# INF2270, repetitions: equivalence of Boolean expressions and making a decoder from a demultiplexer

March 26, 2012

Abstract

# Equivalence of two boolean expressions

In the figure 1 there is an example Karnaugh map shown (conveniently grouping the 1's already). Two simple functional expression can been derived from it, a) using regions of 1's in the K-map and b) using regions of 0's. The results are two different Boolean expressions, which necessarily define the same function, since they have been derived from the same truth table.

#### Task 1

Derive the two expressions.

#### Task 2

Show that those two expressions define the same function by step-wise applying rules for equivalency of Boolean expression to the expression derived using the 1's until you get the expression derived from the 0's (or vice versa)?

### Building a decoder from a demultiplexer

In the lecture and (compendium, section 5.1.2) we discussed one implementation variant of a decoder and a demultiplexer. The 3-bit decoder implementation that was shown was composed of 3 inverters and 8 three-port AND gates (figure 2). The demultiplexer (compendium, section 5.1.4) implementation then made use of the decoder, with additional 8 AND gates (figure 3). Note, that these are by no means the only ways to implement these two circuits.

| 🔪 ab |            |    |    |    |    |
|------|------------|----|----|----|----|
| g    | $\searrow$ | 00 | 01 | 11 | 10 |
| 0    | 00         | 1  | 0  | 1  |    |
|      | 01         | 0  | 0  | 1  | 1  |
|      | 11         | 0  | 0  | 0  | 0  |
|      | 10         | 0  | 0  | 1  | 1  |
|      |            |    |    | 1  |    |

Figure 1: Example Karnaugh map



Figure 2: 3-bit decoder, possible implementation



Figure 3: 3-bit demultiplexer, possible implementation

## Task 3

Thus, it is also possible to implement a 3-bit decoder quite compactly by assuming that one has a functional 3-bit demultiplexer as a building block, i.e. the other way round than presented in the lecture. Can you show how?