fair, but no one are lucky 

  Comparisons 
－  FIFO better for long CPU-intensive jobs (there is overhead in switching!!) 
－  but RR much better for interactivity! 

  But, how to choose the right time slice?? 
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Case: Time Slice Size 
  Resource utilization example 
－ A and B run forever, and each uses 100% CPU 
－ C loops forever (1 ms CPU and 10 ms disk) 
－  assume no switching overhead 

  Large or small time slices? 
－  nearly 100% of CPU utilization regardless of size 
－  Time slice 100 ms: nearly 5% of disk utilization with RR 

[ A:100 + B:100 + C:1  201 ms CPU  vs. 10 ms disk ] 

－  Time slice 1 ms: nearly 91% of disk utilization with RR 
[ 5x (A:1 + B:1) + C:1  11 ms CPU vs. 10 ms disk ]  

  What do we learn from this example? 
－  The right time slice (in this case shorter) can improve overall utilization 
－  CPU bound: benefits from having longer time slices (>100 ms) 
－  I/O bound: benefits from having shorter time slices (≤10 ms) 
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Scheduling 
  A variety of (contradicting) factors to consider 
－ treat similar tasks in a similar way  
－ no process should wait forever 
－ short response times (time request submitted - time response given ) 

－ maximize throughput 
－ maximum resource utilization (100%, but 40-90% normal) 

－ minimize overhead 
－ predictable access 
－ … 

  Several ways to achieve these goals, … 
…but which criteria is most important?  
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Scheduling 
  “Most reasonable” criteria depends on who you are 

－  Kernel 
•  Resource management 

  processor utilization, throughput, fairness 

－  User 
•  Interactivity 

  response time  
(Example: when playing a game, we will not accept waiting 10s each time we  
use the joystick) 

•  Predictability 
  identical performance every time 

(Example: when using the editor, we will not accept waiting 5s one time and 5ms 
another time to get echo) 

  “Most reasonable” criteria depends on environment 
－  Server vs. end-system 
－  Stationary vs. mobile 
－  … 
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Scheduling 
   “Most reasonable” criteria depends on target system 

－  Most/All types of systems 
•  fairness – giving each process a fair share 
•  balance – keeping all parts of the system busy 

－  Batch systems 
•  turnaround time – minimize time between submission and termination 
•  throughput – maximize number of jobs per hour 
•  (CPU utilization – keep CPU busy all the time) 

－  Interactive systems 
•  response time – respond to requests quickly 
•  proportionality – meet users’ expectations 

－  Real-time systems 
•  meet deadlines – avoid loosing data 
•  predictability – avoid quality degradation in multimedia systems 
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Scheduling   
  Scheduling algorithm classification: 
－  dynamic 

•  make scheduling decisions at run-time 
•  flexible to adapt 
•  considers only the actual task requests and execution time parameters 
•  large run-time overhead finding a schedule 

－  static 
•  make scheduling decisions at off-line (also called pre-run-time) 
•  generates a dispatching table for run-time dispatcher at compile time 
•  needs complete knowledge of the task before compiling 
•  small run-time overhead 

－  preemptive  
•  currently executing task may be interrupted (preempted) by higher priority processes 
•  preempted process continues later at the same state 
•  overhead of contexts switching 

－  non-preemptive 
•  running tasks will be allowed to finish its time-slot (higher priority processes must wait) 
•  reasonable for short tasks like sending a packet (used by disk and network cards) 
•  less frequent switches 
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Preemption  
  Tasks waits for processing 

  Scheduler assigns priorities 

  Task with highest priority will be scheduled first 

  Preempt current execution if  
－  a higher priority (more urgent) task arrives 

－  timeslice is consumed 

－  … 

  Real-time and best effort priorities 
－  real-time processes have higher priority  

(if exists, they will run) 

  To kinds of preemption: 
－  preemption points  

•  predictable overhead 
•  simplified scheduler accounting 

－  immediate preemption 
•  needed for hard real-time systems  
•  needs special timers and fast interrupt and context switch 

handling 

resource 

requests 

scheduler preemption 
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Preemption  
  RT vs NRT example:  

process 1 process 2 process 3 process 4 process N RT process … 

RT process 

request 

round-robin 

process 1 process 2 process 3 process 4 process N … 

RT process 

request 
priority, 
non-preemtive 

delay 

RT process 

delay 

process 1 process 2 process 3 process 4 process N … 

request 
priority, 
preemtive p 1 p 1 process 2 process 3 process 4 process N … 

RT process 

RT process p 1 process 2 process 3 process 4 process N … 

only delay of switching and interrupts 
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Many Algorithms Exist 
  First In First Out (FIFO) 
  Round-Robin (RR) 
  Shortest Job First 
  Shortest Time to Completion First  
  Shortest Remaining Time to Completion First  

(a.k.a. Shortest Remaining Time First) 
  Lottery 
  Fair Queuing 
  … 

  Earliest Deadline First (EDF) 
  Rate Monotonic (RM) 
  … 

  Most systems use some kind of priority scheduling 
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  Assign each process a priority 
  Run the process with highest priority in the ready queue first 

  Multiple queues 

  Advantage 
－  (Fairness) 
－  Different priorities according  

to importance 

  Disadvantage 
－  Users can hit keyboard frequently 
－  Starvation: so maybe use dynamic priorities? 

Priority Scheduling 
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Traditional scheduling in UNIX 
  Many versions  

  User processes have positive  
priorities, kernel negative 

  Schedule lowest priority first 
  If a process uses the whole time  

slice, it is put back at the end of  
the queue (RR) 

  Each second the priorities are  
recalculated: 
priority =  

 CPU_usage (average #ticks) 
+  nice (± 20) 
+  base (priority of last corresponding kernel process) 
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Scheduling in Windows 2000, XP, … 
  Preemptive kernel 
  Schedules threads individually 

  Time slices given in quantums 
－  3 quantums = 1 clock interval (length of interval may vary) 

－  defaults: 
•  Win2000 server:   36 quantums  

•  Win2000 workstation:  6 quantums (professional) 

－ may manually be increased between threads (1x, 2x, 4x, 6x) 

－  foreground quantum boost (add 0x, 1x, 2x):  
an active window can get longer time slices (assumed need for fast response)  
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Scheduling in Windows 2000, XP, … 

  32 priority levels:  
Round Robin (RR) within each level  

  Interactive and throughput-oriented:  
－  “Real time” – 16 system levels   

•  fixed priority 
•  may run forever 

－  Variable – 15 user levels 
•  priority may change: 

thread priority = process priority ± 2 
•  uses much  drops 
•  user interactions, I/O completions  increase 

－  Idle/zero-page thread – 1 system level 
•  runs whenever there are no other processes to run 
•  clears memory pages for memory manager 

31 

30 

...  

17 

16 

15 

14 

...  

2 

1 

0 

Real Time (system thread) 

Variable (user thread) 

Idle (system thread) 
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Scheduling in Windows 8 (…server 2008, 7) 
  Still 32 priority levels, with 6 classes - RR within each: 

－  REALTIME_PRIORITY_CLASS 
－  HIGH_PRIORITY_CLASS 
－  ABOVE_NORMAL_PRIORITY_CLASS 
－  NORMAL_PRIORITY_CLASS (default) 
－  BELOW_NORMAL_PRIORITY_CLASS 
－  IDLE_PRIORITY_CLASS 

➥  each class has 7 thread priorities levels with different base priorities 

  Dynamic priority (can be disabled): 
+  foreground 
+  window receives input (mouse, keyboard, timers, …) 
+  unblocks 
－  if increased, drop by one level every timeslice until back to default 

  Support for user mode scheduling (UMS) 
－  each application may schedule own threads 
－  application must implement a scheduler component 

31 

30 

...  

17 

16 

15 

14 

...  

2 

1 

0 

Real Time (system thread) 

Variable (user thread) 

Idle (system thread) 

http://msdn.microsoft.com/en-us/ 

library/windows/desktop/ 

ms681917(v=vs.85).aspx 
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Scheduling in Linux 
  Preemptive kernel 
  Threads and processes used to be equal,  

but Linux uses (from 2.6) thread scheduling 

  SCHED_FIFO 
－  may run forever, no timeslices 
－  may use it’s own scheduling algorithm 

  SCHED_RR 
－  each priority in RR 
－  timeslices of 10 ms (quantums) 

  SCHED_OTHER 
－  ordinary user processes 
－  uses “nice”-values: 1≤ priority≤40  
－  timeslices of 10 ms (quantums) 

  Threads with highest goodness are selected first: 
－  realtime (FIFO and RR): 

goodness = 1000 + priority 
－  timesharing (OTHER):  

goodness = (quantum > 0 ? quantum + priority : 0) 

  Quantums are reset when no ready  
process has quantums left (end of epoch): 
quantum = (quantum/2) + priority 

1 

2 

...  

99 

100 

1 

2 

...  

99 

100 

default (20) 

-20 

-19 

...  

18 

19 

SCHED_FIFO 

SCHED_RR 

SCHED_OTHER 

nice 



INF1060,  Pål Halvorsen University of Oslo 

Scheduling in Linux 
  The current kernels (v.2.6.23+) use the Completely Fair Scheduler (CFS) 
－  addresses unfairness in desktop and server workloads 

－  uses ns granularity, does not rely on jiffies or HZ details 

－  uses an extensible hierarchical scheduling classes 

•  SCHED_NORMAL – the CFS desktop scheduler – replace SCHED_OTHER 

•  SCHED_BATCH – similar to SCHED_OTHER, but assumes CPU intensive workloads 

•  SCHED_RR and SCHED_FIFO (SCHED_RT) 
  use 100 priorities   

－  no run-queues, a red-black tree-based timeline  
of future tasks based on virtual runtime 

－  does not directly use priorities, but instead uses them as a decay factor for the 
time a task is permitted to execute 

http://kerneltrap.org/node/8059 



INF1060,  Pål Halvorsen University of Oslo 

When to Invoke the Scheduler? 
  Process creation 

  Process termination 

  Process blocks 

  Interrupts occur 

  Clock interrupts in  
the case of preemptive  
systems 
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Future Chips: Something to think about!? 
  Future Chips:  

Intel’s Single-chip 
Cloud Computer 
(SCC) 

http://techresearch.intel.com/ProjectDetails.aspx?Id=1 

  What does 
introduction of such 
processors mean in 
terms of scheduling? 
－  many cores 
－  different memory 

access latencies 
－  different connectivity 
－  … 

P54C core 

L1 cache 

P54C core 

L1 cache message 
passing buffer 

L2 cache 

L2 cache 

mesh 
interface 

unit 

router 

memory 
controller 

memory 
controller 

memory 
controller 

memory 
controller 
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Future Chips: Something to think about!? 
  Future Chips: Intel’s Xeon Phi 

－  up to 61 cores 
－  8 memory controllers 
－  fully coherent  

L2 caches 
－  High Performance  

On-Die  
Bidirectional  
Interconnect 

－  … 

  What does such processors  
mean in terms of scheduling? 
－  many cores 
－  different memory access latencies 
－  different connectivity 
－  … 
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Summary 
  Processes are programs under execution 

  Scheduling performance criteria and goals are  
dependent on environment 

  The right timeslice can improve overall utilization 

  There exists several different algorithms targeted for various 
systems 

  Traditional OSes like Windows, UniX, Linux, ... usually use a 
priority-based algorithm 


