
Universitetet i Oslo
Institutt for Informatikk

I. Yu, D. Karabeg

INF2220: algorithms and data structures

Series 1

Topic Function growth & estimation of running time, trees (Exercises
with hints for solution)

Issued: 24. 08. 2016

Exercise 1 (Growth of functions) Order the following functions by growth rate: N ,√
N , N1.5, N2, N logN , N log logN , N log2N , N log(N2), 2/N , 2N , 2N/2, 37, N2 logN ,

N3. Indicate which functions grow at the same rate.

Solution: [of 1]The first one is of course a anomaly, since it grows negatively. Hardly
any algorithm will ever get faster on larger input.
2/N, 37,

√
N,N,N log log(N), N logN,N logN2, N log2N,N1.5, N2, N2 logN,N3, 2N/2, 2n

Exercise 2 (O-notation) The statements below show some features of “big-O” notation
for the functions f ≡ f(n) and g ≡ g(n). Determine whether each of the following
statements is true or false and correct the formula in the latter case.

1. O(f ∗ g) = O(f) ∗O(g)

2. O(f) < O(g) for f(n) ≡ log nC1 , g(n) ≡ log nC2 some constants C1, C2 where C1 <
C2

Solution:

1. TRUE

2. FALSE, O(f) = O(g) = O(logN)

Exercise 3 (Analysis of running time) Estimate the running time of the following
program fragments (a “big-O” analysis). In the fragments, the variable n, an integer, is
the input.

f o r (i = 0 ; i < n ; i++)
sum++;

f o r (i = 0 ; i < n ; i += 2)
sum++;

f o r (i = 0 ; i < n ; i++)
f o r (j = 0 ; j < n ; j++)

sum++;

www.uio.no
http://www.ifi.uio.no

Series 1 (+ Hints for solutions) 24. 08. 2016

f o r (i n t i = 0 i < n ; i++)
sum++;

f o r (i n t j = 0 j < n ; j++)
sum++;

f o r (i = 0 ; i < n ; i++)
f o r (j = 0 ; j < n∗n ; j++)

sum++;

f o r (i = 0 ; i < n ; i++)
f o r (j = 0 ; j < i ; j++)

sum++;

f o r (i = 0 ; i < n ; i++)
f o r (j = 0 ; j < n∗n ; j++)

f o r (k = 0 ; k < j ; k++)
sum++;

f o r (i = 1 ; i < n ; i = i ∗2)
sum++;

Solution: [Analysis of running time]
O(N)
O(N)
O(N2)
O(N)
O(N3)
O(N2)
O(N5)
O(logN)

Note that of course the analysis of given programs (in this exercise more of simple
program fragments/loops) is a (much) simpler problem than “runtime complexity analysis”
of a problem. When analysing a problem, one is typically interested in finding an estimation
(for instance a worst-case estimation) of the best of all possible algorithms! The same
remark of course applies to the next exercise. ut

Exercise 4 (Analysis of running time)

1. The following program snippet sorts an integer array int[] A = new int[n]. What’s
the order of running time for that in big-O notation.

f o r (i n t i = 0 ; i < n ; i++) {
minj = i ;
f o r (j = i + 1 ; j < n ; j++) {

i f (A[j] < A[minj]) {
minj = j ;

}
}
bytt (i , minj) ;

}

2. What’s the order of running time for that in big-O notation for the following frag-
ment. Pay attention especially for the conditional inside the second nested loop.

f o r (i n t i = 1 ; i <= n ; i++) {
f o r (i n t j =1; j <= i ∗ i ; j++) {

i f (j % i == 0) {
f o r (i n t k = 0 ; k < j ; k++)

sum++;

2

Series 1 (+ Hints for solutions) 24. 08. 2016

}
}
}

3. For a given n > 0, which value will be found in the variable L2 after executing the
following program snippet. The answer should be given as a function of n. Of which
order is the running time of this program in big-O notation?

i = 1 ;
L2 = −1;
whi l e (i <= n) {

i = i ∗ 2 ;
L2++;

}

Solution:

1. O(N2)

2. O(N4)

3. O(log2N)

Exercise 5 Big-O Fibonacci
The following program will calculates the n’th Fibonacci number. Determine the

running time in big-O notation:

i n t f i b (i n t n) {
i f (n<=1) {

r e turn 1 ;
}
r e turn f i b (n−1) + f i b (n−2);

}

Solution: O(2n)

Exercise 6 (Terminology of trees and tree traversal) For the given tree, determine

• what is the root?

• which are the leaves

• what’s the tree’s height

• Give the result of preorder, postorder, inorder, and level-order traversal.

• For all the nodes of the tree

– name the parent

– list the children

– list the siblings

– compute the height, depth, and size.

3

Series 1 (+ Hints for solutions) 24. 08. 2016

Nodes Parent Children Siblings Height Depth Size

a - b, c - 4 0 13

b a d c 3 1 5

c a e, f b 3 1 7

d b g, h e, f 2 2 4

e c i d, f 1 2 2

f c j d, e 2 2 4

g d k h, i, j 1 3 2

h d - g, i, j 0 3 1

i e - g, h, j 0 3 1

j f l, m g, h, i 1 3 3

k g - l, m 0 4 1

l j - k, m 0 4 1

m j - k, l 0 4 1

a

/ \

/ \

/ \

b c

\ / \

d e f

/ \ / /

g h i j

\ / \

k l m

Solution: [Terminology of trees and tree traversal]

• root: a

• leaves: k, h, i, l, m

• tree’s depth: 4

• preorder: a, b, d, g, k, h, c, e, i, f, j, l, m
postorder: k, g, h, d, b, i, e, l, m, j, f, c, a
inorder: b, g, k, d, h, a, i, e, c, l, j, m, f

•

Exercise 7 (Binary search tree - insertion and deletion)

• Show the result of inserting 6, 4, 8, 5, 1, 9, 7, 11, 2 into an initially empty binary
search tree.

• Show the result of first deleting 1 (from the previously constructed tree), and then
6.

Solution: [Binary search tree - insertion and deletion]

4

Series 1 (+ Hints for solutions) 24. 08. 2016

6 7

/ \ / \

/ \ / \

4 8 4 8

/ \ / \ / \ \

1 5 7 9 2 5 9

\ \ \

2 11 11

ut

Exercise 8 (Non-unique search keys) We use a binary search tree to store a number
of elements containing an integer value (of type int) together with a number of other data.
We assume that each node has a pointer to its left, resp. right child, as usual. Different
from most examples in the lecture, we allow here that different elements can have the same
value —the other data can be different— and they are supposed to be stored in different
nodes.

1. A possible solution does the following when inserting a value: goes further down the
tree, if hitting an object carrying the same value. We can always chooses to go down
further in the right subtree if we encounter an object with the same value. Write a
insert-method that implements this idea and sketch some typical trees that result in
that implementation.

2. In which order will we get out object sharing the same value if we print trees that
result from above under 1, when we follow an infix traversal? What happens if we
follow down the left children instead the right ones, as in 1?

3. In this part of the exercise, the nodes with the same value should be put into a list
starting at the first node with that value. This list, however, requires additional
pointers, but we can do it as follows: If we insert an object and there is alread
exactly one with this value in the tree, so link we that element into the between the
old node and its right-hand subtree. If later on more object with the same value
should be inserted, they well be linked into a list from that second object where the
left-child -pointer is used as list-pointer. Sketch some examples, and write an insert
method based in that idea.

4. when printing out trees constructed as described under 3 in infix order, nodes with
the same values still end up in one batch. But in which order are they actually
processed? Write a modified print-method which prints nodes with the same values
in the order they had been filled in originally.

Exercise 9 (Frequency Tree) We want to use a binary search tree to analyze the play
Vildanden from Henrik Ibsen. First read all the words which are separated by, e.g. “;”,
“?”, etc, from the file and insert them into an initially binary search tree. All the words
which are different from upper case and lower case are considered to be the same. Each
node in the tree is corresponding to a unique word in the file. Each node should remember
the frequency of the corresponding word appear in the play.

• Create a separate frequency tree which is sorted on the frequency of each word.

5

Series 1 (+ Hints for solutions) 24. 08. 2016

• Write a sorted list of the N most frequently used words (e.g. N = 20).

• Write a list of all words having frequency between X and Y (which may be equal).

• Calculate the depth of the left and right subtrees for both the binary search tree and
the frequency tree.

• Are the left and right subtrees balanced? If not, propose a way to make the tree
more balanced, and implement and test the proposal.

6

