INF2270, exercise in combinational logic two's complement arithmetic: example solution

February 11, 2012

.

Task 1

Figure 1 shows a cascade of half adders that increment a 9-bit signed integer by 1. The bus notation 'C(7:0),1' lables the bus cables from the MSB to the LSB, with a constant input 1 for the LSB and recursive connections for the carry out of the first 8 bits to the next higher bit. The XOR and AND gate represent 9 gates in parallel. The first half adder receives a constant 1 as carry in bit and thus, 1 is added to the the input a(8:0) and the result S is equal to a+1.

for:

Task 2

1101	1 =	= 2	27-32	=	-5	Ď
	-		9-128	=	-	
101010	-		5-128		-43	
10000000	-	~				·
11111111	-		11-512		-1	
	-	-	-			-
What is the corresponding 8 bit two's complement number						
-31	$\hat{=}$	-31-	+256=2	225	=	11100001
-32	$\hat{=}$	-32-	+256=2	224	=	11100000
-127	Ê	-127	+256 =	129	=	10000001
-128	Ê	-128	+256 =	128	=	10000000
-77	Ê	-77-	+256 = 1	79	=	10110011
22	Ê		22		=	00001010

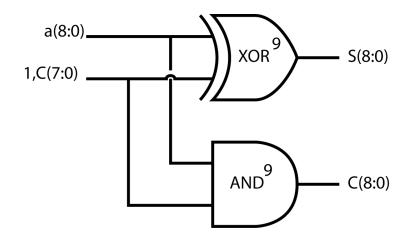


Figure 1: A circuit that increments a 9-bit integer by 1