
Universitetet i Oslo
Institutt for Informatikk

A. Maus, R.K. Runde, I. Yu

INF2220: algorithms and data structures

Series 5

Topic Graphs

Issued: 21. 09. 2017

Classroom

Exercise 1 (Graphs) 1. For each of the graphs 1-4 determine whether the graph is

(a) Connected?

(b) Directed?

(c) Cyclic?

2. What kind of graph is most suitable to represent ...

(a) Friends at Facebook?

(b) Flights?

(c) Subjects you can choose/attend at the University?

Exercise 2 (Terminology, topological sorting)

1. Draw the following directed graph G = (V,E), i.e., give a pictorial/“graphical”
representation of G:

V = {1, 2, 3, 4, 5, 6, 7}
E = {(1, 2), (1, 4), (1, 3), (4, 3), (4, 6), (4, 7), (3, 6), (5, 4), (5, 7), (2, 4), (7, 6)}

www.uio.no
http://www.ifi.uio.no

Series 5 21. 09. 2017

2. Is G strongly connected? If not, is it weakly connected?

3. Write down the adjacency matrix and adjacency list for the graph.

4. What are the indegree and outdegree for each node in the graph?

5. Does there exists a legal topological ordering/topological sorting of the elements? If
so, give such an ordering? If not: why does it not exist?

Exercise 3 (Topological sorting) Draw each of the following graphs. Determine if
there exists a topological sorting for each of them; if yes, find it, if no, explain why not.

1. {(A,B),(A,F),(B,D),(E,C),(B,E),(F,E)}

2. {(A,C),(B,E),(C,E),(D,B)}

3. {(A,B),(A,F),(B,C),(C,D),(D,A),(F,C),(F,E),(E,D)}

Exercise 4 (Hamiltonian Path (exam 2013)) A Hamiltonian path is a path in a graph
that visits each node in the graph once. Let graph G = (V,E) be a directed acyclic graph
(DAG).

Write a method HamiltonianPath which, given a graph G as input, returns true if
G contains a Hamiltonian path and returns false otherwise. Your algorithm should have
linear time complexity. Show that your algorithm satisfies this running time requirement.

Exercise 5 (Terminology, shortest paths)

1. Draw the following directed and weighted graph G = (V,E) defined as follows:

V = {1, 2, 3, 4, 5, 6}
E = {(1, 5, 1), (1, 6, 2), (2, 1, 7), (2, 6, 9), (3, 1, 2), (3, 5, 3), (4, 1, 3), (4, 3, 2), (4, 5, 4),

(5, 2, 6), (6, 2, 4), (6, 4, 4)} .

As a weighted graph, the set of edges is not a subset of V ×V , but E ⊆ V ×V ×N, i.e.,
it has a weight or cost as a third component (here as non-negative natural number).
The cost is here the third element in the edge tuples (thus edge triples) above.

2. Is G strongly connected? If not, is it weakly connected?

3. Write down the adjacency matrix and adjacency list for the graph.

4. What are the indegree and outdegree for each node in the graph?

5. Give the shortest paths and the respective costs from node 1 to each of the other
nodes in the graph.

Lab

Exercise 6 For the topological sorting algorithm, one needs a table of indegrees of nodes
in a graph. Write a method that collects the indegrees of each node in a graph. Assume
that you have an adjacency list L[] that represents the graph. Furthermore, assume that
ListNode of an adjacency list contains fields

2

Series 5 21. 09. 2017

public int destination

public ListNode next

which one may use in the code. The method signature should be in this form:

public int[] calculateIndegrees(ListNode L[])

The method should return the table of indegrees.

Exercise 7 Implement the method shortestPathFrom, this method should return the
nodes with their distance variable set according to their actual shortest distance from
the input identifier.

import java.util.HashMap;

import java.util.LinkedList;

class DistanceGraph{

HashMap<String, Node> graph;

DistanceGraph(){

graph = new HashMap<String, Node>();

}

void addVertex(String id){

graph.put(id, new Node(id));

}

boolean addEdge(String from, String to){

Node fromNode = graph.get(from);

Node toNode = graph.get(to);

if(fromNode == null || toNode == null){

System.err.printf(" %s : %s",

"DistanceGraph.addEdge",

"could not find both nodes\n");

return false;

}

return fromNode.addEdge(toNode);

}

private void removeVisitedFlags(){

for(Node n : graph.values()){

n.visited = false;

}

}

public LinkedList<Node> shortestPathFrom(String id){

// first we have to clear all flags..

removeVisitedFlags();

// make a que and a done list

LinkedList<Node> que = new LinkedList<Node>();

LinkedList<Node> done = new LinkedList<Node>();

// TODO

return done;

}

// testing it with the graph from slide 27 last lecture

public static void main(String[] args){

3

Series 5 21. 09. 2017

DistanceGraph dg = new DistanceGraph();

for(int i = 1; i < 8; i++){

dg.addVertex(String.format("V%d",i));

}

dg.addEdge("V1", "V2");

dg.addEdge("V1", "V4");

dg.addEdge("V2", "V5");

dg.addEdge("V2", "V4");

dg.addEdge("V3", "V6");

dg.addEdge("V3", "V1");

dg.addEdge("V4", "V3");

dg.addEdge("V4", "V6");

dg.addEdge("V4", "V7");

dg.addEdge("V4", "V5");

dg.addEdge("V5", "V7");

dg.addEdge("V7", "V6");

for(Node n : dg.shortestPathFrom("V3")){

System.out.println(n);

}

/* should produce something similar to this..

Node id: V3, distance 0

Node id: V6, distance 1

Node id: V1, distance 1

Node id: V2, distance 2

Node id: V4, distance 2

Node id: V5, distance 3

Node id: V7, distance 3

*/

System.out.println(" ------------------------");

for(Node n : dg.shortestPathFrom("V4")){

System.out.println(n);

}

/* should produce somthing like this

Node id: V4, distance 0

Node id: V3, distance 1

Node id: V6, distance 1

Node id: V7, distance 1

Node id: V5, distance 1

Node id: V1, distance 2

Node id: V2, distance 3

*/

}

}

class Node{

String id;

LinkedList<Node> neighbours;

boolean visited;

int distance;

Node(String _id){

id = _id;

neighbours = new LinkedList<Node>();

visited = false;

}

public boolean addEdge(Node to){

return neighbours.add(to);

}

4

Series 5 21. 09. 2017

public LinkedList<Node> getNeighbours(){

return neighbours;

}

public String toString(){

return String.format(" Node id: %2s, distance %d ",id,distance);

}

}

5

