INF2080

Regular Expressions

Daniel Lupp

Universitetet i Oslo

28.01.2015

Department of Informatics

University of Oslo

Group session tomorrow

There will be no group session tomorrow, Jan. 29. Friday (Jan 30) there will be a group session as planned.

Regular Expressions

Definition (Regular Expression)

Given an alphabet Σ , a regular expression is

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,
- (R_1R_2) for regular expressions R_1, R_2 ,
- R_1^* for a regular expression R_1 .
- \rightarrow Regular expressions represent languages!

Regular Expressions - Examples

What languages do the following regular expressions (RE) represent?

- 0*
- 10*1
- $(1(0 \cup 1)^*1) \cup (0(0 \cup 1)^*0) \cup 0 \cup 1$

What is the connection between RE and DFA/NFA?

Language $0(0 \cup 1)^*0$:

What is the connection between RE and DFA/NFA?

- Can all RE be represented using DFA/NFA?
- Can all DFA/NFA be described by RE?

Last Lecture: Yes! Now some examples.

Proposition

Every language described by an RE is regular.

Proof based on inductive definition of RE, e.g.,: if R = a for $a \in \Sigma$, then the corresponding language $L(R) = \{a\}$ is accepted by the following DFA:

Rest of the proof is based on unions, concatanations, and Kleene stars of languages and corresponding DFAs, see exercises and the book.

Proposition

Every regular language can be described using a RE.

GNFA

Generalized Nondeterministic Finite Automaton (GNFA):

- NFA where the transitions are RE, not only symbols from Σ .
- some other assumptions for convenience:
- start state goes to every other state, but has no incoming states
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all other states, including themselves.

Proposition

Every regular language can be described using a RE.

Proof idea: take DFA and transform into a GNFA that accepts the same language. Iteratively remove (non-starting and non-final) states so that the same language is accepted, until only the starting and accepting state remain. Then the RE along the transition between the two states describe the regular language.

- Recall the "convenient" properties of GNFA:
- start state goes to every other state, but has no incoming states
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all other states, including themselves.

 \Rightarrow When removing X, we must only consider situations like this:

Proposition

Every regular language can be described using a RE.

Example: DFA:

GNFA:

Proposition

Every regular language can be described using a RE.

Example:

Remove state X:

start
$$\rightarrow 0$$
 0 0

Proposition

Every regular language can be described using a RE.

Example:

Remove state Y:

$$\mathsf{start} \to \underbrace{ (10^*1) \cup (01^*0)}_{}$$

Summary

```
So RE = GNFA = DFA = NFA = Regular languages... But when is a language irregular? How can we check? What tools have we seen? \Rightarrow Pumping Lemma!
```

Pumping Lemma

- DFAs only have *finite* memory, aka states.
- Pumping lemma gives a *pumping length*: if a string is longer than the pumping length, it can be *pumped*, i.e., there is a substring that can be repeated arbitrarily often such that the string remains in the language
- If a DFA as p states, and a string has length $\geq p$, then the accepting path in the DFA must visit at least p+1 states. In other words, at least one state appears twice. \Rightarrow loop!
- This loop can be repeated while staying in the language.

Pumping Lemma - Example

- Language $(10*1) \cup (01*0)$
- DFA has 4 states
- consider string 10001, length 5
- ullet \Rightarrow path must contain a loop (in this case, at node b)

Pumping Lemma - Example

- Language 1(010)*1
- DFA has 5 states
- consider string 10101, length 5
- ⇒ path must contain a loop (in this case, at nodes b,d,e)
- ullet \Rightarrow 10100101 is also a word!

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if s is a word in A of length $\geq p$ then s can be divided into three parts, s = xyz, such that

- $xy^iz \in A$ for every $i \geq 0$,
- **2** |y| > 0,
- $3 |xy| \le p.$

Pumping Lemma

- very useful for determining if a language is irregular
- ullet ightarrow find a string with length \geq p such that the pumping lemma does not hold
- not very useful for proving a language is regular
- ullet \rightarrow not an if and only if statement!

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if s is a word in A of length $\geq p$ then s can be divided into three parts, s = xyz, such that

- **2** |y| > 0,
- $|xy| \le p.$
 - Let $A = \{0^n 1^n \mid n \ge 0\}$.
 - Is A regular?
 - If it is, then the pumping lemma gives us a pumping length p.
 - Let $s = 0^p 1^p$.

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if s is a word in A of length \geq p then s can be divided into three parts, s = xyz, such that

- **2** |y| > 0,
- $|xy| \leq p$.
- Let $A = \{0^n 1^n \mid n \ge 0\}$.
- Let $s = 0^p 1^p$.
- Condition 3 tells us that y consists of only 0s.
- \Rightarrow then xy^iz for $i \ge 2$ has more 0s than 1s. Contradiction! $\Rightarrow A$ is irregular.

- Even if a language is irregular, it might contain strings for which the pumping lemma is true!
- We have to be careful!

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$
- Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
- Let $s = (01)^p$.
- $x = \varepsilon, y = 01, z = (01)^{p-1}$
- all conditions are met!

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$
- Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
- Let $s = 0^p 1^p$.
- $x = \varepsilon, y = 0^p 1^p, z = \varepsilon$
- looks like it can be pumped, but are all conditions met?
- condition $3 \Rightarrow y$ must contain only 0s, so it cannot be pumped $\Rightarrow B$ irregular!

- $A = \{0^n 1^n | n \ge 0\}.$
- $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}$
- Another way of showing B is irregular is to reduce it to the irregularity of A:
- regular languages are closed under intersection
- and $A = B \cap 0^*1^*$
- if B is regular and since 0^*1^* is regular, then A must be as well, contradiction!
- another way of saying this is: if a language contains an irregular language, it must be irregular as well!

Summary

- regular expressions are shorthand notations for languages
- RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
- proof involved transforming a DFA to a GNFA then reducing the number of states to 2 while accepting the same language
- ullet ightarrow the regular expressions describe the paths in the DFA
- every regular language has a pumping length
- useful for determining if a language is irregular