
Universitetet i Oslo
Institutt for Informatikk

A. Maus, R.K. Runde, I. Yu

INF2220: algorithms and data structures

Mandatory assignment 1

Issued: 31. 08. 2017

Due: 12. 09. 2017

General description

This assignment is to implement a simple dictionary with basic spell-check func-
tionality for a subset of the English language. The words for your dictionary are
provided to you in a text file, named dictionary.txt on the inf2220 web-page.
The first part of the assignment is to read the file and insert the words into your
dictionary data structure.

There are 75.000 words in this file and they come in random order (i.e., they are
not sorted in advance, as you will see). The words are separated by newlines and
blank spaces, and all the words are given in lowercase letters.

When the program starts it should read the input file and insert all the words into
the dictionary. The program should provide the user with a simple user interface
for looking up words in the dictionary (see details below). If the user tries to lookup
a word that doesn’t exist, your program should perform a spell-check by looking
up similar words (see details below). When the user exits the program, it should
output some statistics about the dictionary before quitting (see details below).

1 Data structure

You will have to implement the dictionary as a binary search tree containing all the
words, including functionality to insert and search for words in the dictionary. We
recommend that you also include functionality to delete words from the dictionary,
but this is not a strict requirement. Given that that the words are stored randomly
in our input file, no steps have to be taken to balance the tree. As one consequence
of that: the first word read remains the root of the tree (unless it is removed).

www.uio.no
http://www.ifi.uio.no


31. 08. 2017

2 User interface

We want to give the user a very simple interface. An endless loop that prompts for
a word and tries to lookup that word will be sufficient. To abort the loop the letter
’q’ may be used (the letter ’q’ will not be a word in the dictionary).

Our definition of ”spell-check”

When the user has written a word as input the program should search for that word
in the binary search tree (remember to convert the input into lower case letters).

If the word is found the program shall simply output that the word has been
found and prompt for a new word.

If the word is not found the program shall look for similar words in the dictionary
in case the user misspelled the word.

Similar words

In our definition of similar words there are four kinds of words similar to the user
input:

• A word identical to the input, except that two letters next to each other
should be switched. (Example search term: bkie; generated words: kbie, bike
and bkei; where bike is an example of an English word that is generated)

• A word identical to the input, except one letter should be replaced with an-
other. (Example search term: blke; generated words: alke, clke, dlke, ..., blkz;
where bike is an example of an English word that is generated)

• A word identical to the input, except one letter should be added in front,
at the end, or somewhere in the middle of the word. (Example search term:
bie; generated words: abie, bbie, ..., baie, ..., biae, ..., biez; where bike is an
example of an English word that is generated)

• A word identical to the input, except one letter should be removed. (Example
search term: bixke; generated words: ixke, bxke, bike, bixe and bixk; where
bike is an English word that is generated)

If the user input is not found, the program should print that the word is not
found and then generate all similar words using the rules given above and search
for them in the dictionary. If any of the similar words generated is found in the
dictionary, print them out as suggestions to the user.

In the README-file (see details below), you should give an analysis (in O-
notation) of the running time of your code for each of these four variants of gener-
ating similar words.

2



31. 08. 2017

3 Tree statistics

Upon exiting the program it should output the following statistics about the binary
search tree:

• The depth of the tree

• How many nodes there are for each depth of the tree.

• The average depth of all the nodes.

• The alphabetically first and last word of the dictionary.

4 Hints

Conversion between character arrays and strings is very simple in Java, to convert
a string to a character array:

char[] alphabet = "abcdefghijklmnopqrstuvwxyz".toCharArray();

and back again by initializing a new String object:

String str_alphabet = new String(alphabet);

This might come in handy during generation of similar words.

5 Delivery requirements

The assignment should be carried out individually and delivered through
https://devilry.ifi.uio.no/.

• The implementation language should be Java.

• Your implementation must compile on the Linux machines at the University.

• The delivery must only be in one single archive file: either a .tgz or .zip

archive (with one of those two file extensions).

• Your archive should contain

– Compilable (and afterwards runnable) source file(s) of your implementa-
tion.

– Print-out of execution in a file called utskrift.txt which shows:

∗ The different statistics

∗ Spell-check of these words:

· achiev

· achiese

3



31. 08. 2017

· achievee

· ahcieve

Do not write directly to the file utskrift.txt from your Java-program.
Instead, use the shell commands > and >>.

– A README-file which contains:

1. The running time analysis of your code for generating similar words

2. How to compile your program (ie. javac *.java)

3. Which file includes the main-method

4. Any assumptions you have made when implementing the assignment

5. Any peculiarities about your implementation

6. The status of your delivery (what works and what does not)

7. What you are most interested in receiving feedback about, and if you
want feedback in Norwegian or English (the default is Norwegian)

8. Remember to give credit if your code is heavily influenced by some
source (ie. teaching material)

How to create an archive file

.tar

You should create a tar’ed or zipped archive where the top-level directory is your
username.

If your username is ’myusername’ and you want to tar it:

> mkdir myusername

> mv YourProgram.java utskrift.txt README.txt myusername/

> tar -czf myusername.tgz myusername/

This will give you a file called myusername.tgz which holds all the content of
the assignment in a zipped (compressed) tar-file.

.zip

On machines that cannot create tar-files (eg. Windows) you can move the files you
want to compress into a folder. Right click on the folder and click ”move to” and
then ”compressed (zipped) folder”.

A .zip-file will now be created containing all files from the folder you right clicked.

4


	Data structure
	User interface
	Tree statistics
	Hints
	Delivery requirements

