INF2080

Regular Expressions

Daniel Lupp

Universitetet i Oslo
28.01.2015

University of Oslo

Group session tomorrow

There will be no group session tomorrow, Jan. 29. Friday (Jan 30) there will be a group session as planned.

Regular Expressions

Definition (Regular Expression)

Given an alphabet Σ, a regular expression is

- a for some $a \in \Sigma$,
- ε,
- \emptyset,
- ($\left.R_{1} \cup R_{2}\right)$ for regular expressions R_{1}, R_{2},
- $\left(R_{1} R_{2}\right)$ for regular expressions R_{1}, R_{2},
- R_{1}^{*} for a regular expression R_{1}.
\rightarrow Regular expressions represent languages!

Regular Expressions - Examples

What languages do the following regular expressions (RE) represent?

- 0^{*}
- $10 * 1$
- $\left(1(0 \cup 1)^{*} 1\right) \cup\left(0(0 \cup 1)^{*} 0\right) \cup 0 \cup 1$

Regular Expressions - Automata

What is the connection between RE and DFA/NFA?

Regular Expressions and Automata

What is the connection between RE and DFA/NFA?

- Can all RE be represented using DFA/NFA?
- Can all DFA/NFA be described by RE?

Last Lecture: Yes! Now some examples.

Regular Expressions and Automata

Proposition

Every language described by an $R E$ is regular.
Proof based on inductive definition of RE, e.g.,: if $R=a$ for $a \in \Sigma$, then the corresponding language $L(R)=\{a\}$ is accepted by the following DFA:

Rest of the proof is based on unions, concatanations, and Kleene stars of languages and corresponding DFAs, see exercises and the book.

Regular Expressions and Automata

Proposition

Every regular language can be described using a $R E$.

GNFA

Generalized Nondeterministic Finite Automaton (GNFA):

- NFA where the transitions are RE, not only symbols from Σ.
- some other assumptions for convenience:
- start state goes to every other state, but has no incoming states
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all
$(0 \cup 1)^{*}$

 other states, including themselves.

Regular Expressions and Automata

Proposition

Every regular language can be described using a RE.
Proof idea: take DFA and transform into a GNFA that accepts the same language. Iteratively remove (non-starting and non-final) states so that the same language is accepted, until only the starting and accepting state remain. Then the RE along the transition between the two states describe the regular language.

Regular Expressions and Automata

\Rightarrow When removing X, we must only consider

- Recall the "convenient" properties of GNFA:
- start state goes to every other state, but has no incoming states
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all other states, including themselves.
situations like this:

\Downarrow
$R_{1} \cup\left(R_{2} R_{3}^{*} R_{4}\right)$

Regular Expressions and Automata

Proposition

Every regular language can be described using a RE.
Example:
DFA:

GNFA:

Regular Expressions and Automata

Proposition

Every regular language can be described using a RE.
Example:
Remove state X :

Regular Expressions and Automata

Proposition

Every regular language can be described using a $R E$.
Example:
Remove state Y :

Summary

So $\mathrm{RE}=\mathrm{GNFA}=\mathrm{DFA}=$ NFA $=$ Regular languages.. . But when is a language irregular? How can we check? What tools have we seen? \Rightarrow Pumping Lemma!

Pumping Lemma

- DFAs only have finite memory, aka states.
- Pumping lemma gives a pumping length: if a string is longer than the pumping length, it can be pumped, i.e., there is a substring that can be repeated arbitrarily often such that the string remains in the language
- If a DFA as p states, and a string has length $\geq p$, then the accepting path in the DFA must visit at least $p+1$ states. In other words, at least one state appears twice. \Rightarrow loop!
- This loop can be repeated while staying in the language.

Pumping Lemma - Example

- Language $\left(10^{*} 1\right) \cup\left(01^{*} 0\right)$
- DFA has 4 states
- consider string 10001, length 5
- \Rightarrow path must contain a loop (in this case, at node b)

Pumping Lemma - Example

- Language $1(010)^{*} 1$
- DFA has 5 states
- consider string 10101, length 5
- \Rightarrow path must contain a loop (in this case, at nodes b,d,e)
- $\Rightarrow 10100101$ is also a word!

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if s is a word in A of length $\geq p$ then s can be divided into three parts, $s=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0$,
(3) $|x y| \leq p$.

Pumping Lemma

- very useful for determining if a language is irregular
- \rightarrow find a string with length $\geq p$ such that the pumping lemma does not hold
- not very useful for proving a language is regular
- \rightarrow not an if and only if statement!

Pumping Lemma - Applied

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if s is a word in A of length $\geq p$ then s can be divided into three parts, $s=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0$,
(3) $|x y| \leq p$.

- Let $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- Is A regular?
- If it is, then the pumping lemma gives us a pumping length p.
- Let $s=0^{p} 1^{p}$.

Pumping Lemma - Applied

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if s is a word in A of length $\geq p$ then s can be divided into three parts, $s=x y z$, such that
(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0$,
(3) $|x y| \leq p$.

- Let $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- Let $s=0^{p} 1^{p}$.
- Condition 3 tells us that y consists of only 0 s .
- \Rightarrow then $x y^{i} z$ for $i \geq 2$ has more 0 s than 1 s . Contradiction! $\Rightarrow A$ is irregular.

Pumping Lemma - Applied

- Even if a language is irregular, it might contain strings for which the pumping lemma is true!
- We have to be careful!

Pumping Lemma - Applied

Lemma (Pumping Lemma)

(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0$,
(3) $|x y| \leq p$.

- Let $B=\{\omega \mid \omega$ contains an equal number of 0 s and 1 s$\}$.
- Let $s=(01)^{p}$.
- $x=\varepsilon, y=01, z=(01)^{p-1}$
- all conditions are met!

Pumping Lemma - Applied

Lemma (Pumping Lemma)

(1) $x y^{i} z \in A$ for every $i \geq 0$,
(2) $|y|>0$,
(3) $|x y| \leq p$.

- Let $B=\{\omega \mid \omega$ contains an equal number of 0 s and 1 s$\}$.
- Let $s=0^{p} 1^{p}$.
- $x=\varepsilon, y=0^{p} 1^{p}, z=\varepsilon$
- looks like it can be pumped, but are all conditions met?
- condition $3 \Rightarrow y$ must contain only 0 s, so it cannot be pumped $\Rightarrow B$ irregular!

Pumping Lemma - Applied

- $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- $B=\{\omega \mid \omega$ contains an equal number of 0 s and 1 s$\}$
- Another way of showing B is irregular is to reduce it to the irregularity of A :
- regular languages are closed under intersection
- and $A=B \cap 0^{*} 1^{*}$
- if B is regular and since $0^{*} 1^{*}$ is regular, then A must be as well, contradiction!
- another way of saying this is: if a language contains an irregular language, it must be irregular as well!

Summary

- regular expressions are shorthand notations for languages
- RE $=$ GNFA $=$ DFA $=$ NFA, i.e., regular expressions are shorthand for regular languages
- proof involved transforming a DFA to a GNFA then reducing the number of states to 2 while accepting the same language
- \rightarrow the regular expressions describe the paths in the DFA
- every regular language has a pumping length
- useful for determining if a language is irregular

