UNIVERSITETET I OSLO
Institutt for Informatikk

A. Maus, R.K. Runde, I. Yu

INF2220: algorithms and data structures
Series 2

Topic Balanced trees

Issued: 31. 08. 2017

Classroom

Exercise 1 (Analysis of running time)

1. The following program snippet sorts an integer array int[] A = new int[n]. What’s
the order of running time for that in big-O notation.

for (int 1 = 0; i < n; i++4) {
J

;J < nj
jl <A

Ry
_l’_
N
-

2. What’s the order of running time for that in big-O notation for the following frag-
ment. Pay attention especially for the conditional inside the second nested loop.

for (int i = 1; i <= n; i++) {
for (int j=1; j <= ix*i; j++) {
if (% i=0){
for (int k = 0; k < j; ki++ )
sum-+-+;

3. For a given n > 0, which value will be found in the variable L2 after executing the
following program snippet. The answer should be given as a function of n. Of which
order is the running time of this program in big-O notation?

i =1;

L2 = —1;

while (i <= n) {
=i % 2,
L2++;

}



www.uio.no
http://www.ifi.uio.no

Series 2 31. 08. 2017

Exercise 2 Big-O Fibonacci
The following program will calculates the n’th Fibonacci number. Determine the
running time in big-O notation:

int fib(int n) {
if (n<=1) {
return 1;
}

return fib (n—1) 4+ fib(n—2);

Exercise 3 (Height of a binary tree)
1. Exercise 4.5 in MAW.

2. Show that for a balanced tree with N nodes, the height is [loga(N)].

Exercise 4 (Trees) Given a binary tree (not necessesarily a binary search tree), with an

arbitary number of nodes. Write pseudo-code for a function which
a) returns the smallest value in the tree

(a)

(b) returns the largest value in the tree

(c) returns the length of the longest path from the root to a null pointer
)

(d) returns the length of the shortest path from the root to a null pointer

Exercise 5 (Nodes in a binary tree)

1. Show that in a (non-empty) binary tree with N nodes, there are N + 1 null links
representing children.

2. A full node is a node with 2 children. Prove that the number of full nodes + 1 is
equal to the number of leaves in a non-empty binary tree.

Exercise 6 (Red-black tree) Build, step by step, red-black trees that result from in-
serting the following sequences of elements:

1. 41 38 31 12 19 8

2ALGORITHM

Exercise 7 (B-trees)

1. Assume an empty B-Tree with M = 4 and L = 4. Insert the following values in the
given order:

ABCDGHKMRW?Z

Show how the tree changes step by step.

2. Assume an empty B-Tree with M =5 and L = 5. Insert the following values in the
given order:

2 6 17 20 24 25 27 29 30 31 32 5 21 1 40 45 50 70



Series 2 31. 08. 2017

Show how the tree changes step by step.
3. Assume an empty B-Tree with M = 3 and L = 4.

e Insert the following values:
61 27 19 5 7 25 36 4 42 2 13 44 62 98 43 16 24 29 15

Show how the tree changes step by step.
4. Assume an empty B-Tree with M =3 and L = 2.

e Insert the following values:
314 159 26 589 79

Show how the tree changes step by step.
e Delete 59, 5, 3, 1 and 26. Draw the tree after each deletion.

Lab
Exercise 8 (Binary search) Implement binary search in an array of integers.

Exercise 9 (Rotations) Implement zig and zig-zag rotation for arbitrary binary search
trees (i.e. without the color coding of red-black trees).

Exercise 10 (B-Trees) Write a general implementation of insertion for a B-Tree. Note
that you have to restructure the tree in case the leaf is full after the insertion.

Exercise 11 (Red-black trees) In the previous week, you were asked to analyze the
play Vildanden from Henrik Ibsen by building a binary search tree. Instead of building a
BST, use a red-black tree for the play Vildanden this week. Similarly, all the words which
are different from upper case and lower case are considered to be the same. Each node
in the tree is corresponding to a unique word in the file. Each node should remember the
frequency of the corresponding word appear in the play. Calculate the depth of the left
and right subtrees for the red-black tree, and compare with the depth of the BST from
last week.



