
Universitetet i Oslo
Institutt for Informatikk

I. Yu, D. Karabeg

INF2220: algorithms and data structures

Series 2

Topic Balanced trees

Issued: 31. 08. 2016

Classroom

Exercise 1 (Trees) Given a binary tree (not necessesarily a binary search tree), with an
arbitary number of nodes. Implement/write a function which

(a) returns the smallest value in the tree

(b) returns the largest value in the tree

(c) returns the length of the longest path from the root to a null pointer

(d) returns the length of the shortest path from the root to a null pointer

Exercise 2 (Nodes in a binary tree)

1. Show that in a (non-empty) binary tree with N nodes, there are N + 1 null links
representing children.

2. A full node is a node with 2 children. Prove that the number of full nodes + 1 is
equal to the number of leaves in a non-empty binary tree.

Exercise 3 (Red-black tree) Build, step by step, red-black trees that result from in-
serting the following sequences of elements:

1. 41 38 31 12 19 8

2. A L G O R I T H M

Exercise 4 (B-trees)

1. Assume an empty B-Tree with M = 4 and L = 4. Insert the following values in the
given order:

A B C D G H K M R W Z

www.uio.no
http://www.ifi.uio.no


Series 2 31. 08. 2016

Show how the tree changes step by step.

2. Assume an empty B-Tree with M = 5 and L = 5. Insert the following values in the
given order:

2 6 17 20 24 25 27 29 30 31 32 5 21 1 40 45 50 70

Show how the tree changes step by step.

3. Assume an empty B-Tree with M = 3 and L = 4.

• Insert the following values:

61 27 19 5 7 25 36 4 42 2 13 44 62 98 43 16 24 29 15

Show how the tree changes step by step.

4. Assume an empty B-Tree with M = 3 and L = 2.

• Insert the following values:

3 14 1 59 26 5 89 79

Show how the tree changes step by step.

• Delete 59, 5, 3, 1 and 26. Draw the tree after each deletion.

Exercise 5 (Rotations - theory) What do we mean by a single roation, and what do
we mean by a double rotation? Give a few examples on each.

Exercise 6 (AVL trees (extra exercise)) Build, step by step, AVL trees that result
from inserting the following sequences of elements:

• 41 38 21 12 19 8

• A L G O R I T H M

Lab

Exercise 7 (Binary search trees) In this exercise you are going to implement a binary
search tree using two different approaches:

1. You are given a Tree class with an inner class Node:

public class Tree {

Node root;

private class Node {

Node right;

Node left;

int value;

Node(int value) {

this.value = value;

}

}

}

2



Series 2 31. 08. 2016

Do the following exercises without changing the Node class, i.e. let all functions be
a part of the Tree class:

(a) Implement a function that inserts a value in the BST.

(b) Implement a function that search for a value in the BST, returning a boolean
value

(c) Implement a function that returns the smallest value in the BST.

2. Assume now that you don’t have a Tree class, i.e. only the structure

public class Node {

Node right;

Node left;

int value;

Node(int value) {

this.value = value;

}

}

An empty tree is refered to as a null pointer; the root is used to refer to the tree.
Implement all of the above functions as recursive methods in the Node class.

Exercise 8 (Binary tree) Given a binary tree whose nodes are given as instances of the
following class:

c l a s s BinNode {
i n t data ;
BinNode l e f t ;
BinNode r i g h t ;

}

An empty tree is represented by the null reference.

1. Write a method int number(BinNode t) which gives back the number of nodes.

2. Write a method int sum(BinNode t) which gives back the sum of the integer data
values of all nodes in the tree.

Exercise 9 (Binary trees (2)) Revisiting the binary trees and the BinNode data struc-
ture described in Exercise 8, this exercise here is to provide a slightly different way of
solving the same 2 problems. Instead of the methods sketched in Exercise 8, provide two
methods with the (alternative) interface

int number()

int sum()

so that they are local to class BinNode, i.e. one should be able to call functions as follows:

int number = root.number();

int number = root.sum();

Exercise 10 (B-Trees) Write a general implementation of insertion for a B-Tree. Note
that you have to restructure the tree in case the leaf is full after the insertion.

3



Series 2 31. 08. 2016

Exercise 11 (Rotations - programming (can also be blackboard exercises)) Implement
a function which makes V the new root node (for a subtree), without destroying the prop-
erties of the BST.

References

4


