Introduction to Data Communication

Tor Skeie

Email: tskeie@ifi.uio.no

(based on slides from Kjell Åge Bringsrud and Carsten Griwodz)

Introduction

<u>Goal</u>

- Give an overview of the topic
- Approach
 - Descriptive
 - Use Internet as example

<u>Content</u>

- What is the Internet?
- What is a protocol?
- End systems
- Access network and physical media
- Core networks
- □ Throughput, delay, and loss
- Protocol layers, service models
- Backbones, NAP' er, ISP' er
- History

What is the Internet?

- Millions of interconnected devices: host computers, end systems
 - PCs, workstations, servers
 - PDAs, telephones, fridges ... which run

network applications

- Communication links
 - Fiber, copper, radio, satellite

Routers

 passing on packets of data through the network

What is the Internet?

- Internet: "network of networks"
 - Partly hierarchical
 - ISPs: Internet Service Providers
 - Public Internet versus private intranet

Protocols

- Control sending, receiving of messages
- E.g., TCP, IP, HTTP, FTP, PPP

What is the Internet from a service view?

Communication *infrastructure*

- Allows distributed applications:
- WWW, email, games, ecommerce, database, elections,
- More?
- Internet standards:
 - RFC: Request for comments, e.g. TCP is RFC 793
 - IETF: Internet Engineering Task Force

End systems

End systems

- Run application programs
- E.g., web browser, web server, email
- At "the edge" of the net

Client/server model

- Clients ask for, and get a service from the servers
- E.g. WWW client (browser)/ server; email client/server

Peer-to-peer model

- Interactions are symmetrical
- E.g. telephone conferences

What is a protocol?

Human protocols:

- "What time is it?"
- "I have a question"
- Formal phrases...
- ... are special "messages" that are sent, which lead to ...
- ... defined events or actions when the message is received

Network protocols:

- Machine instead of people
- All communication activity in the Internet is controlled by protocols

Protocols define formats, order of sending and receiving of messages, and the actions that the reception initiates.

What is a protocol?

A human protocol and a computer protocol:

What are protocol layers?

Several layers of communication

What are protocol layers?

Networks are complex

- Many parts:
 - Hardware, software
 - End systems, routers
 - Links of different kinds
 - Protocols
 - Applications

Question:

Is it possible to *organize* the structure of a network?

Or at least our discussion of networks?

Why layering?

Management of complex systems:

- Modularisation simplifies
 - Design
 - Maintenance
 - Updating of a system
- Explicit structure allows
 - Identification of the individual parts
 - Relations among them
- Clear structure: <u>layering</u>
 - Layered reference model
 - Goal: different implementation of one layer fit with all implementations of other layers

TCP/IP - protocol stack

application: supports network applications

- o ftp, smtp, http
- Your applications
- transport: data transfer from end system to end system
 - TCP, UDP
- network: finding the way through the network from machine to machine

O IP

- (data) link: data transfer between two neighbors in the network
 - ppp (point-to-point protocol), Ethernet
- physical: bits "on the wire"

C	application
	transport
	network
	link
	physical

OSI - model

- A standard for layering of communication protocols
 - Open Systems Interconnection
 - by the ISO International Standardization Institute
- Two additional layers to those of the Internet stack
- presentation: translates between different formats
 - XML, XDR
 - provides platform independence
- session: manages connection, control and disconnection of communication sessions
 - RTP

	application
	presentation
	application
	transport
t	network
	link
	physical

Layering: logical communication

Each layer:

- distributed
- "units" implement functionality of each layer in each node
- Units execute operations, and exchange messages with other units of the same layer

Layering: logical communication

E.g. transport

- Receive data from the application
- Add receiver address, reliability check, information to create a "datagram"
- Send datagram to the transport layer in the receiver node
- Wait for "ack" from the transport layer in the receiver node
- Analogy: post office

Layering: physical communication

Protocol layer and data

Each layer takes data from next higher layer

- Adds header information to create a new data unit (message, segment, frame, packet ...)
- Send the new data unit to next lower layer

A closer look at network structures

End systems

- applications and host computers
- Access network, physical medium
 - Communication links
- Core networks
 - Routers
 - Network of networks

Access network and physical media

How to connect end systems to edge routers?

- Home network
- Company network (schools, companies)
- Mobile access network

Keep in mind when choosing a technology:

- Bandwidth?
- Shared or dedicated medium?

Home network: point to point

- Dial-up via modem
 - Up to 56Kbps direct access to the router (at least in theory)
- ISDN: integrated services digital network
 - 128Kbps purely digital connection to the router
- □ <u>ADSL</u>: asymmetric digital subscriber line
 - Up to 5 Mbps *uplink* (home-torouter, ver. ADSL2++, in development)
 - Up to 52 Mbps *downlink* (router-tohome)

Home network: Broadband An example

HFC: hybrid fiber coax
 Asymmetrical: e.g. 25 Mbps

downlink, 5 Mbps uplink

- Network of copper cable and optical fiber connects homes to ISP routers
 - Shared access to router for several homes
 - Problems: congestion, dimensioning

Institutional access networks (LAN)

- Company/university local area network (LAN)
 connects end systems to the rest of the net
- **Ethernet:**
 - Shared or dedicated cable connects end systems and routers
 - 10 Mbps, 100Mbps, Gigabit Ethernet

Wireless access networks

- Shared wireless access networks connect end systems to routers
- Wireless LANs:
 - radio spectrum replaces cable
 - o E.g.
 - IEEE 802.11g 54 Mbps
 - IEEE 802.11h 100 Mbps
 - IEEE 802.11n 600Mbps
 - IEEE 802.11ac 1,3Gbps
- Wireless access over long distances
 - 3G/4G for example...

Physical medium

- Physical link: a sent bit propagates through the link
- Closed media:
 - Signals propagate in cable media (copper, fiber)

Open media:

 Signals propagate freely, e.g. radio.

Twisted Pair (TP)

- Two isolated copper cables
 - Category 3: traditional telephone cables, 10 Mbps Ethernet
 - Category 5 TP: 100Mbps Ethernet
 - Category 6 TP: 1Gpbs
 Ethernet

Physical medium: coax, fiber

Coaxial cable

- Wire (signal carrier) in a wire (shielding)
 - baseband: a single channel on a cable
 - broadband: multiple channels on a cable
- Bi-directional
- Typically used for 100Mbs Ethernet.

Fiber optic cable

- Optical fiber that carries light impulses
- □ High-speed transfer:
 - High-speed point-to-point transmission
- Low error rate
- Longer distances
 - 100Mbps, 1-100Gbps
 Ethernet

Physical media: radio

Radio

- Signal in electromagnetic spectrum
- No physical "cable"
- Bi-directional
- Effects of environment on the distribution:
 - Reflection
 - Obstruction by blocking objects
 - Interferences

Types of radio links

- microwaves
 - E.g. up to 45 Mbps
- U WLAN
 - 54Mbps, 600Mbps, 1,3Gbps
- wide-area
 - 3G, 14,4Mbps (in theory)

satellite

- Up to 50Mbps per channel (or several thinner channels)
- 270 ms end-to-end delay (limited by speed of light).

Core networks

- Graph of interconnected routers
- One fundamental question: how is data passed through the net?
 - Circuit switching
 - Packet switching
- Circuit switching
 - Dedicated line through the network
- Packet switching
 - Discrete *data units* are sent through the network

Core networks: Circuit Switching

- End-to-end resource reservation for a "session"
- Setup phase is required
- Dedicated resources (no sharing)
- Link bandwidth, router capacity
- Guaranteed throughput

Core networks: Circuit Switching

Historical:

- Analog telephone networks
- Network consists of resources
 - Cables
 - Switches with relays
- Establish a physical connection
 - Relays switch to connect cables physically
 - Create a circuit
 - Guaranteed resources
 - No difference between talking and silence

Modern:

- Networks consist of resources
 - Cables
 - Routers or switches
 - Network resources can be shared
- Establish a connection
 - Switches reserve part of available resource
- Division of link bandwidth into parts
 - Frequency division
 - Time division

Core networks: Packet Switching

Each end-to-end data stream is divided into packets

- Data streams share network resources
- Each packet uses the entire bandwidth of a link
- Resources are used as needed

Competition for resources:

- Combined resource need can exceed the available resources
- Congestion: packets are queued in front of "thin" links
- Store and forward: packets move one link at a time
 - Send over a link
 - Wait for your turn at the next link

Core networks: Packet switching

Packet switching versus circuit switching

Packet switching allows more users in the net!

- 10 Mbps link
- Each user
 - 1Mps when "active"
 - Active 10% of the time, at random times
- Circuit switching
 - o max 10 users
 - Loss probability: 0%
 - Waste: ~90% capacity
- Packet switching
 - >10 may be active concurrently!
 - Loss probability >0%
 - Waste: < 90% capacity

Packet switching versus circuit switching

Is packet switching always the best approach?

- □ Good for data with "bursty" behavior
 - Resource sharing
 - No "setup phase" required
- □ In a congested network: delay and packet loss
 - Protocols/mechanisms required for reliable traffic and congestion control
- How to achieve a behavior like that of circuit switching?
 - Bandwidth guarantees are required for audio/video applications
 - QoS concepts have to be used for that purpose!

Delay in packet switching networks

- Packet experiences delay on the way from sender to receiver
- four sources of delay in each hop.
- Node processing:
 - Determining the output link
 - address lookup
 - Checking for bit errors
- Queuing
 - Waiting for access to the output link
 - Depends on the congestion level of the router

Delay in packet switching networks

Transmission delay:

- R = link bandwidth (bps)
- L = packet size (bits)
- Time required to send a packet onto the link = L/R

Propagation delay:

- **d** = physical link length (m)
- s = propagation speed in the medium ($\sim 2x10^8$ m/sec)
- Propagation delay = d/s

More about queueing delays

- □ L= packet length (bits)
- a= average packet arrival rate traffic intensity = La/R

- **\Box** La/R ~ 0: average queuing delay is small
- □ La/R -> 1: queuing delay grows
- La/R > 1: more data is arriving at the link than it can handle → link goes into congestion (Average delay is infinite!)

Packet switched network: Routing

Goal: move packets from router to router between source and destination

• There are two methods to find the path of packets.

Datagram network:

- Destination address determines the next hop.
- Path can change during the sessions.
- Routers need no information about sessions.
- Analogy: ask for the way while you drive.

Virtual circuit network:

- Each packet has a "tag" (virtual circuit ID), which determines the next hop.
- Path is determined when connection is set up, and remains the same for the entire session.
- Routers need state information for each virtual circuit.

Datagram and Virtual Circuit Networks

Network layer: IP

<u>Datagram switching</u>

🗖 IP

- Internet Protocol
- Datagram service of the Internet
- RFC 791

IP offers:

- Addressing
- Routing
- Datagram service
 - Unreliable
 - Unordered
- IP networks can use virtual circuits
- □ IPv4: circuit is one hop
- □ IPv6: can have a tag

Connection-oriented service

- <u>Goal:</u> data transfer between end systems
- Start of communication
 - Handshaking
 - Initial preparation of data transfer
 - Hi!, hi! Is a human handshaking protocol
 - Creates a "state" in the two machines that communicate.
 - End systems know their communication partners

During communication

- Connection
- End system expects messages from connected end system
- End system knows when messages belong to the connection
- End of communication
 - Teardown
 - Bye! Bye! Is a human teardown protocol
 - New handshake required for re-establishing connection

Connectionless service

- <u>Goal</u>: data transfer between end systems
- As before!
- Start of communication
 - No connection setup
 - No preparation for data transfer
 - Programs must expect messages at all times

During communication

- No connection
- No state in the machines
- Senders don't know whether messages are expected
- Sender must identify itself in each message
- End of communication
 - No teardown
 - Just stop sending

Services over Switching Approaches

 Services requested Between end systems Connection-oriented service 		Connection -oriented service	Connection -less service
 Connectionless service Switching approaches 	Circuit switching	Fits well	Setup wasted
 From host to host Circuit switching Packet switching 	Packet switching	Additional work needed	Fits well

Transport layer: TCP

<u>Connection-oriented</u> <u>service</u>

TCP

- Transmission Control Protocol
- Connection-oriented service of the Internet
- RFC 793

TCP offers:

- Connections
 - Handshake, end-system state, teardown
- Reliable, ordered, streamoriented data transfer
 - Loss: acknowledgements and retransmissions
- Flow control:
 - Send not faster than receiver can receive
- **Congestion control:**
 - Send slower when the network is congested.

Transport layer: UDP

<u>Connectionless</u> <u>service</u>

UDP

- O User Datagram Protocol
- Connectionless service of the Internet
- RFC 768

UDP offers:

- No connections
 - Send immediately
- Unreliable, unordered, packetoriented data transfer
 - Loss: messages are simply lost
 - Messages arrive exactly as send
- No flow control
 - Send as fast as programs want to
- No congestion control
 - Ignore network problems

Transport layer: applications

<u>Applications that use</u> <u>TCP:</u>

- □ HTTP (WWW)
- FTP (file transfer)
- SMTP (email)
- Telnet (remote login)

<u>Applications that use</u> <u>UDP:</u>

- Streaming media
- Video conferencing
- Internet telephony

NTP (network time protocol)

Internet structure: network of networks

- More or less hierarchical
- National/international "backbone providers" (NBPs)
 - These interconnect either privately, or at so-called Network Access Point (NAPs)

regional ISPs

- Connect to NBPs
- Iocal ISPs, companies
 - Connect to regional ISPs

National Backbone Provider

example BBN/GTE US backbone network

1961-1972: Early packet-switching concepts

- 1961: Kleinrock queueing theory proves that packet switching is effective
- 1964: Baran packet switching in military networks
- 1967: ARPAnet starts
 Advanced Reearch Projects
 Agency
- 1969: first ARPAnet node operational

1972:

- ARPAnet publically demonstrated
- NCP (Network Control Protocol) first machinemachine protocol
- first e-mail program
- ARPAnet has 15 nodes

1972-1980: Internetworking – new, proprietary networks

- 1970: ALOHAnet satellite network on Hawaii
- 1973: Metcalfe's doctor thesis proposes Ethernet
- 1974: Cerf and Kahn architecture to the interconnection of many networks
- End of the 70s: proprietary architectures: DECnet, SNA, XNA
- □ 1979: ARPAnet has 200 nodes

Cerf og Kahn' s internetworking principles:

- Minimalism, autonomy no internal network changes necessary to interconnect networks
- best effort service model
- Statekess routers
- Decentralized control

This defines mostly today's Internet architecture

1980-1990: new protocols – the Net grows

- 1983: first use of TCP/ IP
- 1982: e-mail protocol SMTP defined
- 1983: DNS defined to translate a name into an IP address
- 1985: ftp protocol defined
- 1988: TCP congestion control

- New national networks:
 Csnet, BITnet, NSFnet, Minitel
- 100,000 machine
 connected to the Net.

1990's: commercialization, WWW

Early 1990s: WWW

- hypertext [Bush 1945, Nelson 1960's]
- HTML, http: Berners-Lee
- 1994: Mosaic, later Netscape
- late 1990s:
 commercialization of the www

Late 1990s:

- ca. 50 million machines on the Internet
- □ ca. 100 million+ users
- backbone links operate at 1 Gbps

Summary

Covering a large area!

- Overview over the Internet
- □ What is a protocol?
- Network components
- Throughput, loss, delay
- Layering and service models
- backbone, NAPer, ISPer

Hopefully you have now:

- An impression and overview of the area
- More depth and details in the following lessons, and in later courses