UNIVERSITETET I OSLO
Institutt for Informatikk

I. Yu, D. Karabeg

INF2220: algorithms and data structures
Series 11

Topic Dynamic programming (Exercises with hints for solution)

Issued: 2. 11. 2016

Classroom

Exercise 1 (Fibonacci) Design an algorithm to compute Fibonacci numbers in linear
time.

Solution:

public static int fibonacci(int n)
{
if(n <= 1)
return 1;

int last = 1;

int nextTolLast = 1;

int answer = 1;

for(int i = 2; i <= n; i++)

{
answer = last + nextTolast;
nextTolLast = last;
last = answer;

}

return answer;

¥

Exercise 2 (Matrix) Let A be an N-by-N matrix of zeros and ones. A submatrix S
of A is any group of contiguous entries that forms a square. Design an algorithm that
determines the number of elements of the largest submatrix of “ones” in A. For instance,
in the matrix that follows, the largest submatrix is a 4-by-4 square.

10111000
00010100
00111000

www.uio.no
http://www.ifi.uio.no

Series 11 (+ Hints for solutions) 2. 11. 2016

00111010
00111111
01011110
01011110
00011110

Solution: [of Exercise [2] Hint: A simple dynamic programming algorithm, in which we
scan in row order suffices. Each square computes the maximum sized square for which it
could be in the lower right corner. That information is easily obtained from the square
that is above it and the square that is to its left.

Exercise 3 Product-sum (from 2014 exam)

Given a list of n integers, v1,..., vy, the product-sum of the list is the largest sum
that can be formed by multiplying adjacent elements in the list. Each element can be
matched with at most one of its neighbors. For example, the product-sum of the list
1,2,3,1is 8 (=14 (2 x 3) + 1) and the produckt-sum of the list 2,2,1,3,2,1,2,2,1,2 is
19(=2x2)+1+Bx2)+1+(2x2)+1+2).

1. Optimization

Given a list of n integers for n > 2. What is the optimal product-sum OPT'(j) for
the first j elements in the list? Meaning, you should find out what OPT(j) is for
j€{0,1,...,n}.

2. Dynamic programming

Give a dynamic programming solution for this problem. Implement the method
prodSum which returns the product-sum of the first j elements of a list v:

int prodSum(int [] v, j) {

..... // your code

The method only needs to return the product-sum.

Solution:
1. OPT(0)=0
OPT(l) = U1

OPT(j) = max(OPT(j — 1) +v;,OPT(j — 2) + (v; x vj_1)) if j >2

2. int prodSum (int [] v, j){
if (j==0) return O0;

int [] OPT = new int [j+1];

OPT[0] = 0;
OPT[1] = v|[1];
it (j>=2) {
for int k 2 to j

OPT k] — max ("OPT[k—1] + v[k], OPT[k—2] + v[k] * v[k—1]);

return OPTJ[j]

Series 11 (+ Hints for solutions) 2. 11. 2016

Exercise 4 Assume that you have a table with size n x m, with positive values in each
cell. Further, assume that you start in the left upper corner, and that you are allowed
to go only to the right or downwards. For each cell you enter, you add the cell’s value
to your counter. Use dynamic programming to find the maximum value you can get by
taking any route from your position to the lower right corner.

Solution: Start at the upper left corner. For each cell, going from left to right rowwise,
assign a value which is the maxmum of the sum of the cell’s value and the value of the cell
to the left (if it exists) and the cell’s value and the value of the cell above (if it exists).

Exercise 5 (Skip this if you not are familiar with matrix multiplication)

Assume that you are going to multiply n matrices in a given sequence. This can be
done in many ways; e.g. as (AB)C or A(BC). The sequence you use will determine the
number of multiplications and additions (floating point operations) you need to perform
the multiplication. Use dynamic programming to find the most optimal sequence. (You
can assume that all multiplications are well definied, i.e. that the dimensions matches.
The number of multiplications needed to multiply two matrices of size (I x m), (m x n) is
of order O(lmn).)

Solution: First two cases are trivial; let M; € R™*™2 M, € R™2*™3 and assign
di = mimoms. For the case n = 3, assume that M3 € R™*™4 We can do chain
multiplication by (M;Mas)Ms, which gives

O(mymams) * O(mymsmy) = O(m3mam3imy) (1)

operations, or by M;(MyMs), which gives
O(mamgmy) * O(mimamy) = O(mlmgmgmi) (2)
operations. The minimum of these is determined by the minimum of {mj;ms, mamy}; take
dy = min{mymg, momy} * (Mm1maomsmy) (3)

Dynamic programming step: You know the number which minimizes the last two cases.
When introducing a new matrix My € R™4*™5 take the minimum of the operations given
by (M Ms)(MszMy) and (MyMaMs)My, i.e. save the value

min{di(mamams)(mimzms), d2(mimams)} (4)

(possibly use a temporary variable tmp, assign di = dg;dy = tmp, which makes it easy
to generalize). In general, for the k’'th multiplication: Compute all values up to the k’th
iteration, and then take

min{dlmlmiflmkmzﬂ, domimymg1} (5)

Lab

Exercise 6 Create a simplified implementation of a Huffman compression where you:
1. Reads the input file and create the frequency table for each letter.

2. Use the frequency table plus a binary heap to create Huffman tree.

Series 11 (+ Hints for solutions) 2. 11. 2016

3. Saves the bit representation of characters as String (ex: “001”).

4. Print {letter, frequency, binary representation} and about how much space
would be saved by compressing the file with your Huffman tree.

Exercise 7 The longest common subsequence problem is as follows: Given two sequences
A = ay,ag,....... m, and B = by, bo,....... b,, find the length, k , of the longest sequence
C=cco,y...... ¢k such that C'is a subsequence (not necessarily contiguous) of both A and
B. As an example, if

A =d,yn,am,ji.c
B = b,r,0,g,r,a,m,m,1,n,g,

then the longest common subsequence is a,m,i and has a length 3. Give an algorithm
to solve the longest common subsequence problem. Your algorith should run in O(MN)
time.

