
Universitetet i Oslo
Institutt for Informatikk

I. Yu, D. Karabeg

INF2220: algorithms and data structures
Series 8

Topic Permutations and Pruning

Issued: 12. 10. 2016

Classroom

Exercise 1 A derangement is a permutation p of {1,. . .,n} such that no item is in its
proper position, i.e. pi 6= i for all 1 ≤ i ≤ n. Write an efficient backtracking program
with pruning that constructs all the derangements of n items.

Exercise 2 Use a random number generator that generates numbers from {0,1,2,3,4}
with equal probability to write a random number generator that generates numbers from
{0,1,2,3,4,5,6,7} with equal probability.

Exercise 3 There are four people (A, B, C, D) have to cross a bridge. However, the
bridge is fragile and can hold at most two of them at the same time. Moreover, to cross
the bridge a torch is needed to avoid traps and broken parts. The problem is that these
people have only one torch that lasts for only 60 minutes. Each one of them needs a
different time to cross the bridge (in either direction):

A 5 minutes
B 10 minutes
C 20 mintues
D 25 minutes

The problem now is: In which order can the four people cross the bridge in time (that is,
in 60 minutes)?

Exercise 4 Solve the first exercise of the handout of Krogdahl & Maus [?] (linked from
the course website) (the exercise in section 16: placement of 9 numbers):1

Find permutations x1, x2, . . . , x9 of the nine decimal numerals 1, 2, . . . , 9 which satisfies
the following condition: the decimal number x1x2 is divisible by 2, the number x1x2x3 is
divisible by 3, . . . , analogously up to x1, . . . , x9. Find all such permutations.

Take as starting point the source code below. This contains a generic, recursive algo-
rithm generating all permutations of a text string.

Consider the permutations of the string

1 The additional exercice mentioned in the texts needs not be solved.

www.uio.no
http://www.ifi.uio.no

Series 8 12. 10. 2016

123456789

We are interested only in the permutations matching the requirement. In other words:
you should use pruning (“avkjaering” in the lecture = pruning) such that the algorithms
discontinues to look at the strings not satisfying the requirement. For instance: having
generated the string 17, stop generating extensions of that string, as this number is not
divisible by 2.

Exercise 5 Solve the same exercise, but this time use the framework of Krogdahl & Maus
to generate the permutation (cf. AvskProg at page 8).

Exercise 6 In the well-known eight queens problem, the challenge is to place eight queens
on an 8 x 8 chessboard so that no queen can take another one, i.e., no two queens share the
same row, column, or diagonal. The eight queens problem is an example of the more general
N-queens problem of placing n queens on an N x N chessboard. Write an implementation
to solve the N-queens problem, where N ∈ N and N > 3.

Listing 1: Code skeleton
public class Permutation{

// use the en t i r e s t r i n g as the end ingStr ing
// when c a l l e d with one parameter
public void permuteStr ing (S t r ing s){

permuteStr ing (”” , s) ;
}

public void ass ignment1 (){
long t 0 = System . cur rentT imeMi l l i s () ;

permuteStr ing (”123456789”) ;

System . out . p r i n t l n (” time used : ”+(System . cur rentT imeMi l l i s () − t 0)+” ms”) ;
}

// r e cu r s i v e d e c l a ra t i on o f method permuteStr ing
public void permuteStr ing (

S t r ing beg inn ingStr ing , S t r ing end ingStr ing){

// base case : i f s t r i n g to permute i s l en g t h l e s s than or equa l to
// 1 , j u s t d i s p l a y t h i s s t r i n g concatenated with beg inn ingS t r ing
i f (end ingSt r ing . l ength () <= 1){

i f (i sDev idab l e (beg inn ingSt r ing + end ingStr ing)){
System . out . p r i n t l n (beg inn ingSt r ing + end ingStr ing) ;

}
} else { // recurs ion s t ep : permute end ingStr ing

// fo r each charac ter in end ingStr ing
for (int i = 0 ; i < end ingSt r ing . l ength () ; i++){

try{

// crea t e new s t r i n g to permute by e l im ina t ing the
// charac ter at index i
St r ing newEndString = end ingSt r ing . sub s t r i ng (0 , i) + end ingSt r ing . sub s t r i ng (i + 1) ;

S t r ing newBeginString = beg inn ingSt r ing + end ingStr ing . charAt (i) ;

// r e cu r s i v e c a l l wi th a new s t r i n g to permute
// and a beg inning s t r i n g to concatenate , which
// inc l ude s the charac ter at index i

i f (i sDev idab l e (newBeginString)){
permuteStr ing (newBeginString , newEndString) ;

}

2

Series 8 12. 10. 2016

}catch (StringIndexOutOfBoundsException except ion){
except ion . pr intStackTrace () ;

}
}

}
}

public boolean i sDev idab l e (S t r ing s){

// ignore t e s t i f s t r i n g i s not a number
// a l s o ignore f o r ’1 ’ l en g t h d i g i t s s ince
// a l l numbers % 1 == 0

i f (! s . matches (”ˆ\\d+$”) | | s . l ength () == 1) return true ;

int sAsInt = In t eg e r . pa r s e In t (s) ;
return (sAsInt % s . l ength () == 0) ;

}

public stat ic void main (St r ing [] a rgs){
Permutation p = new Permutation () ;
for (S t r ing s : args){

p . permuteStr ing (s) ;
System . out . p r i n t l n (”−−−−”) ;

}

p . ass ignment1 () ;
}

}

3

