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Overview 

§  (Mechanical) Disks 
 

§ Disk scheduling 
 

§ Memory/buffer caching 
 

§ File systems 
 

§ Some trends… 
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Disks 

§  Disks ... 

−  are used to have a persistent system 

J  are cheaper compared to main memory 

J  have more capacity 

L  are orders of magnitude slower   
 

§  Two resources of importance 

−  storage space 

−  I/O bandwidth 

§  We must look closer on how to manage disks, because... 

−  ...there is a large speed-mismatch (ms vs. ns) compared to main memory 

−  ...disk I/O is often the main performance bottleneck 

cache(s) 

main memory 

tertiary storage  
(tapes)  

secondary storage  
     (disks) 
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Mechanics of Disks 
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Mechanics of Disks 

Platters 
circular platters covered with  
magnetic material to provide  
nonvolatile storage of bits 

Tracks 
concentric circles  
on a single platter 

Sectors 
segment of the track circle –  
usually each contains 512 bytes – 
separated by non-magnetic gaps. 
The gaps are often used to identify 
beginning of a sector 

Cylinders 
corresponding tracks on the different  
platters are said to form a cylinder 

Spindle 
of which the platters  
rotate around 

Disk heads 
read or alter the 
magnetism (bits) passing 
under it. The heads are 
attached to an arm 
enabling it to move 
across the platter surface 
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Disk Capacity 
§  The size (storage space) of the disk is dependent on 

−  the number of platters  
− whether the platters use one or both sides 
−  number of tracks per surface 
−  (average) number of sectors per track 
−  number of bytes per sector 

 

§  Example (Cheetah X15.1): 
−  4 platters using both sides: 8 surfaces 
−  18497 tracks per surface 
−  617 sectors per track (average) 
−  512 bytes per sector 
−  Total capacity = 8 x 18497 x 617 x 512 ≈ 4.6 x 1010 = 42.8 GB 
−  Formatted capacity = 36.7 GB 

Note: 
there is a difference between 
formatted and total capacity. Some 
of the capacity is used for storing 
checksums, spare tracks, etc.  
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Disk Access Time 

§  How do we retrieve data from disk? 
−  position head over the cylinder (track) on which the block (consisting of 

one or more sectors) are located 

−  read or write the data block as the sectors are moved under the head 
when the platters rotate 
 
 

§  The time between the moment issuing a disk request and the 
time the block is resident in memory is called disk latency  or 
disk access time 
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     +  Rotational delay 

     +   Transfer time  

         Seek time   

Disk access time = 

     +   Other delays  

Disk platter  

Disk arm 

Disk head 

block x 
in memory 

I want 
block X 

Disk Access Time 
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Disk Access Time: Seek Time 

§  Seek time is the time to position the head 
−  some time is used for actually moving the head –  

roughly proportional to the number of cylinders traveled 
 

−  the heads require a minimum amount of time to start and stop moving 
the head 

−  Time to move head: 

~ 10x - 20x   

x 

1 N 
Cylinders Traveled 

Time 

“Typical” average:  
 10 ms → 40 ms (old) 
 7.4 ms (Barracuda 180) 
 5.7 ms (Cheetah 36) 
 3.6 ms (Cheetah X15) 

€ 

α + β n number of tracks 
seek time constant 
fixed overhead 
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Disk Access Time: Rotational Delay 
§  Time for the disk platters to rotate so the first of the required 

sectors are under the disk head 

head here 

block I want 

Average delay is 1/2 revolution 
 
“Typical” average:  

   8.33 ms  (3.600 RPM) 
   5.56 ms  (5.400 RPM) 

    4.17 ms  (7.200 RPM) 
    3.00 ms  (10.000 RPM) 
    2.00 ms  (15.000 RPM) 
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Disk Access Time: Transfer Time 

§  Time for data to be read by the disk head, i.e., time it takes the 
sectors of the requested block to rotate under the head 

§  Transfer time is dependent on data density and rotation speed 
 

§  Transfer rate = 
 

§  Transfer time = amount of data to read / transfer rate 
 

§  Transfer rate example 
−  Barracuda 180: 

406 KB per track x 7.200 RPM ≈ 47.58 MB/s 
−  Cheetah X15: 

306 KB per track x 15.000 RPM ≈ 77.15 MB/s 
 
 

§  If we have to change track, time must also be added for 
moving the head 

amount of data per track 
time per rotation 

Note: 
one might achieve these 
transfer rates reading 
continuously on disk, 
but time must be added 
for seeks, etc. 
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Disk Access Time: Other Delays 

§  There are several other factors which might introduce 
additional delays: 
− CPU time to issue and process I/O 
− contention for controller 
− contention for bus 
− contention for memory 
− verifying block correctness with checksums (retransmissions) 
− waiting in scheduling queue 
− ... 

 

§  Typical values: “0”  
(maybe except from waiting in the queue) 
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Disk Specifications 
§  Some existing (Seagate) disks: 

Note 1: 
disk manufacturers usually 
denote GB as 109 whereas 
computer quantities often are 
powers of 2, i.e., GB is 230 

Note 3: 
there is usually a 
trade off between 
speed and capacity 

Note 2: 
there is a difference between internal and formatted transfer rate. Internal  
is only between platter. Formatted  is after the signals interfere with the 
electronics (cabling loss, interference, retransmissions, checksums, etc.) 

Barracuda 180 Cheetah 36 Cheetah X15.3 

Capacity (GB) 181.6 36.4 73.4 

Spindle speed (RPM) 7200 10.000 15.000 

#cylinders 24.247 9.772 18.479 

average seek time (ms) 7.4 5.7 3.6  

min (track-to-track) seek (ms)  0.8 0.6 0.2 

max (full stroke) seek (ms) 16 12 7 

average latency (ms) 4.17 3 2 

internal transfer rate (Mbps) 282 – 508  520 – 682 609 – 891  

disk buffer cache 16 MB 4 MB 8 MB 
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Writing and Modifying Blocks 
§  A write operation is analogous to read operations 

− must potentially add time for block allocation 

−  a complication occurs if the write operation has to be verified –  
must usually wait another rotation and then read the block again 

−  Total write time ≈ read time (+ time for one rotation) 
 
 
 

§  A modification operation is similar to read and write operations 

−  cannot modify a block directly: 

•  read block into main memory 

•  modify the block 

•  write new content back to disk 

−  Total modify time  ≈ read time (+ time to modify) + write time 
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Disk Controllers 

§  To manage the different parts of the disk, we use a 
disk controller, which is a small processor capable of: 

− controlling the actuator moving the head to the desired track 
 

− selecting which head (platter and surface) to use  
 

− knowing when the right sector is under the head 
 

− transferring data between main memory and disk 
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Efficient Secondary Storage Usage 
§  Must take into account the use of secondary storage 

−  there are large gaps in access times between disks and memory, i.e.,  
a disk access will probably dominate the total execution time 

−  there may be huge performance improvements if we reduce the number 
of disk accesses 

−  a “slow” algorithm with few disk accesses will probably outperform a 
“fast” algorithm with many disk accesses 
 

§  Several ways to optimize ..... 
−  block size   - 4 KB  
−  file management / data placement   - various 
−  disk scheduling   - SCAN derivate 
− multiple disks   - a specific RAID level 
−  prefetching   - read-ahead 
− memory caching / replacement algorithms - LRU variant 
− … 



Data Placement 
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Data Placement on Disk 
§  Interleaved placement tries to store blocks from a file with a 

fixed number of other blocks in-between each block  
 
 
 
 
− minimal disk arm movement reading the files A, B and C 

(starting at the same time) 
 

−  fine for predictable workloads reading multiple files 
 

−  no gain if we have unpredictable disk accesses 
 

§  Non-interleaved (or even random) placement can be used for 
highly unpredictable workloads 

file A 
file B 

file C 
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Data Placement on Disk 

§  Contiguous placement stores disk blocks contiguously on disk 
 
 
 
− minimal disk arm movement reading the whole file (no intra-file seeks) 

 
−  pros/cons 

J  head must not move between read operations - no seeks / rotational delays 
J  can approach theoretical transfer rate  
L  but usually we read other files as well (giving possible large inter-file seeks) 

 

−  real advantage 
•  whatever amount to read, at most track-to-track seeks are performed within 

one request 
 

−  no inter-operation gain if we have unpredictable disk accesses 

file A file B file C 



Disk Scheduling 
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Disk Scheduling 

§  How to most efficiently fetch the parcels I want? 



INF1060, Pål Halvorsen University of Oslo 

Disk Scheduling 
§  Seek time is the dominant factor of the total disk I/O time 

 
 

§  IDEA: Let the operating system or disk controller choose which request  
to serve next depending on the head’s current position and  
requested block’s position on disk (disk scheduling) 
 
 

§  Note that disk scheduling ≠ CPU scheduling 
−  a mechanical device – hard to determine (accurate) access times 
−  disk accesses can/should not be preempted – run until they finish 

 
 

§  General goals 
−  short response time 
−  high overall throughput  
−  fairness (equal probability for all blocks to be accessed in the same time) 

 
 

§  Tradeoff: seek and rotational delay vs. maximum response time 
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Disk Scheduling 

§  Several traditional algorithms 
− First-Come-First-Serve (FCFS) 
− Shortest Seek Time First (SSTF) 
− SCAN (and variations) 
− Look (and variations) 
− … 

 

§  A LOT of different algorithms exist depending on 
expected access pattern 
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First–Come–First–Serve (FCFS) 
FCFS (FIFO) serves the first arriving request first: 
§  Long seeks 
§  “Short” response time for all 

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival, denoted by cylinder number): 

14 2 7 21 8 24 

scheduling 
queue 

24 

8 

21 

7 

2 

14 

12 
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Shortest Seek Time First (SSTF) 
SSTF serves closest request first: 
§  short seek times 
§  longer maximum response times – may even lead to starvation 

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 8 21 7 2 14 12 

first in the queue,  
served last 
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SCAN 
SCAN (elevator) moves head edge to edge and serves requests on the way: 
§  bi-directional 
§  compromise between response time and seek time optimizations   

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 8 21 7 2 14 12 
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SCAN vs. FCFS 

§  Disk scheduling 
makes a difference! 
 

 

§  In this case, we see 
that SCAN requires 
much less head 
movement 
compared to FCFS 

−  here 37 vs. 75 tracks 

−  imagine having  
•  20.000++ tracks 

•  many users  

•  many files 

•  … 

cylinder number 
1 5 10 15 20 25 

tim
e 

tim
e 

12 incoming requests (in order of arrival): 14 2 7 21 8 24 

FCFS 

SCAN 
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C–SCAN 
Circular-SCAN moves head from edge to edge 
§  optimization of SCAN  
§  serves requests on one way – uni-directional 
§  improves response time (fairness)  

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 8 21 7 2 14 12 
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SCAN vs. C–SCAN 

§  Why is C-SCAN in average better in reality than SCAN when 
both service the same number of requests in two passes? 
− modern disks must accelerate (speed up and  

down) when seeking 
−  head movement formula:  

SCAN C-SCAN 

bi-directional uni-directional 

requests: n 
avg. dist: 2x 
total cost:  

requests: n 
avg. dist: x 
total cost: 

cylinders traveled 

tim
e 

nβα + number of cylinders 
seek time constant 
fixed overhead 

€ 

n × 2x = (n × 2) × x xnnxnxn ×+=×+× )(

€ 

n × 2 > n + n
if n is large: 
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LOOK and C–LOOK 
LOOK (C-LOOK) is a variation of SCAN (C-SCAN): 
§  same schedule as SCAN 
§  does not run to the edges 
§  stops and returns at outer- and innermost request 
§  increased efficiency  
§  SCAN vs. LOOK example: 

tim
e 

cylinder number 
1 5 10 15 20 25 

12 

incoming requests (in order of arrival): 

14 2 7 21 8 24 

scheduling 
queue 

24 

8 

21 

7 

2 

14 

12 
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V–SCAN(R) 
§  V-SCAN(R) combines SCAN (or LOOK) and SSTF 

−  define an R-sized unidirectional SCAN window, i.e., C-SCAN, and use SSTF 
outside the window 
 

−  Example: V-SCAN(0.6)  
•  makes a C-SCAN window over 60 % of the cylinders 
•  uses SSTF for requests outside the window  

 
 
 
 
 
 

−  V-SCAN(0.0) equivalent with SSTF 
−  V-SCAN(1.0) equivalent with C-SCAN 

−  V-SCAN(0.2) is supposed to be an appropriate configuration 

cylinder number 
1 5 10 15 20 25 
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Modern Disk Scheduling 
§  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 
 

§  … but, new disks are more complex  
−  hide their true layout, e.g.,  

•  only logical block numbers 
•  different number of surfaces, cylinders, sectors, etc. 

OS view real view 
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Modern Disk Scheduling 
§  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 
 

§  … but, new disks are more complex   
−  hide their true layout 
−  transparently move blocks to spare cylinders 

•  e.g., due to bad disk blocks  

OS view real view 
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§  Constant angular 
velocity (CAV) disks 
−  constant rotation speed 
−  equal amount of data in 

each track 
ð  thus, constant  

transfer time 

Modern Disk Scheduling 

OS view real view 

§  Disk used to be simple devices and disk scheduling used to be 
performed by OS (file system or device driver) only… 
 

§  … but, new disks are more complex   
−  hide their true layout 
−  transparently move blocks to spare cylinders 
−  have different zones 

§  Zoned CAV disks 
−  constant rotation speed  
−  zones are ranges of tracks 
−  typical few zones 
−  the different zones have 

different amount of data, i.e., 
more better on outer tracks 

ð  thus, variable transfer time 
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B
) 

1 3544 672 890,98 19014912 77,2% 9735,635 

2 3382 652 878,43 17604000 76,0% 9013,248 

3 3079 624 835,76 15340416 76,5% 7854,293 

4 2939 595 801,88 13961080 76,0% 7148,073 

5 2805 576 755,29 12897792 78,1% 6603,669 

6 2676 537 728,47 11474616 75,5% 5875,003 

7 2554 512 687,05 10440704 76,3% 5345,641 

8 2437 480 649,41 9338880 75,7% 4781,506 

9 2325 466 632,47 8648960 75,5% 4428,268 

10 2342 438 596,07 8188848 75,3% 4192,690 

Seagate X15.3: 
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§  Constant angular 
velocity (CAV) disks 
−  constant rotation speed 
−  equal amount of data in 

each track 
ð  thus, constant  

transfer time 

Modern Disk Scheduling 

OS view real view 

§  Disk used to be simple devices and disk scheduling used to be 
performed by OS (file system or device driver) only… 
 

§  … but, new disks are more complex   
−  hide their true layout 
−  transparently move blocks to spare cylinders 
−  have different zones 

§  Zoned CAV disks 
−  constant rotation speed  
−  zones are ranges of tracks 
−  typical few zones 
−  the different zones have 

different amount of data, i.e., 
more better on outer tracks 

ð  thus, variable transfer time 
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Modern Disk Scheduling 
§  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 
 

§  … but, new disks are more complex   
−  hide their true layout 
−  transparently move blocks to spare cylinders 
−  have different zones 
−  head accelerates – most algorithms assume linear movement overhead 

~ 10x - 20x   

x 

1 N 
Cylinders Traveled 

Time 
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Modern Disk Scheduling 
§  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 
 

§  … but, new disks are more complex   
−  hide their true layout 
−  transparently move blocks to spare cylinders 
−  have different zones 
−  head accelerates – most algorithms assume linear movement overhead 
−  on device buffer caches may use read-ahead prefetching 

disk 
buffer disk 
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Modern Disk Scheduling 
§  Disk used to be simple devices and disk scheduling used to be 

performed by OS (file system or device driver) only… 
 

§  … but, new disks are more complex   
−  hide their true layout 
−  transparently move blocks to spare cylinders 
−  have different zones 
−  head accelerates – most algorithms assume linear movement overhead 
−  on device buffer caches may use read-ahead prefetching 
ð “smart” with build in low-level scheduler (usually SCAN-derivate) 
ð we cannot fully control the device (black box) 

 
 

§  OS could (should?) focus on high level scheduling only!?? 
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Schedulers today (Linux)? 
§  Elevator – SCAN 

 
§  NOOP 

−  FCFS with request merging 
 

§  Deadline I/O 
−  C-SCAN based 
−  3 queues: 1 sorted (elevator) queue, and 2 deadline queues (one for read and one for write) 

 

§  Anticipatory 
−  same queues as in Deadline I/O 
−  delays decisions to be able to merge more requests  

(e.g., a streaming scenario) 
 

§  Completely Fair Queuing (CFQ) 
−  1 queue per process (periodic access, but period length depends on load) 
−  gives time slices and ordering according to priority level  

(real-time, best-effort, idle) 
−  work-conserving 

[diamant] ~ > more /sys/block/sda/queue/scheduler !
noop anticipatory deadline [cfq] !
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Cooperative user-kernel space scheduling 
§  Some times the kernel does not have enough 

information to make an efficient schedule 
Ä File tree traversals 
−  processing one file after another 
−  tar, zip, … 
−  recursive copy (cp -r) 
−  search (find) 
−  … 

  

§  Only application knows  
access pattern 
−  use ioctl FIEMAP (FIBMAP)  

to retrieve extent locations 
−  sort in user space 
−  send I/O request according to  

sorted list 
 

ð GNU/BSD Tar vs. QTAR  
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Cooperative user-kernel space scheduling 
§  Some times the kernel does not have enough 

information to make an efficient schedule 
Ä File tree traversals 

−  processing one file after another 
−  tar, zip, … 
−  recursive copy (cp -r) 
−  search (find) 
−  … 

  

§  Only application knows  
access pattern 
−  use ioctl FIEMAP (FIBMAP)  

to retrieve extent locations 
−  sort in user space 
−  send I/O request according to  

sorted list 
 

ð GNU/BSD Tar vs. QTAR  
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Cooperative user-kernel space scheduling 
§  Some times the kernel does not have enough 

information to make an efficient schedule 
Ä File tree traversals 

−  processing one file after another 
−  tar, zip, … 
−  recursive copy (cp -r) 
−  search (find) 
−  … 

  

§  Only application knows  
access pattern 
−  use ioctl FIEMAP (FIBMAP)  

to retrieve extent locations 
−  sort in user space 
−  send I/O request according to  

sorted list 
 

ð GNU/BSD Tar vs. QTAR  



Memory Caching 
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Pentium 4 
Processor 

 
 

registers 

cache(s) 

I/O 
controller 

hub 

memory 
controller 

hub 

RDRAM 

RDRAM 

RDRAM 

RDRAM 

PCI slots 

PCI slots 

PCI slots disk 

file system 

application 

file system communication  
system 

application 

disk network card 

Data Path (Intel Hub Architecture) 
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Buffer Caching 

communication  
system 

application 

disk network card 

expensive 

file system 

cache 

caching possible 

How do we manage a cache? 
ü  how much memory to use? 
ü  how much data to prefetch? 
ü  which data item to replace? 
ü  how to do lookups quickly? 
ü  … 
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Buffer Caching: Windows XP 
§  An I/O manager performs caching 

−  centralized facility to all components 
(not only file data)  
 

§  I/O requests processing:  
process 

file system 
drivers cache 

manager 

disk 
drivers 

virtual memory 
manager (VMM) I/O  

manager 

Kernel 

1.  I/O request from process 
2.  I/O manager forwards to cache manager 

q  in cache: 
3.  cache manager locates and copies data  

to process buffer via VMM 
4.  VMM notifies process  

q  on disk: 
3.  cache manager generates a page fault 
4.  VMM makes a non-cached service request 
5.  I/O manager makes request to file system 
6.  file system forwards to disk 
7.  disk finds data 
8.  reads into cache 
9.  cache manager copies data to process buffer via VMM 
10.  VMM notifies process  
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Buffer Caching: Linux / Unix 

Kernel 

Process 

virtual file 
system 

Linux ext2fs HFS 
(Macintosh) FAT32 

(Windows) 

buffers 

disk 
drivers 

§  A file system performs caching 
−  caches disk data (blocks) only 
− may hint on caching decisions 
−  prefetching  

 

§  I/O requests processing:  
1.  I/O request from process 

2.  virtual file system forwards to local file system 

3.  local file system finds requested block number 

4.  requests block from buffer cache 

5.  data located… 

q  … in cache: 

a.  return buffer memory address 

q  … on disk: 

a.  make request to disk driver 

b.  data is found on disk and transferred to buffer 

c.  return buffer memory address    

6.  file system copies data to process buffer 

7.  process is notified  
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Buffer Caching Structure 

Many different algorithms for replacement,  
similar to page replacement… 



File Systems 
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Files?? 

§  A file is a collection of data – often for a specific 
purpose 
− unstructured files, e.g., Unix and Windows 
− structured files, e.g., early MacOS (to some extent) and MVS 

§  In this course, we consider unstructured files 
− for the operating system, a file is only a sequence of bytes 
− it is up to the application/user to interpret the meaning of the 

bytes 
➥  simpler file systems 
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File Systems 

§  File systems organize data in files and manage access 
regardless of device type, e.g.: 

− storage management – allocating space for files on 
secondary storage  
 

− file management – providing mechanisms for files to be 
stored, referenced, shared, secured, … 

•  file integrity mechanisms – ensuring that information is not corrupted, 
intended content only 

•  access methods – provide methods to access stored data 
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Organizing Files - Directories 

§  A system usually has a large number of different files 
 

§  To organize and quickly locate files, file systems use 
directories 
− contain no data itself 
− file containing name and locations of other files 

 
− several types 

•  single-level (flat) directory structure 
•  hierarchical directory structure 
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Single-level Directory Systems 

§  CP/M 
− Microcomputers 
− Single user system 

§  VM 
− Host computers 
− “Minidisks”: one partition per user 

Root directory"

Four files"
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Hierarchical Directory Systems 
§  Tree structure 

−  nodes  = directories 
root node  = root directory 

−  leaves  = files 
 

§  Directories 
−  stored on disk 
−  attributes just like files 

§  To access a file 
− must (often) test all directories in path for 

•  existence 
•  being a directory 
•  permissions 

−  similar tests on the file itself 

/ 

/ 
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Hierarchical Directory Systems 
§ Windows: one tree per partition or device 

\"

Device D"

Complete filename example:"
C:\WinNT\EXPLORER.EXE"

\"

Device C"

WINNT"

EXPLORER.EXE"
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Hierarchical Directory Systems 

§  Unix: single acyclic graph 
spanning several devices 

/"

cdrom"

Complete filename example:"
/cdrom/doc/Howto"

/"

doc"

Howto"
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File & Directory Operations 
§  File: 

−  create 
−  delete 
−  open 
−  close 
−  read 
− write 
−  append 
−  seek 
−  get/set attributes 
−  rename 
−  link 
−  unlink 
− … 

§  Directory: 
−  create 
−  delete 
−  opendir 
−  closedir 
−  readdir 
−  rename 
−  link 
−  unlink 
− … 
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Example: open(), read() and close() 

#include <stdio.h> 
#include <stdlib.h> 
 
int main(void) 
{ 

 int fd, n; 
 char buffer[BUFSIZE]; 
 char *buf = buffer; 

 
 if ((fd = open( “my.file” , O_RDONLY , 0 )) == -1) { 
  printf(“Cannot open my.file!\n”); 
  exit(1); /* EXIT_FAILURE */ 
 } 

 
 while ((n = read(fd, buf, BUFSIZE) > 0) { 
  <<USE DATA IN BUFFER>> 
 } 

 
 close(fd); 

 
 exit(0); /* EXIT_SUCCESS */ 

} 
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Open 
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open(name,oflags,mode) 

sys_open() à vn_open(): 
1.  Check if valid call  

2.  Allocate file descriptor 

3.  If file exists, open for read (remember O_RDONLY).  

Must get directory inode. May require disk I/O. 

4.  Set access rights, flags and pointer to vnode 

5.  Return index to file descriptor table 

fd 

system call handling as described earlier 

control block 

control block 

user 
kernel 

 fd 

control block 
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Example: open(), read() and close() 

#include <stdio.h> 
#include <stdlib.h> 
 
int main(void) 
{ 

 int fd, n; 
 char buffer[BUFSIZE]; 
 char *buf = buffer; 

 
 if ((fd = open( “my.file” , O_RDONLY , 0 )) == -1) { 
  printf(“Cannot open my.file!\n”); 
  exit(1); /* EXIT_FAILURE */ 
 } 

 
 while ((n = read(fd, buf, BUFSIZE) > 0) { 
  <<USE DATA IN BUFFER>> 
 } 

 
 close(fd); 

 
 exit(0); /* EXIT_SUCCESS */ 

} 
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Read 
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buffer read(fd, *buf, len) 

sys_read() à dofileread() à (*fp_read==vn_read)(): 
1.  Check if valid call and mark file as used  

2.  Use file descriptor as index in file table  

to find corresponding file pointer 

3.  Use data pointer in file structure to find vnode 

4.  Find current offset in file  

5.  Call local file system 
VOP_READ(vp,len,offset,..) 

system call handling as described earlier 
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Read 
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VOP_READ(...) is a pointer to a read function in the  
corresponding file system, e.g., Fast File System (FFS) 

 

READ(): 

1.  Find corresponding inode 

2.  Check if valid call:  len + offset ≤ file size 

3.  Loop and find corresponding blocks  

•  find logical blocks from inode, offset, length 

•  do block I/O, fill buffer structure  

e.g., bread(...) à bio_doread(...) à getblk() 

 

 

•  return and copy block to user 

VOP_READ(vp,len,offset,..) 

getblk(vp,blkno,size,...) 
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Read 
O

p
er

at
in

g
 S

ys
te

m
 

A B C D E F G H I J K L 

M 

getblk(vp,blkno,size,...) 

1.  Search for block in buffer cache, return if found 
(hash vp and blkno and follow linked hash list) 

2.  Get a new buffer (LRU, age) 

3.  Call disk driver - sleep or do something else 

 

4.  Reorganize LRU chain and return buffer 

VOP_STRATEGY(bp) 
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VOP_STRATEGY(bp) 

VOP_STRATEGY(...) is a pointer to the corresponding  
driver depending on the hardware,  

e.g., SCSI - sdstrategy(...) à sdstart(...) 

 

1.  Check buffer parameters, size, blocks, etc. 

2.  Convert to raw block numbers 

3.  Sort requests according to SCAN - disksort_blkno(...) 

4.  Start device and send request 

Read 
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file attributes 

... 

data pointer 

data pointer 

data pointer 

data pointer 

data pointer 

... 

... O
p

er
at

in
g

 S
ys

te
m

 

M 

Read 
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Read 
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A B C D E F G H I J K L 

1.  Search for block in buffer cache, return if found 
(hash vp and blkno and follow linked hash list) 

2.  Get a new buffer (LRU, age) 

3.  Call disk driver - sleep or do something else 

 

4.  Reorganize LRU chain and return buffer M 

M 

Interrupt to notify end of disk IO 
Kernel may awaken sleeping process 

M
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Read 
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READ(): 
1.  Find corresponding inode 

2.  Check if valid call - file size vs. len + offset  

3.  Loop and find corresponding blocks  

•  find logical blocks from inode, offset, length 

•  do block I/O,  

e.g., bread(...) à bio_doread(...) à getblk() 

 

 

•  return and copy block to user 

buffer 

M 
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Example: open(), read() and close() 

#include <stdio.h> 
#include <stdlib.h> 
 
int main(void) 
{ 

 int fd, n; 
 char buffer[BUFSIZE]; 
 char *buf = buffer; 

 
 if ((fd = open( “my.file” , O_RDONLY , 0 )) == -1) { 
  printf(“Cannot open my.file!\n”); 
  exit(1); /* EXIT_FAILURE */ 
 } 

 
 while ((n = read(fd, buf, BUFSIZE) > 0) { 
  <<USE DATA IN BUFFER>> 
 } 

 
 close(fd); 

 
 exit(0); /* EXIT_SUCCESS */ 

} 
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file attributes 

... 

data pointer 

data pointer 

data pointer 

data pointer 

data pointer 

... 

... 

Management of File Blocks 
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Management of File Blocks 

§  Many files consist of several blocks 
− relate blocks to files 
− how to locate a given block 
− maintain order of blocks 

§  Approaches 
− chaining in the media 
− chaining in a map  
− table of pointers  
− extent-based allocation 
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Chaining in the Media 

§  Metadata points to chain of used file blocks 
§  Free blocks may also be chained 
 
☺   nice if you only read sequentially from the start 
D  expensive to search (random access) 
D  must read block by block 

Metadata"

File blocks"
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Chaining in a Map 

Metadata" File blocks"Map"
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FAT Example 
§  FAT: File Allocation Table 

§  Versions FAT12, FAT16, FAT32 

−  number indicates number of bits used to identify blocks in partition (212,216,232) 

−  FAT12: Block sizes 512 bytes – 8 KB: max 32 MB partition size 

−  FAT16: Block sizes 512 bytes – 64 KB: max 4 GB partition size 

−  FAT32: Block sizes 512 bytes – 64 KB: max 2 TB partition size  

Boot"
sector" FAT1" FAT2"

(backup)"
Root"

directory" Other directories and files"
…"

0000"
0003"
0004"
FFFF"
0006"
0008"
FFFF"
FFFF"
0000"

…"

File1" File1" File1"empty" File2"File2"

File2"File3" empty"empty" empty" empty"

empty"empty" empty" empty" empty" empty"

0000!
0001!
0002!
0003!
0004!
0005!
0006!
0007!
0008!
0009!
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Table of Pointers 

Metadata" File blocks"Table of pointers"

C  good random and sequential access 

C  main structure small, extra blocks if needed 

D  uses one indirect block regardless of size 

D  can be too small 
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Unix/Linux Example: FFS, UFS, … 

mode"
owner"

…"
Direct block 0"
Direct block 1"

…"
Direct block 10"
Direct block 11"
Single indirect"
Double indirect"
Triple indirect"

Data block"Data block"

Data block"Data block"

index"

Data block"Data block"

Data block"Data block"

index"

index"

index"index"

index"index"

Data block"Data block"

Data block"Data block"

index"
index" Data block"

inode" Flexible block size"
e.g. 4KB"

ca. 1000 entries"
per index block"

Data block"
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Extent-based Allocation 

Metadata" File blocks"List of extents"

1"

3"

2"

C  faster block allocation (many at a time) 

C  higher performance reading large data elements 

C  less file system meta data 

C  reduce number of lookups reading a file  

ü  Observation:  
    indirect block reads introduce disk I/O and breaks access locality 
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Linux Example: XFS, JFS, EXT4… 
§  Count-augmented address indexing in the extent sections 

 

§  Introduce a new inode structure 
 
−  add counter field to original direct  

entries  
  

•  direct points to a disk block 
 

•  count indicated how many other  
blocks is following the first block  
(contiguously) 
 
 

direct 0 

direct 1 

direct 2 

… 

direct 10 

direct 11 

triple indirect 

single indirect 

double indirect 

attributes 

count 0 

count 1 

count 2 

… 

count 10 

count 11 

data 3 data data 

inode 
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direct 1 

direct 2 

… 

direct 10 

direct 11 

attributes 

count 0 

count 1 

count 2 

… 

count 10 

count 11 

data 3 data data 

inode 

ext4_inode 
struct ext4_inode {  

 __le16 i_mode;   /* File mode */  
 __le16 i_uid;   /* Low 16 bits of Owner Uid */  
 __le32 i_size;   /* Size in bytes */  

 __le32 i_atime;   /* Access time */  
 __le32 i_ctime;   /* Inode Change time */  
 __le32 i_mtime;   /* Modification time */  

 __le32 i_dtime;   /* Deletion Time */  
 __le16 i_gid;   /* Low 16 bits of Group Id */  
 __le16 i_links_count;  /* Links count */  
 __le32 i_blocks;  /* Blocks count */  

 __le32 i_flags;   /* File flags */  
 ...   

  __le32 i_block[EXT4_N_BLOCKS];/* Pointers to blocks */  

 __le32 i_generation;    /* File version (for NFS) */  
 __le32 i_file_acl;    /* File ACL */  
 __le32 i_dir_acl;    /* Directory ACL */  
 __le32 i_faddr;     /* Fragment address */  

 ...    
     

 __le32 i_ctime_extra;  /* extra Change time (nsec << 2 | epoch) */  

 __le32 i_mtime_extra;  /* extra Modification */  
 __le32 i_atime_extra;  /* extra Access time  */ 
__le32 i_crtime;  /* File Creation time */  
__le32 i_crtime_extra;  /* extra */  

};  

direct 0 

i_block [NUM] 
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ext4_extent_header 

ext4_extent 

ext4_extent 

ext4_extent 

ext4_extent 

 

ext4_inode 

struct ext4_extent {  
 __le32 ee_block;  /* first logical block extent covers */  

 __le16 ee_len;  /* number of blocks covered by extent */  

 __le16 ee_start_hi;  /* high 16 bits of physical block */  

 __le32 ee_start;  /* low 32 bits of physical block */  

}; 

i_block [NUM] 

4 

Theoretically, each extent can have 216 - 1 continuous 
blocks, i.e., 64 GB data using a 4KB block size,  
but limited to 128 MB 

Max size of 4 x 128 = 512 MB files? 
 

What about fragmented disks??  

... 
__le16 eh_depth; 
... 
 
ÄTree of extents organized       
   using an HTREE 
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ext4_extent_header 

ext4_extent_idx 

ext4_extent_idx 

ext4_extent_idx 

ext4_extent_idx 

 

ext4_inode 

struct ext4_extent_idx {  
 __le32 ei_block;  /* index covers logical blocks from 'block' */ 
__le32 ei_leaf;   /* pointer to the physical block of the next * 

    * level. leaf or next index could be there */  

 __le16 ei_leaf_hi;  /* high 16 bits of physical block */  

 __u16 ei_unused;  

}; 

i_block [NUM] 

... 
__le16 ee_len;   
__le16 ee_start_hi;  
__le32 ee_start;  
 
Ä one 4 KB can hold 340 ext4_extents(_idx) 
Ä first level can hold 170 GB 
Ä second level can hold 56 TB (limed to 16 TB, 32 bit pointer) 

4 
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Windows Example: NTFS 
§  Each partition contains a master file table (MFT) 

−  a linear sequence of 1 KB records 
−  each record describes a directory or a file (attributes and disk addresses) 

first 16 reserved for 
NTFS metadata 

info about data blocks 

…data… 

A file can be … 

•  stored within the record (immediate file, < few 100 B) 

•  represented by disk block addresses (which hold data): 
   runs of consecutive blocks (<addr, no>, like extents) 

•  use several records if more runs are needed 

20 4 

run 1 

30 2 

run 2 

74 7 

run 3 

24 - base record 

26 - first extension record 

27 - second extension record 

10 2 

run 1 

78 3 

run k 

MFT 27 

2nd extension 

MFT 26 

1st extension 

run 2, run 3, …, run  k-1 
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Recovery & Journaling 
§  When data is written to a file, both metadata and data must 

be updated 
− metadata is written asynchronously, data may be written earlier 
−  if a system crashes, the file system may be corrupted and data is lost 

 

§  Journaling file systems provide improved consistency and 
recoverability 
− makes a log to keep track of changes 
−  the log can be used to undo partially completed operations 
−  e.g., ReiserFS, JFS, XFS and Ext3 (all Linux) 

 
− NTFS (Windows) provide journaling properties where all changes to MFT 

and file system structure are logged 
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DAS vs. NAS vs. SAN?? 

§  Direct attached storage 
 

§  Network attached 
storage 
−  uses some kind of file-

based protocol to 
attach remote devices 
non-transparently 

−  NFS, SMB, CIFS 
 

§  Storage area network 
−  transparently attach 

remote storage 
devices 

−  iSCSI (SCSI over TCP/
IP), iFCP (SCSI over 
Fibre Channel), 
HyperSCSI (SCSI over 
Ethernet), ATA over 
Ethernet 

§  How will the introduction of network  
attached disks influence storage? 
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Mechanical Disks vs. Solid State Disks??? 
§  How will the introduction of SSDs influence storage? 

Storage 
capasity 

(GB) 

Average (seek) 
time / latency 

(ms)  

Sustained 
transfer rate 

(MBps) 

Interface 
(Gbps) 

Seagate Cheetah X15.6 (3.5 inch) 450 3.4  
(track to track 0.2) 110 - 171 SAS (3) 

FC (4) 

Seagate Savvio 15K (2.5 inch) 73 2.9  
(track to track 0.2) 29 - 112 SAS (3) 

OCM Flash Media Core Series V2 250 < .2 - .3 up to 170 SATA (3) 

Intel X25-E (extreme) 64 0.075 250 SATA (3) 

Intel X25-M (mainstream) 160 0.085 250 SATA (3) 

Mtron SSD Pro 7500 series 128 0.100 130 SATA (1.5) 

Intel DC S3700 Series 2000 0.020 2000 PCIe, v3  
(7.8/lane) 

Intel Drive 910 Series 800 < 0.065 2000 SAS (6)  
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Why spend a lecture talking about HDD? 
§  SSDs are  

−  “almost like memory” 
−  much faster 
−  more expensive 
−  smaller 

§  Many devices: 
−  Google 2012 
ü  417,600 servers - Douglas County, USA 
ü  204,160 servers - The Dalles, USA 
ü  241,280 servers - Council Bluffs, USA 
ü  139,200 servers – Lenoir, USA 
ü  250,560 servers - Moncks Corner, USA 
ü  296,960 servers - St. Ghislain, Belgium 
ü  116,000 servers - Hamina, Finland 
ü  125,280 servers - Mayes County, USA 

 

−  Google Early 2013 
ü  46,400 servers - Profile Park, Dublin, Ireland 
ü  200,000 servers - Jurong West, Singapore (projected estimate) 
ü  200,000 servers - Kowloon, Hong Kong (projected estimate) 
ü  139,200 additional servers - Mayes County, USA 

 

−  Estimated grand total: 2,376,640 
(early 2013) 
 

−  Insert one 0.5 TB SSD in each 
•  chepest komplett.no: 4.4 billion NOK 
•  Intel P3700:  17.7 billion NOK 

Google data center locations: 



The End: 
Summary 
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Summary 
§  Disks are the main persistent secondary storage device 

 
§  The main bottleneck is often disk I/O performance due to disk mechanics:  

seek time and rotational delays 
 

§  Much work has been performed to optimize disks performance  
−  scheduling algorithms try to minimize seek overhead (most systems use SCAN derivates) 

−  memory caching can save disk I/Os 
−  additionally, many other ways (e.g., block sizes, placement, prefetching, striping, …) 

−  world today more complicated (both different access patterns, unknown disk characteristics, …) 
à new disks are “smart”, we cannot fully control the device 
 

§  File systems provide 
−  file management – store, share, access, … 
−  storage management – of physical storage 
−  access methods – functions to read, write, seek, … 
−  … 


