
INF2080
Regular Expressions

Daniel Lupp

Universitetet i Oslo

28.01.2015

Department of
Informatics

University of
Oslo

INF2080 28.01.2015 1 / 27

Group session tomorrow

There will be no group session tomorrow, Jan. 29. Friday (Jan 30) there will be a group
session as planned.

INF2080 28.01.2015 2 / 27

Regular Expressions

Definition (Regular Expression)

Given an alphabet Σ, a regular expression is
a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions R1,R2,
(R1R2) for regular expressions R1,R2,
R∗

1 for a regular expression R1.

→ Regular expressions represent languages!

INF2080 28.01.2015 3 / 27

Regular Expressions - Examples

What languages do the following regular expressions (RE) represent?
0∗

10∗1
(1(0 ∪ 1)∗1) ∪ (0(0 ∪ 1)∗0) ∪ 0 ∪ 1

INF2080 28.01.2015 4 / 27

Regular Expressions - Automata

What is the connection between RE and DFA/NFA?

Language 0(0 ∪ 1)∗0:
2

1start 3

0

0, 1

0

INF2080 28.01.2015 5 / 27

Regular Expressions and Automata

What is the connection between RE and DFA/NFA?

Can all RE be represented using DFA/NFA?
Can all DFA/NFA be described by RE?

Last Lecture: Yes! Now some examples.

INF2080 28.01.2015 6 / 27

Regular Expressions and Automata

Proposition
Every language described by an RE is regular.

Proof based on inductive definition of RE, e.g.,: if R = a for a ∈ Σ, then the corresponding
language L(R) = {a} is accepted by the following DFA:

start
a

Rest of the proof is based on unions, concatanations, and Kleene stars of languages and
corresponding DFAs, see exercises and the book.

INF2080 28.01.2015 7 / 27

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

INF2080 28.01.2015 8 / 27

GNFA

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.
some other assumptions for convenience:
start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

start

1

(0 ∪ 1)∗

0

1∗

start
((ab∗) ∪ (ba∗))∗

INF2080 28.01.2015 9 / 27

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Proof idea: take DFA and transform into a GNFA that accepts the same language. Iteratively
remove (non-starting and non-final) states so that the same language is accepted, until only the
starting and accepting state remain. Then the RE along the transition between the two states
describe the regular language.

INF2080 28.01.2015 10 / 27

Regular Expressions and Automata

Recall the “convenient” properties of
GNFA:
start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

⇒ When removing X, we must only consider
situations like this:

X

R2 R4

R3

R1

⇓
R1 ∪ (R2R∗

3R4)

INF2080 28.01.2015 11 / 27

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Example:
DFA:

start

1

0

1

0 0

1

GNFA:

start

1

0

1

0 0

1

∅ ∅

∅

INF2080 28.01.2015 12 / 27

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Example:
Remove state X:

start

X1

0

1

0 0

1

∅ ∅

∅
start

0 0

1

∅ ∪ (10∗1)

INF2080 28.01.2015 13 / 27

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Example:
Remove state Y:

start

Y

0 0

1

(10∗1)

start

(10∗1) ∪ (01∗0)

INF2080 28.01.2015 14 / 27

Summary

So RE = GNFA = DFA = NFA = Regular languages...
But when is a language irregular? How can we check? What tools have we seen?
⇒ Pumping Lemma!

INF2080 28.01.2015 15 / 27

Pumping Lemma

DFAs only have finite memory, aka states.
Pumping lemma gives a pumping length: if a string is longer than the pumping length, it
can be pumped, i.e., there is a substring that can be repeated arbitrarily often such that
the string remains in the language
If a DFA as p states, and a string has length ≥ p, then the accepting path in the DFA
must visit at least p + 1 states. In other words, at least one state appears twice. ⇒ loop!
This loop can be repeated while staying in the language.

INF2080 28.01.2015 16 / 27

Pumping Lemma - Example

astart

b

c

d

1

0

1

0 0

1

Language (10∗1) ∪ (01∗0)

DFA has 4 states
consider string 10001, length 5
⇒ path must contain a loop (in this case,
at node b)

INF2080 28.01.2015 17 / 27

Pumping Lemma - Example

astart

b

c

d e

1 1

0

1

0

Language 1(010)∗1
DFA has 5 states
consider string 10101, length 5
⇒ path must contain a loop (in this case,
at nodes b,d,e)
⇒ 10100101 is also a word!

INF2080 28.01.2015 18 / 27

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if s is a
word in A of length ≥ p then s can be divided into three parts, s = xyz, such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

INF2080 28.01.2015 19 / 27

Pumping Lemma

very useful for determining if a language is irregular
→ find a string with length ≥ p such that the pumping lemma does not hold
not very useful for proving a language is regular
→ not an if and only if statement!

INF2080 28.01.2015 20 / 27

Pumping Lemma - Applied

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if s is a
word in A of length ≥ p then s can be divided into three parts, s = xyz, such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let A = {0n1n | n ≥ 0}.
Is A regular?
If it is, then the pumping lemma gives us a pumping length p.
Let s = 0p1p.

INF2080 28.01.2015 21 / 27

Pumping Lemma - Applied

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if s is a
word in A of length ≥ p then s can be divided into three parts, s = xyz, such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let A = {0n1n | n ≥ 0}.
Let s = 0p1p.
Condition 3 tells us that y consists of only 0s.
⇒ then xy iz for i ≥ 2 has more 0s than 1s. Contradiction! ⇒ A is irregular.

INF2080 28.01.2015 22 / 27

Pumping Lemma - Applied

Even if a language is irregular, it might contain strings for which the pumping lemma is
true!
We have to be careful!

INF2080 28.01.2015 23 / 27

Pumping Lemma - Applied

Lemma (Pumping Lemma)

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let s = (01)p.
x = ε, y = 01, z = (01)p−1

all conditions are met!

INF2080 28.01.2015 24 / 27

Pumping Lemma - Applied

Lemma (Pumping Lemma)

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let s = 0p1p.
x = ε, y = 0p1p, z = ε

looks like it can be pumped, but are all conditions met?
condition 3 ⇒ y must contain only 0s, so it cannot be pumped ⇒ B irregular!

INF2080 28.01.2015 25 / 27

Pumping Lemma - Applied

A = {0n1n | n ≥ 0}.
B = {ω |ω contains an equal number of 0s and 1s}
Another way of showing B is irregular is to reduce it to the irregularity of A:
regular languages are closed under intersection
and A = B ∩ 0∗1∗

if B is regular and since 0∗1∗ is regular, then A must be as well, contradiction!
another way of saying this is: if a language contains an irregular language, it must be
irregular as well!

INF2080 28.01.2015 26 / 27

Summary

regular expressions are shorthand notations for languages
RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
proof involved transforming a DFA to a GNFA then reducing the number of states to 2
while accepting the same language
→ the regular expressions describe the paths in the DFA
every regular language has a pumping length
useful for determining if a language is irregular

INF2080 28.01.2015 27 / 27

