UNIVERSITETET I OSLO
Institutt for Informatikk

A. Maus, R.K. Runde, I. Yu

INF2220: algorithms and data structures

Series 6

Topic Shortest paths and minimal spanning trees (Exercises with hints
for solution)

Issued: 28. Sept. 2017

Classroom

Exercise 1 (Dijkstra’s algorithm) Apply Dijkstra’s algorithm to find the shortest path
from the given start nodes to all others in Figures [l and [2| Construct a table for the al-
gorithms with entries vertex, known, d,, and p,.

Figure 1: Starting from node 4 Figure 2: Starting from node 1

Solution: [for Exercise |1| (Dijkstra)] Running Dijkstra results in the tables from Figure
Bl and (A

Exercise 2 (Prim’s algorithm) Apply Prim’s algorithm to the graphs in Figures and
[6] to construct a minimum spanning tree, respectively. Show the final table produced by

Prim’s algorithm for each tree.

Solution: [for Exercise 2| (Prim)] The results are shown in Figures [7| and O

www.uio.no
http://www.ifi.uio.no

Series 6 (+ Hints for solutions) 28. Sept. 2017

Vertex Known d, Pv Vertex Known d, po
1 T 3 4 1 T 0 -

2 T 9 6 2 T 5 1

3 T 2 4 3 T 2 1

4 T 0 - 4 T 4 1

5 T 4 41 5 F o -

6 T 5 1 6 T 6 4

7 T 10 4

Figure 3: Table for Figure 1, start- Figure 4: Table for Figure 2, start-
ing from node 4 ing from node 1

Figure 5: Undirected, weighted graph Figure 6: Undirected, weighted graph

Exercise 3 (Kruskal’s algorithm) Apply Kruskal’s algorithm to the graphs of Figure
and [] to construct the minimum spanning tree, respectively. Calculate the cost of each
of the minimum spanning trees. Are the costs same as those of the spanning trees resulted
in Exercise 27

Solution: [of Exercise [3| (Kruskal)] The resulting graphs are shown in Figures [9] and

The costs are 26 and 17, respectively
O

Exercise 4 (Spanning tree) Let G = (V, E) be a connected, undirected graph and let
T be a minimum spanning tree of G. Assume now that we change the weight of the edge
e = (u,v) in G.

1. Explain what changes of e will cause T' to no longer be a minimum spanning tree of
G. (NB. e is not necessarily an edge in T').

2. Explain an efficient algorithm that will with minimal changes to T" make T again
be a minimum spanning tree. Your algorithm should not change the weights in the
graph.

Solution:
For 1:

e case 1: Suppose e = (u,v) is in T, then T may no longer be an MST if the cost of e
becomes larger than the cost of an edge not in 7" that is in any path between u and
.

Series 6 (+ Hints for solutions) 28. Sept. 2017

Vertex Known d, py Vertex Known d, py
A T 3 B 1 T 1 2
B T 2 C 2 T 0o -
C T 2 G 3 T 3 4
D T 8 H 4 T 3 2
E T 3 F 5 T 4 7
F T 1 B 6 T 4 7
G T 0o - 7 T 2 2
H T 4 E
I T 3 F

Figure 7: Table for Prim on Fig.[§] Figure 8: Table for Prim on Fig. [0]

Figure 9: MST for Fig. 5] (Kruskal) Figure 10: MST for Fig. [6] (Kruskal)

e case 2: Suppose ¢ = (u,v) is not in T, then T may not be an MST if the cost of e
becomes smaller than the largest cost in the path between v and v in T'.

For 2:

e for case 1: e is removed such that now T is disconnected into trees T and T(you
can show that these are MSTs for the corresponding induced subgraphs), then the
minimum cost edge joining a vertex in 7} to a vertex in 75 is added to make the
MST.

e for case 2: the edge with largest cost in the path between u and v in T is removed
and new edge is added to T as before.

Lab

Exercise 5 We have a look at some particular kind of directed graphs, obeying the restric-
tion that all nodes have maximally one successor, but possibly more that one predecessors.
That class of graphs contains ordinary, linear lists, simple cyclic structures such as loop-
s/cycles, and a form of trees where the edges are directed towards the root. There are a
lot of further kinds of graphs. Draw a couple of different examples.

Assume that such graphs are represented by nodes of the following type:

class Node {

Series 6 (+ Hints for solutions) 28. Sept. 2017

Node succ; // it is null if there is no successor
int mark;

}

A given graph consists of n nodes and to access them we use an array:
Node [] graph = new Node[n];

The array contains the nodes in arbitrary order.

The exercise requires to program the following three boolean methods (i.e., methods
with boolean return type):

1. Checking whether or not the graph is a simple, linear lists ending with null.
2. Checking whether or not the graph is a simple cycle/loop?

3. Checking whether or not the graph is one single tree (with the edges pointing towards
the root).

Assume that in addition to the code fragment sketched above there is also an integer
variable mark, which should be intially null. You can use that variable in the implementa-
tion of the methods, if you wish. Try to solve the problems using as little different values
for that variable, or even better using it at all.

Exercise 6 Write a method which reads an adjacency matriz representation of a graph
and applies Prim’s algorithm to find a minimum spanning tree of the input graph. The
method should print the table produced by Prim’s algorithm which is similar to the one
you have seen in the lecture.

References

