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Classroom

Exercise 1 (Fibonacci) Design an algorithm to compute Fibonacci numbers in linear
time.

Exercise 2 (Matrix) Let A be an N -by-N matrix of zeros and ones. A submatrix S
of A is any group of contiguous entries that forms a square. Design an algorithm that
determines the number of elements of the largest submatrix of “ones” in A. For instance,
in the matrix that follows, the largest submatrix is a 4-by-4 square.

10111000

00010100

00111000

00111010

00111111

01011110

01011110

00011110

Exercise 3 Product-sum (from 2014 exam)
Given a list of n integers, v1, . . . , vn, the product-sum of the list is the largest sum

that can be formed by multiplying adjacent elements in the list. Each element can be
matched with at most one of its neighbors. For example, the product-sum of the list
1, 2, 3, 1 is 8 (= 1 + (2× 3) + 1) and the produckt-sum of the list 2, 2, 1, 3, 2, 1, 2, 2, 1, 2 is
19 (= (2× 2) + 1 + (3× 2) + 1 + (2× 2) + 1 + 2).

1. Optimization

Given a list of n integers for n ≥ 2. What is the optimal product-sum OPT (j) for
the first j elements in the list? Meaning, you should find out what OPT (j) is for
j ∈ {0, 1, . . . , n}.
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2. Dynamic programming

Give a dynamic programming solution for this problem. Implement the method
prodSum which returns the product-sum of the first j elements of a list v:

i n t prodSum( i n t [ ] v , j ) {

. . . . . // your code

}

The method only needs to return the product-sum.

Exercise 4 Assume that you have a table with size n ×m, with positive values in each
cell. Further, assume that you start in the left upper corner, and that you are allowed
to go only to the right or downwards. For each cell you enter, you add the cell’s value
to your counter. Use dynamic programming to find the maximum value you can get by
taking any route from your position to the lower right corner.

Exercise 5 (Skip this if you not are familiar with matrix multiplication)
Assume that you are going to multiply n matrices in a given sequence. This can be

done in many ways; e.g. as (AB)C or A(BC). The sequence you use will determine the
number of multiplications and additions (floating point operations) you need to perform
the multiplication. Use dynamic programming to find the most optimal sequence. (You
can assume that all multiplications are well definied, i.e. that the dimensions matches.
The number of multiplications needed to multiply two matrices of size (l×m), (m× n) is
of order O(lmn).)

Lab

Exercise 6 Create a simplified implementation of a Huffman compression where you:

1. Reads the input file and create the frequency table for each letter.

2. Use the frequency table plus a binary heap to create Huffman tree.

3. Saves the bit representation of characters as String (ex: “001”).

4. Print {letter, frequency, binary representation} and about how much space
would be saved by compressing the file with your Huffman tree.

Exercise 7 The longest common subsequence problem is as follows: Given two sequences
A = a1, a2, .......am, and B = b1, b2, .......bn, find the length, k , of the longest sequence
C = c1, c2, .......ck such that C is a subsequence (not necessarily contiguous) of both A and
B. As an example, if

A = d,y,n,a,m,i,c
B = p,r,o,g,r,a,m,m,i,n,g,

then the longest common subsequence is a,m,i and has a length 3. Give an algorithm
to solve the longest common subsequence problem. Your algorith should run in O(MN)
time.
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