INF2270, repetitions: equivalence of Boolean expressions and making a decoder from a demultiplexer

March 26, 2012

Abstract

Equivalence of two boolean expressions

In the figure 1 there is an example Karnaugh map shown (conveniently grouping the 1's already). Two simple functional expression can been derived from it, a) using regions of 1's in the K-map and b) using regions of 0 's. The results are two different Boolean expressions, which necessarily define the same function, since they have been derived from the same truth table.

Task 1
Derive the two expressions.

Task 2

Show that those two expressions define the same function by step-wise applying rules for equivalency of Boolean expression to the expression derived using the 1 's until you get the expression derived from the 0 's (or vice versa)?

Building a decoder from a demultiplexer

In the lecture and (compendium, section 5.1.2) we discussed one implementation variant of a decoder and a demultiplexer. The 3 -bit decoder implementation that was shown was composed of 3 inverters and 8 three-port AND gates (figure 2). The demultiplexer (compendium, section 5.1.4) implemenatation then made use of the decoder, with additional 8 AND gates (figure 3). Note, that these are by no means the only ways to implement these two circuits.

	00	01	11	10
8	1	0	1	(1)
$\bar{\sigma}$	0	0	1	1.
\mp	0	0	0	0
으	0	0	1	1

Figure 1: Example Karnaugh map

Figure 2: 3-bit decoder, possible implementation

Figure 3: 3-bit demultiplexer, possible implementation

Task 3

Thus, it is also possible to implement a 3-bit decoder quite compactly by assuming that one has a functional 3-bit demultiplexer as a building block, i.e. the other way round than presented in the lecture. Can you show how?

