
Operating Systems:

 Storage: Disks & File Systems

Wednesday 8 October 14

INF1060:
Introduction to Operating Systems and Data Communication

INF1060, Pål Halvorsen University of Oslo

Overview

§  (Mechanical) Disks

§ Disk scheduling

§ Memory/buffer caching

§ File systems

§ Some trends…

INF1060, Pål Halvorsen University of Oslo

Disks

§  Disks ...

−  are used to have a persistent system

J  are cheaper compared to main memory

J  have more capacity

L  are orders of magnitude slower

§  Two resources of importance

−  storage space

−  I/O bandwidth

§  We must look closer on how to manage disks, because...

−  ...there is a large speed-mismatch (ms vs. ns) compared to main memory

−  ...disk I/O is often the main performance bottleneck

cache(s)

main memory

tertiary storage
(tapes)

secondary storage
 (disks)

INF1060, Pål Halvorsen University of Oslo

Mechanics of Disks

INF1060, Pål Halvorsen University of Oslo

Mechanics of Disks

Platters
circular platters covered with
magnetic material to provide
nonvolatile storage of bits

Tracks
concentric circles
on a single platter

Sectors
segment of the track circle –
usually each contains 512 bytes –
separated by non-magnetic gaps.
The gaps are often used to identify
beginning of a sector

Cylinders
corresponding tracks on the different
platters are said to form a cylinder

Spindle
of which the platters
rotate around

Disk heads
read or alter the
magnetism (bits) passing
under it. The heads are
attached to an arm
enabling it to move
across the platter surface

INF1060, Pål Halvorsen University of Oslo

Disk Capacity
§  The size (storage space) of the disk is dependent on

−  the number of platters
− whether the platters use one or both sides
−  number of tracks per surface
−  (average) number of sectors per track
−  number of bytes per sector

§  Example (Cheetah X15.1):
−  4 platters using both sides: 8 surfaces
−  18497 tracks per surface
−  617 sectors per track (average)
−  512 bytes per sector
−  Total capacity = 8 x 18497 x 617 x 512 ≈ 4.6 x 1010 = 42.8 GB
−  Formatted capacity = 36.7 GB

Note:
there is a difference between
formatted and total capacity. Some
of the capacity is used for storing
checksums, spare tracks, etc.

INF1060, Pål Halvorsen University of Oslo

Disk Access Time

§  How do we retrieve data from disk?
−  position head over the cylinder (track) on which the block (consisting of

one or more sectors) are located

−  read or write the data block as the sectors are moved under the head
when the platters rotate

§  The time between the moment issuing a disk request and the
time the block is resident in memory is called disk latency or
disk access time

INF1060, Pål Halvorsen University of Oslo

 + Rotational delay

 + Transfer time

 Seek time

Disk access time =

 + Other delays

Disk platter

Disk arm

Disk head

block x
in memory

I want
block X

Disk Access Time

INF1060, Pål Halvorsen University of Oslo

Disk Access Time: Seek Time

§  Seek time is the time to position the head
−  some time is used for actually moving the head –

roughly proportional to the number of cylinders traveled

−  the heads require a minimum amount of time to start and stop moving
the head

−  Time to move head:

~ 10x - 20x

x

1 N
Cylinders Traveled

Time

“Typical” average:
 10 ms → 40 ms (old)
 7.4 ms (Barracuda 180)
 5.7 ms (Cheetah 36)
 3.6 ms (Cheetah X15)

€

α + β n number of tracks
seek time constant
fixed overhead

INF1060, Pål Halvorsen University of Oslo

Disk Access Time: Rotational Delay
§  Time for the disk platters to rotate so the first of the required

sectors are under the disk head

head here

block I want

Average delay is 1/2 revolution

“Typical” average:

 8.33 ms (3.600 RPM)
 5.56 ms (5.400 RPM)

 4.17 ms (7.200 RPM)
 3.00 ms (10.000 RPM)
 2.00 ms (15.000 RPM)

INF1060, Pål Halvorsen University of Oslo

Disk Access Time: Transfer Time

§  Time for data to be read by the disk head, i.e., time it takes the
sectors of the requested block to rotate under the head

§  Transfer time is dependent on data density and rotation speed

§  Transfer rate =

§  Transfer time = amount of data to read / transfer rate

§  Transfer rate example
−  Barracuda 180:

406 KB per track x 7.200 RPM ≈ 47.58 MB/s
−  Cheetah X15:

306 KB per track x 15.000 RPM ≈ 77.15 MB/s

§  If we have to change track, time must also be added for
moving the head

amount of data per track
time per rotation

Note:
one might achieve these
transfer rates reading
continuously on disk,
but time must be added
for seeks, etc.

INF1060, Pål Halvorsen University of Oslo

Disk Access Time: Other Delays

§  There are several other factors which might introduce
additional delays:
− CPU time to issue and process I/O
− contention for controller
− contention for bus
− contention for memory
− verifying block correctness with checksums (retransmissions)
− waiting in scheduling queue
− ...

§  Typical values: “0”
(maybe except from waiting in the queue)

INF1060, Pål Halvorsen University of Oslo

Disk Specifications
§  Some existing (Seagate) disks:

Note 1:
disk manufacturers usually
denote GB as 109 whereas
computer quantities often are
powers of 2, i.e., GB is 230

Note 3:
there is usually a
trade off between
speed and capacity

Note 2:
there is a difference between internal and formatted transfer rate. Internal
is only between platter. Formatted is after the signals interfere with the
electronics (cabling loss, interference, retransmissions, checksums, etc.)

Barracuda 180 Cheetah 36 Cheetah X15.3

Capacity (GB) 181.6 36.4 73.4

Spindle speed (RPM) 7200 10.000 15.000

#cylinders 24.247 9.772 18.479

average seek time (ms) 7.4 5.7 3.6

min (track-to-track) seek (ms) 0.8 0.6 0.2

max (full stroke) seek (ms) 16 12 7

average latency (ms) 4.17 3 2

internal transfer rate (Mbps) 282 – 508 520 – 682 609 – 891

disk buffer cache 16 MB 4 MB 8 MB

INF1060, Pål Halvorsen University of Oslo

Writing and Modifying Blocks
§  A write operation is analogous to read operations

− must potentially add time for block allocation

−  a complication occurs if the write operation has to be verified –
must usually wait another rotation and then read the block again

−  Total write time ≈ read time (+ time for one rotation)

§  A modification operation is similar to read and write operations

−  cannot modify a block directly:

•  read block into main memory

•  modify the block

•  write new content back to disk

−  Total modify time ≈ read time (+ time to modify) + write time

INF1060, Pål Halvorsen University of Oslo

Disk Controllers

§  To manage the different parts of the disk, we use a
disk controller, which is a small processor capable of:

− controlling the actuator moving the head to the desired track

− selecting which head (platter and surface) to use

− knowing when the right sector is under the head

− transferring data between main memory and disk

INF1060, Pål Halvorsen University of Oslo

Efficient Secondary Storage Usage
§  Must take into account the use of secondary storage

−  there are large gaps in access times between disks and memory, i.e.,
a disk access will probably dominate the total execution time

−  there may be huge performance improvements if we reduce the number
of disk accesses

−  a “slow” algorithm with few disk accesses will probably outperform a
“fast” algorithm with many disk accesses

§  Several ways to optimize
−  block size - 4 KB
−  file management / data placement - various
−  disk scheduling - SCAN derivate
− multiple disks - a specific RAID level
−  prefetching - read-ahead
− memory caching / replacement algorithms - LRU variant
− …

Data Placement

INF1060, Pål Halvorsen University of Oslo

Data Placement on Disk
§  Interleaved placement tries to store blocks from a file with a

fixed number of other blocks in-between each block

− minimal disk arm movement reading the files A, B and C

(starting at the same time)

−  fine for predictable workloads reading multiple files

−  no gain if we have unpredictable disk accesses

§  Non-interleaved (or even random) placement can be used for
highly unpredictable workloads

file A
file B

file C

INF1060, Pål Halvorsen University of Oslo

Data Placement on Disk

§  Contiguous placement stores disk blocks contiguously on disk

− minimal disk arm movement reading the whole file (no intra-file seeks)

−  pros/cons

J  head must not move between read operations - no seeks / rotational delays
J  can approach theoretical transfer rate
L  but usually we read other files as well (giving possible large inter-file seeks)

−  real advantage
•  whatever amount to read, at most track-to-track seeks are performed within

one request

−  no inter-operation gain if we have unpredictable disk accesses

file A file B file C

Disk Scheduling

INF1060, Pål Halvorsen University of Oslo

Disk Scheduling

§  How to most efficiently fetch the parcels I want?

INF1060, Pål Halvorsen University of Oslo

Disk Scheduling
§  Seek time is the dominant factor of the total disk I/O time

§  IDEA: Let the operating system or disk controller choose which request
to serve next depending on the head’s current position and
requested block’s position on disk (disk scheduling)

§  Note that disk scheduling ≠ CPU scheduling
−  a mechanical device – hard to determine (accurate) access times
−  disk accesses can/should not be preempted – run until they finish

§  General goals
−  short response time
−  high overall throughput
−  fairness (equal probability for all blocks to be accessed in the same time)

§  Tradeoff: seek and rotational delay vs. maximum response time

INF1060, Pål Halvorsen University of Oslo

Disk Scheduling

§  Several traditional algorithms
− First-Come-First-Serve (FCFS)
− Shortest Seek Time First (SSTF)
− SCAN (and variations)
− Look (and variations)
− …

§  A LOT of different algorithms exist depending on
expected access pattern

INF1060, Pål Halvorsen University of Oslo

First–Come–First–Serve (FCFS)
FCFS (FIFO) serves the first arriving request first:
§  Long seeks
§  “Short” response time for all

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival, denoted by cylinder number):

14 2 7 21 8 24

scheduling
queue

24

8

21

7

2

14

12

INF1060, Pål Halvorsen University of Oslo

Shortest Seek Time First (SSTF)
SSTF serves closest request first:
§  short seek times
§  longer maximum response times – may even lead to starvation

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24 8 21 7 2 14 12

first in the queue,
served last

INF1060, Pål Halvorsen University of Oslo

SCAN
SCAN (elevator) moves head edge to edge and serves requests on the way:
§  bi-directional
§  compromise between response time and seek time optimizations

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24 8 21 7 2 14 12

INF1060, Pål Halvorsen University of Oslo

SCAN vs. FCFS

§  Disk scheduling
makes a difference!

§  In this case, we see
that SCAN requires
much less head
movement
compared to FCFS

−  here 37 vs. 75 tracks

−  imagine having
•  20.000++ tracks

•  many users

•  many files

•  …

cylinder number
1 5 10 15 20 25

tim
e

tim
e

12 incoming requests (in order of arrival): 14 2 7 21 8 24

FCFS

SCAN

INF1060, Pål Halvorsen University of Oslo

C–SCAN
Circular-SCAN moves head from edge to edge
§  optimization of SCAN
§  serves requests on one way – uni-directional
§  improves response time (fairness)

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24 8 21 7 2 14 12

INF1060, Pål Halvorsen University of Oslo

SCAN vs. C–SCAN

§  Why is C-SCAN in average better in reality than SCAN when
both service the same number of requests in two passes?
− modern disks must accelerate (speed up and

down) when seeking
−  head movement formula:

SCAN C-SCAN

bi-directional uni-directional

requests: n
avg. dist: 2x
total cost:

requests: n
avg. dist: x
total cost:

cylinders traveled

tim
e

nβα + number of cylinders
seek time constant
fixed overhead

€

n × 2x = (n × 2) × x xnnxnxn ×+=×+×)(

€

n × 2 > n + n
if n is large:

INF1060, Pål Halvorsen University of Oslo

LOOK and C–LOOK
LOOK (C-LOOK) is a variation of SCAN (C-SCAN):
§  same schedule as SCAN
§  does not run to the edges
§  stops and returns at outer- and innermost request
§  increased efficiency
§  SCAN vs. LOOK example:

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24

8

21

7

2

14

12

INF1060, Pål Halvorsen University of Oslo

V–SCAN(R)
§  V-SCAN(R) combines SCAN (or LOOK) and SSTF

−  define an R-sized unidirectional SCAN window, i.e., C-SCAN, and use SSTF
outside the window

−  Example: V-SCAN(0.6)
•  makes a C-SCAN window over 60 % of the cylinders
•  uses SSTF for requests outside the window

−  V-SCAN(0.0) equivalent with SSTF
−  V-SCAN(1.0) equivalent with C-SCAN

−  V-SCAN(0.2) is supposed to be an appropriate configuration

cylinder number
1 5 10 15 20 25

INF1060, Pål Halvorsen University of Oslo

Modern Disk Scheduling
§  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

§  … but, new disks are more complex
−  hide their true layout, e.g.,

•  only logical block numbers
•  different number of surfaces, cylinders, sectors, etc.

OS view real view

INF1060, Pål Halvorsen University of Oslo

Modern Disk Scheduling
§  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

§  … but, new disks are more complex
−  hide their true layout
−  transparently move blocks to spare cylinders

•  e.g., due to bad disk blocks

OS view real view

INF1060, Pål Halvorsen University of Oslo

§  Constant angular
velocity (CAV) disks
−  constant rotation speed
−  equal amount of data in

each track
ð  thus, constant

transfer time

Modern Disk Scheduling

OS view real view

§  Disk used to be simple devices and disk scheduling used to be
performed by OS (file system or device driver) only…

§  … but, new disks are more complex
−  hide their true layout
−  transparently move blocks to spare cylinders
−  have different zones

§  Zoned CAV disks
−  constant rotation speed
−  zones are ranges of tracks
−  typical few zones
−  the different zones have

different amount of data, i.e.,
more better on outer tracks

ð  thus, variable transfer time

Z
o

n
e

C
yl

in
d

er
s

p
er

 Z
o

n
e

S
ec

to
rs

p

er
 T

ra
ck

Z
o

n
e

T
ra

n
sf

er

R
at

e
(M

B
p

s)

S
ec

to
rs

p

er
 Z

o
n

e

E
ff

ic
ie

n
cy

Fo
rm

at
te

d

C
ap

ac
it

y
(M

B
)

1 3544 672 890,98 19014912 77,2% 9735,635

2 3382 652 878,43 17604000 76,0% 9013,248

3 3079 624 835,76 15340416 76,5% 7854,293

4 2939 595 801,88 13961080 76,0% 7148,073

5 2805 576 755,29 12897792 78,1% 6603,669

6 2676 537 728,47 11474616 75,5% 5875,003

7 2554 512 687,05 10440704 76,3% 5345,641

8 2437 480 649,41 9338880 75,7% 4781,506

9 2325 466 632,47 8648960 75,5% 4428,268

10 2342 438 596,07 8188848 75,3% 4192,690

Seagate X15.3:

INF1060, Pål Halvorsen University of Oslo

§  Constant angular
velocity (CAV) disks
−  constant rotation speed
−  equal amount of data in

each track
ð  thus, constant

transfer time

Modern Disk Scheduling

OS view real view

§  Disk used to be simple devices and disk scheduling used to be
performed by OS (file system or device driver) only…

§  … but, new disks are more complex
−  hide their true layout
−  transparently move blocks to spare cylinders
−  have different zones

§  Zoned CAV disks
−  constant rotation speed
−  zones are ranges of tracks
−  typical few zones
−  the different zones have

different amount of data, i.e.,
more better on outer tracks

ð  thus, variable transfer time

INF1060, Pål Halvorsen University of Oslo

Modern Disk Scheduling
§  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

§  … but, new disks are more complex
−  hide their true layout
−  transparently move blocks to spare cylinders
−  have different zones
−  head accelerates – most algorithms assume linear movement overhead

~ 10x - 20x

x

1 N
Cylinders Traveled

Time

INF1060, Pål Halvorsen University of Oslo

Modern Disk Scheduling
§  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

§  … but, new disks are more complex
−  hide their true layout
−  transparently move blocks to spare cylinders
−  have different zones
−  head accelerates – most algorithms assume linear movement overhead
−  on device buffer caches may use read-ahead prefetching

disk
buffer disk

INF1060, Pål Halvorsen University of Oslo

Modern Disk Scheduling
§  Disk used to be simple devices and disk scheduling used to be

performed by OS (file system or device driver) only…

§  … but, new disks are more complex
−  hide their true layout
−  transparently move blocks to spare cylinders
−  have different zones
−  head accelerates – most algorithms assume linear movement overhead
−  on device buffer caches may use read-ahead prefetching
ð “smart” with build in low-level scheduler (usually SCAN-derivate)
ð we cannot fully control the device (black box)

§  OS could (should?) focus on high level scheduling only!??

INF1060, Pål Halvorsen University of Oslo

Schedulers today (Linux)?
§  Elevator – SCAN

§  NOOP

−  FCFS with request merging

§  Deadline I/O
−  C-SCAN based
−  3 queues: 1 sorted (elevator) queue, and 2 deadline queues (one for read and one for write)

§  Anticipatory
−  same queues as in Deadline I/O
−  delays decisions to be able to merge more requests

(e.g., a streaming scenario)

§  Completely Fair Queuing (CFQ)
−  1 queue per process (periodic access, but period length depends on load)
−  gives time slices and ordering according to priority level

(real-time, best-effort, idle)
−  work-conserving

[diamant] ~ > more /sys/block/sda/queue/scheduler !
noop anticipatory deadline [cfq] !

INF1060, Pål Halvorsen University of Oslo

Cooperative user-kernel space scheduling
§  Some times the kernel does not have enough

information to make an efficient schedule
Ä File tree traversals
−  processing one file after another
−  tar, zip, …
−  recursive copy (cp -r)
−  search (find)
−  …

§  Only application knows
access pattern
−  use ioctl FIEMAP (FIBMAP)

to retrieve extent locations
−  sort in user space
−  send I/O request according to

sorted list

ð GNU/BSD Tar vs. QTAR

INF1060, Pål Halvorsen University of Oslo

Cooperative user-kernel space scheduling
§  Some times the kernel does not have enough

information to make an efficient schedule
Ä File tree traversals

−  processing one file after another
−  tar, zip, …
−  recursive copy (cp -r)
−  search (find)
−  …

§  Only application knows
access pattern
−  use ioctl FIEMAP (FIBMAP)

to retrieve extent locations
−  sort in user space
−  send I/O request according to

sorted list

ð GNU/BSD Tar vs. QTAR

INF1060, Pål Halvorsen University of Oslo

Cooperative user-kernel space scheduling
§  Some times the kernel does not have enough

information to make an efficient schedule
Ä File tree traversals

−  processing one file after another
−  tar, zip, …
−  recursive copy (cp -r)
−  search (find)
−  …

§  Only application knows
access pattern
−  use ioctl FIEMAP (FIBMAP)

to retrieve extent locations
−  sort in user space
−  send I/O request according to

sorted list

ð GNU/BSD Tar vs. QTAR

Memory Caching

INF1060, Pål Halvorsen University of Oslo

Pentium 4
Processor

registers

cache(s)

I/O
controller

hub

memory
controller

hub

RDRAM

RDRAM

RDRAM

RDRAM

PCI slots

PCI slots

PCI slots disk

file system

application

file system communication
system

application

disk network card

Data Path (Intel Hub Architecture)

INF1060, Pål Halvorsen University of Oslo

Buffer Caching

communication
system

application

disk network card

expensive

file system

cache

caching possible

How do we manage a cache?
ü  how much memory to use?
ü  how much data to prefetch?
ü  which data item to replace?
ü  how to do lookups quickly?
ü  …

INF1060, Pål Halvorsen University of Oslo

Buffer Caching: Windows XP
§  An I/O manager performs caching

−  centralized facility to all components
(not only file data)

§  I/O requests processing:
process

file system
drivers cache

manager

disk
drivers

virtual memory
manager (VMM) I/O

manager

Kernel

1.  I/O request from process
2.  I/O manager forwards to cache manager

q  in cache:
3.  cache manager locates and copies data

to process buffer via VMM
4.  VMM notifies process

q  on disk:
3.  cache manager generates a page fault
4.  VMM makes a non-cached service request
5.  I/O manager makes request to file system
6.  file system forwards to disk
7.  disk finds data
8.  reads into cache
9.  cache manager copies data to process buffer via VMM
10.  VMM notifies process

INF1060, Pål Halvorsen University of Oslo

Buffer Caching: Linux / Unix

Kernel

Process

virtual file
system

Linux ext2fs HFS
(Macintosh) FAT32

(Windows)

buffers

disk
drivers

§  A file system performs caching
−  caches disk data (blocks) only
− may hint on caching decisions
−  prefetching

§  I/O requests processing:
1.  I/O request from process

2.  virtual file system forwards to local file system

3.  local file system finds requested block number

4.  requests block from buffer cache

5.  data located…

q  … in cache:

a.  return buffer memory address

q  … on disk:

a.  make request to disk driver

b.  data is found on disk and transferred to buffer

c.  return buffer memory address

6.  file system copies data to process buffer

7.  process is notified

INF1060, Pål Halvorsen University of Oslo

Buffer Caching Structure

Many different algorithms for replacement,
similar to page replacement…

File Systems

INF1060, Pål Halvorsen University of Oslo

Files??

§  A file is a collection of data – often for a specific
purpose
− unstructured files, e.g., Unix and Windows
− structured files, e.g., early MacOS (to some extent) and MVS

§  In this course, we consider unstructured files
− for the operating system, a file is only a sequence of bytes
− it is up to the application/user to interpret the meaning of the

bytes
➥  simpler file systems

INF1060, Pål Halvorsen University of Oslo

File Systems

§  File systems organize data in files and manage access
regardless of device type, e.g.:

− storage management – allocating space for files on
secondary storage

− file management – providing mechanisms for files to be
stored, referenced, shared, secured, …

•  file integrity mechanisms – ensuring that information is not corrupted,
intended content only

•  access methods – provide methods to access stored data

INF1060, Pål Halvorsen University of Oslo

Organizing Files - Directories

§  A system usually has a large number of different files

§  To organize and quickly locate files, file systems use
directories
− contain no data itself
− file containing name and locations of other files

− several types

•  single-level (flat) directory structure
•  hierarchical directory structure

INF1060, Pål Halvorsen University of Oslo

Single-level Directory Systems

§  CP/M
− Microcomputers
− Single user system

§  VM
− Host computers
− “Minidisks”: one partition per user

Root directory"

Four files"

INF1060, Pål Halvorsen University of Oslo

Hierarchical Directory Systems
§  Tree structure

−  nodes = directories
root node = root directory

−  leaves = files

§  Directories
−  stored on disk
−  attributes just like files

§  To access a file
− must (often) test all directories in path for

•  existence
•  being a directory
•  permissions

−  similar tests on the file itself

/

/

INF1060, Pål Halvorsen University of Oslo

Hierarchical Directory Systems
§ Windows: one tree per partition or device

\"

Device D"

Complete filename example:"
C:\WinNT\EXPLORER.EXE"

\"

Device C"

WINNT"

EXPLORER.EXE"

INF1060, Pål Halvorsen University of Oslo

Hierarchical Directory Systems

§  Unix: single acyclic graph
spanning several devices

/"

cdrom"

Complete filename example:"
/cdrom/doc/Howto"

/"

doc"

Howto"

INF1060, Pål Halvorsen University of Oslo

File & Directory Operations
§  File:

−  create
−  delete
−  open
−  close
−  read
− write
−  append
−  seek
−  get/set attributes
−  rename
−  link
−  unlink
− …

§  Directory:
−  create
−  delete
−  opendir
−  closedir
−  readdir
−  rename
−  link
−  unlink
− …

INF1060, Pål Halvorsen University of Oslo

Example: open(), read() and close()

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

 int fd, n;
 char buffer[BUFSIZE];
 char *buf = buffer;

 if ((fd = open(“my.file” , O_RDONLY , 0)) == -1) {
 printf(“Cannot open my.file!\n”);
 exit(1); /* EXIT_FAILURE */
 }

 while ((n = read(fd, buf, BUFSIZE) > 0) {
 <<USE DATA IN BUFFER>>
 }

 close(fd);

 exit(0); /* EXIT_SUCCESS */

}

INF1060, Pål Halvorsen University of Oslo

Open
O

p
er

at
in

g
 S

ys
te

m

open(name,oflags,mode)

sys_open() à vn_open():
1.  Check if valid call

2.  Allocate file descriptor

3.  If file exists, open for read (remember O_RDONLY).

Must get directory inode. May require disk I/O.

4.  Set access rights, flags and pointer to vnode

5.  Return index to file descriptor table

fd

system call handling as described earlier

control block

control block

user
kernel

 fd

control block

INF1060, Pål Halvorsen University of Oslo

Example: open(), read() and close()

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

 int fd, n;
 char buffer[BUFSIZE];
 char *buf = buffer;

 if ((fd = open(“my.file” , O_RDONLY , 0)) == -1) {
 printf(“Cannot open my.file!\n”);
 exit(1); /* EXIT_FAILURE */
 }

 while ((n = read(fd, buf, BUFSIZE) > 0) {
 <<USE DATA IN BUFFER>>
 }

 close(fd);

 exit(0); /* EXIT_SUCCESS */

}

INF1060, Pål Halvorsen University of Oslo

Read
O

p
er

at
in

g
 S

ys
te

m

buffer read(fd, *buf, len)

sys_read() à dofileread() à (*fp_read==vn_read)():
1.  Check if valid call and mark file as used

2.  Use file descriptor as index in file table

to find corresponding file pointer

3.  Use data pointer in file structure to find vnode

4.  Find current offset in file

5.  Call local file system
VOP_READ(vp,len,offset,..)

system call handling as described earlier

INF1060, Pål Halvorsen University of Oslo

Read
O

p
er

at
in

g
 S

ys
te

m

VOP_READ(...) is a pointer to a read function in the
corresponding file system, e.g., Fast File System (FFS)

READ():

1.  Find corresponding inode

2.  Check if valid call: len + offset ≤ file size

3.  Loop and find corresponding blocks

•  find logical blocks from inode, offset, length

•  do block I/O, fill buffer structure

e.g., bread(...) à bio_doread(...) à getblk()

•  return and copy block to user

VOP_READ(vp,len,offset,..)

getblk(vp,blkno,size,...)

INF1060, Pål Halvorsen University of Oslo

Read
O

p
er

at
in

g
 S

ys
te

m

A B C D E F G H I J K L

M

getblk(vp,blkno,size,...)

1.  Search for block in buffer cache, return if found
(hash vp and blkno and follow linked hash list)

2.  Get a new buffer (LRU, age)

3.  Call disk driver - sleep or do something else

4.  Reorganize LRU chain and return buffer

VOP_STRATEGY(bp)

INF1060, Pål Halvorsen University of Oslo

O
p

er
at

in
g

 S
ys

te
m

VOP_STRATEGY(bp)

VOP_STRATEGY(...) is a pointer to the corresponding
driver depending on the hardware,

e.g., SCSI - sdstrategy(...) à sdstart(...)

1.  Check buffer parameters, size, blocks, etc.

2.  Convert to raw block numbers

3.  Sort requests according to SCAN - disksort_blkno(...)

4.  Start device and send request

Read

INF1060, Pål Halvorsen University of Oslo

file attributes

...

data pointer

data pointer

data pointer

data pointer

data pointer

...

... O
p

er
at

in
g

 S
ys

te
m

M

Read

INF1060, Pål Halvorsen University of Oslo

Read
O

p
er

at
in

g
 S

ys
te

m

A B C D E F G H I J K L

1.  Search for block in buffer cache, return if found
(hash vp and blkno and follow linked hash list)

2.  Get a new buffer (LRU, age)

3.  Call disk driver - sleep or do something else

4.  Reorganize LRU chain and return buffer M

M

Interrupt to notify end of disk IO
Kernel may awaken sleeping process

M

INF1060, Pål Halvorsen University of Oslo

Read
O

p
er

at
in

g
 S

ys
te

m

READ():
1.  Find corresponding inode

2.  Check if valid call - file size vs. len + offset

3.  Loop and find corresponding blocks

•  find logical blocks from inode, offset, length

•  do block I/O,

e.g., bread(...) à bio_doread(...) à getblk()

•  return and copy block to user

buffer

M

INF1060, Pål Halvorsen University of Oslo

Example: open(), read() and close()

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

 int fd, n;
 char buffer[BUFSIZE];
 char *buf = buffer;

 if ((fd = open(“my.file” , O_RDONLY , 0)) == -1) {
 printf(“Cannot open my.file!\n”);
 exit(1); /* EXIT_FAILURE */
 }

 while ((n = read(fd, buf, BUFSIZE) > 0) {
 <<USE DATA IN BUFFER>>
 }

 close(fd);

 exit(0); /* EXIT_SUCCESS */

}

INF1060, Pål Halvorsen University of Oslo

file attributes

...

data pointer

data pointer

data pointer

data pointer

data pointer

...

...

Management of File Blocks

INF1060, Pål Halvorsen University of Oslo

Management of File Blocks

§  Many files consist of several blocks
− relate blocks to files
− how to locate a given block
− maintain order of blocks

§  Approaches
− chaining in the media
− chaining in a map
− table of pointers
− extent-based allocation

INF1060, Pål Halvorsen University of Oslo

Chaining in the Media

§  Metadata points to chain of used file blocks
§  Free blocks may also be chained

☺  nice if you only read sequentially from the start
D  expensive to search (random access)
D  must read block by block

Metadata"

File blocks"

INF1060, Pål Halvorsen University of Oslo

Chaining in a Map

Metadata" File blocks"Map"

INF1060, Pål Halvorsen University of Oslo

FAT Example
§  FAT: File Allocation Table

§  Versions FAT12, FAT16, FAT32

−  number indicates number of bits used to identify blocks in partition (212,216,232)

−  FAT12: Block sizes 512 bytes – 8 KB: max 32 MB partition size

−  FAT16: Block sizes 512 bytes – 64 KB: max 4 GB partition size

−  FAT32: Block sizes 512 bytes – 64 KB: max 2 TB partition size

Boot"
sector" FAT1" FAT2"

(backup)"
Root"

directory" Other directories and files"
…"

0000"
0003"
0004"
FFFF"
0006"
0008"
FFFF"
FFFF"
0000"

…"

File1" File1" File1"empty" File2"File2"

File2"File3" empty"empty" empty" empty"

empty"empty" empty" empty" empty" empty"

0000!
0001!
0002!
0003!
0004!
0005!
0006!
0007!
0008!
0009!

INF1060, Pål Halvorsen University of Oslo

Table of Pointers

Metadata" File blocks"Table of pointers"

C  good random and sequential access

C  main structure small, extra blocks if needed

D  uses one indirect block regardless of size

D  can be too small

INF1060, Pål Halvorsen University of Oslo

Unix/Linux Example: FFS, UFS, …

mode"
owner"

…"
Direct block 0"
Direct block 1"

…"
Direct block 10"
Direct block 11"
Single indirect"
Double indirect"
Triple indirect"

Data block"Data block"

Data block"Data block"

index"

Data block"Data block"

Data block"Data block"

index"

index"

index"index"

index"index"

Data block"Data block"

Data block"Data block"

index"
index" Data block"

inode" Flexible block size"
e.g. 4KB"

ca. 1000 entries"
per index block"

Data block"

INF1060, Pål Halvorsen University of Oslo

Extent-based Allocation

Metadata" File blocks"List of extents"

1"

3"

2"

C  faster block allocation (many at a time)

C  higher performance reading large data elements

C  less file system meta data

C  reduce number of lookups reading a file

ü  Observation:
 indirect block reads introduce disk I/O and breaks access locality

INF1060, Pål Halvorsen University of Oslo

Linux Example: XFS, JFS, EXT4…
§  Count-augmented address indexing in the extent sections

§  Introduce a new inode structure

−  add counter field to original direct

entries

•  direct points to a disk block

•  count indicated how many other
blocks is following the first block
(contiguously)

direct 0

direct 1

direct 2

…

direct 10

direct 11

triple indirect

single indirect

double indirect

attributes

count 0

count 1

count 2

…

count 10

count 11

data 3 data data

inode

INF1060, Pål Halvorsen University of Oslo

direct 1

direct 2

…

direct 10

direct 11

attributes

count 0

count 1

count 2

…

count 10

count 11

data 3 data data

inode

ext4_inode
struct ext4_inode {

 __le16 i_mode; /* File mode */
 __le16 i_uid; /* Low 16 bits of Owner Uid */
 __le32 i_size; /* Size in bytes */

 __le32 i_atime; /* Access time */
 __le32 i_ctime; /* Inode Change time */
 __le32 i_mtime; /* Modification time */

 __le32 i_dtime; /* Deletion Time */
 __le16 i_gid; /* Low 16 bits of Group Id */
 __le16 i_links_count; /* Links count */
 __le32 i_blocks; /* Blocks count */

 __le32 i_flags; /* File flags */
 ...

 __le32 i_block[EXT4_N_BLOCKS];/* Pointers to blocks */

 __le32 i_generation; /* File version (for NFS) */
 __le32 i_file_acl; /* File ACL */
 __le32 i_dir_acl; /* Directory ACL */
 __le32 i_faddr; /* Fragment address */

 ...

 __le32 i_ctime_extra; /* extra Change time (nsec << 2 | epoch) */

 __le32 i_mtime_extra; /* extra Modification */
 __le32 i_atime_extra; /* extra Access time */
__le32 i_crtime; /* File Creation time */
__le32 i_crtime_extra; /* extra */

};

direct 0

i_block [NUM]

INF1060, Pål Halvorsen University of Oslo

ext4_extent_header

ext4_extent

ext4_extent

ext4_extent

ext4_extent

ext4_inode

struct ext4_extent {
 __le32 ee_block; /* first logical block extent covers */

 __le16 ee_len; /* number of blocks covered by extent */

 __le16 ee_start_hi; /* high 16 bits of physical block */

 __le32 ee_start; /* low 32 bits of physical block */

};

i_block [NUM]

4

Theoretically, each extent can have 216 - 1 continuous
blocks, i.e., 64 GB data using a 4KB block size,
but limited to 128 MB

Max size of 4 x 128 = 512 MB files?

What about fragmented disks??

...
__le16 eh_depth;
...

ÄTree of extents organized
 using an HTREE

INF1060, Pål Halvorsen University of Oslo

ext4_extent_header

ext4_extent_idx

ext4_extent_idx

ext4_extent_idx

ext4_extent_idx

ext4_inode

struct ext4_extent_idx {
 __le32 ei_block; /* index covers logical blocks from 'block' */
__le32 ei_leaf; /* pointer to the physical block of the next *

 * level. leaf or next index could be there */

 __le16 ei_leaf_hi; /* high 16 bits of physical block */

 __u16 ei_unused;

};

i_block [NUM]

...
__le16 ee_len;
__le16 ee_start_hi;
__le32 ee_start;

Ä one 4 KB can hold 340 ext4_extents(_idx)
Ä first level can hold 170 GB
Ä second level can hold 56 TB (limed to 16 TB, 32 bit pointer)

4

INF1060, Pål Halvorsen University of Oslo

Windows Example: NTFS
§  Each partition contains a master file table (MFT)

−  a linear sequence of 1 KB records
−  each record describes a directory or a file (attributes and disk addresses)

first 16 reserved for
NTFS metadata

info about data blocks

…data…

A file can be …

•  stored within the record (immediate file, < few 100 B)

•  represented by disk block addresses (which hold data):
 runs of consecutive blocks (<addr, no>, like extents)

•  use several records if more runs are needed

20 4

run 1

30 2

run 2

74 7

run 3

24 - base record

26 - first extension record

27 - second extension record

10 2

run 1

78 3

run k

MFT 27

2nd extension

MFT 26

1st extension

run 2, run 3, …, run k-1

INF1060, Pål Halvorsen University of Oslo

Recovery & Journaling
§  When data is written to a file, both metadata and data must

be updated
− metadata is written asynchronously, data may be written earlier
−  if a system crashes, the file system may be corrupted and data is lost

§  Journaling file systems provide improved consistency and
recoverability
− makes a log to keep track of changes
−  the log can be used to undo partially completed operations
−  e.g., ReiserFS, JFS, XFS and Ext3 (all Linux)

− NTFS (Windows) provide journaling properties where all changes to MFT

and file system structure are logged

INF1060, Pål Halvorsen University of Oslo

DAS vs. NAS vs. SAN??

§  Direct attached storage

§  Network attached
storage
−  uses some kind of file-

based protocol to
attach remote devices
non-transparently

−  NFS, SMB, CIFS

§  Storage area network
−  transparently attach

remote storage
devices

−  iSCSI (SCSI over TCP/
IP), iFCP (SCSI over
Fibre Channel),
HyperSCSI (SCSI over
Ethernet), ATA over
Ethernet

§  How will the introduction of network
attached disks influence storage?

INF1060, Pål Halvorsen University of Oslo

Mechanical Disks vs. Solid State Disks???
§  How will the introduction of SSDs influence storage?

Storage
capasity

(GB)

Average (seek)
time / latency

(ms)

Sustained
transfer rate

(MBps)

Interface
(Gbps)

Seagate Cheetah X15.6 (3.5 inch) 450 3.4
(track to track 0.2) 110 - 171 SAS (3)

FC (4)

Seagate Savvio 15K (2.5 inch) 73 2.9
(track to track 0.2) 29 - 112 SAS (3)

OCM Flash Media Core Series V2 250 < .2 - .3 up to 170 SATA (3)

Intel X25-E (extreme) 64 0.075 250 SATA (3)

Intel X25-M (mainstream) 160 0.085 250 SATA (3)

Mtron SSD Pro 7500 series 128 0.100 130 SATA (1.5)

Intel DC S3700 Series 2000 0.020 2000 PCIe, v3
(7.8/lane)

Intel Drive 910 Series 800 < 0.065 2000 SAS (6)

INF1060, Pål Halvorsen University of Oslo

Why spend a lecture talking about HDD?
§  SSDs are

−  “almost like memory”
−  much faster
−  more expensive
−  smaller

§  Many devices:
−  Google 2012
ü  417,600 servers - Douglas County, USA
ü  204,160 servers - The Dalles, USA
ü  241,280 servers - Council Bluffs, USA
ü  139,200 servers – Lenoir, USA
ü  250,560 servers - Moncks Corner, USA
ü  296,960 servers - St. Ghislain, Belgium
ü  116,000 servers - Hamina, Finland
ü  125,280 servers - Mayes County, USA

−  Google Early 2013
ü  46,400 servers - Profile Park, Dublin, Ireland
ü  200,000 servers - Jurong West, Singapore (projected estimate)
ü  200,000 servers - Kowloon, Hong Kong (projected estimate)
ü  139,200 additional servers - Mayes County, USA

−  Estimated grand total: 2,376,640
(early 2013)

−  Insert one 0.5 TB SSD in each
•  chepest komplett.no: 4.4 billion NOK
•  Intel P3700: 17.7 billion NOK

Google data center locations:

The End:
Summary

INF1060, Pål Halvorsen University of Oslo

Summary
§  Disks are the main persistent secondary storage device

§  The main bottleneck is often disk I/O performance due to disk mechanics:

seek time and rotational delays

§  Much work has been performed to optimize disks performance
−  scheduling algorithms try to minimize seek overhead (most systems use SCAN derivates)

−  memory caching can save disk I/Os
−  additionally, many other ways (e.g., block sizes, placement, prefetching, striping, …)

−  world today more complicated (both different access patterns, unknown disk characteristics, …)
à new disks are “smart”, we cannot fully control the device

§  File systems provide
−  file management – store, share, access, …
−  storage management – of physical storage
−  access methods – functions to read, write, seek, …
−  …

