inf2080 oppgave 4.22

kristora

15. april 2015

Given two disjoint co-Turing-recognizable languages there exists a decidable language separating them.

Let A and B be two disjoint co-Turing-recognizable languages so that $A \cap B=\emptyset$, $\operatorname{coT} M_{A}$ recognizes \bar{A} and $\operatorname{coT} M_{B}$ recognizes \bar{B}. We construct $T M_{C}$ that decides C, a language separating A and B.
$T M_{C}=$ "on input ω :

1. Simulate running $\operatorname{coT} M_{A}$ on ω and $\operatorname{coT} M_{B}$ on ω in parallel (alternating between $\operatorname{coTM} M_{A}$ and $\operatorname{coTM} M_{B}$).
2. If at any time $\operatorname{coT} M_{A}$ accepts, $R E J E C T$. If at any time $c o T M_{B}$ accepts, ACCEPT."
C satisfies the criteria for separating A and B :

- $A \subseteq C$: On input $\omega \in A \operatorname{coTM}_{A}$ will loop or $R E J E C T$, coTM_{B} will $A C C E P T$ since $\omega \notin B$ and $T M_{C} A C C E P T$ s.
- $B \subseteq \bar{C}$: On input $\omega \in B \operatorname{coT} M_{B}$ will loop or REJECT, coTM A will $A C C E P T$ since $\omega \notin A$ and $T M_{C} R E J E C T \mathrm{~s}$.
$T M_{C}$ is a decider: if $\omega \notin A \cup B$ then coTM_{A} and $\operatorname{coT} M_{B}$ will race. Both machines eventually accept, but the machine that finishes computation first decides whether $T M_{C}$ accepts or rejects.

