
UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in INF2810
Day of exam: June 5, 2014
Exam hours: 14:30 (4 hours)
This examination paper consists of 4 pages.
Appendices: None
Permitted materials: None

Make sure that your copy of this examination paper
is complete before answering.

Final Exam: INF2810, Spring 2014

Guidelines

• We recommend that you read through the full exam before you start (4 pages). In case you feel there might be
missing information somewhere in the exam text, make your own assumptions and explain these briefly.

• Where we ask you to write code or implement something, we expect Scheme (or more specifically, R5RS as
we have used throughout the semester). In case you get stuck on specifics of Scheme syntax or individual
procedure names, however, it can be preferable to write pseudo-code, rather than writing nothing.

• Like in the lecture notes we will sometimes use “→” to indicate the value a given expression evaluates to.

1 List structures (16 points)

(a) Given the definitions below, what are the values of z1 and z2? Draw box-and-pointer diagrams that show the
underlying structures as well.

(define z1
(let ((foo (list ’a ’b)))
(cons foo foo)))

(define z2
(cons (list ’a ’b) (list ’a ’b)))

(b) Again given the definitions above, explain the effect of the following call (you can also show this by drawing
a box-and-pointer diagram if you prefer).

(set-car! z2 (cdr z2))

(c) Define a recursive procedure nested-count taking a symbol and a possibly nested list as arguments, re-
turning the number of occurrences of the symbol in the list. Example call:

(nested-match ’b ’((b) ((b a) b) a))
→ 3

(d) What type of process will your implementation of nested-match generate for the call example above?

2 let and lambda (7 points)

Rewrite the following expressions to an equivalent form that uses lambda instead of let. In addition, state
the return value or effect that the expressions have when evaluated.

(a) (let ((foo (list 1 2))
(bar (* 2 2)))

(cons bar foo))

1

(b) (let ((foo (list 1 2)))
(display foo)
(newline)
(let ((foo (cons 0 (cdr foo))))
(display foo)))

3 Procedures (12 points)

(a) Write a procedure compose that takes two procedures as arguments – let’s call them p1 and p2 – and returns
a new procedure that applies p1 to the result of applying p2 to its argument. Both p1 and p2, and the new
procedure that is returned, expect a single argument. Example call:

(define (add1 x) (+ x 1))

(define (add100 x) (+ x 100))

((compose add1 add100) 5) → 106

(b) Based on compose you shall now write a procedure repeat that takes a procedure p and a positive integer
n as arguments, and returns a new procedure that applies p n times. Example call:

((repeat add1 10) 20) → 30

(c) Define eval-infix, taking as argument a three-element list on the form (arg1 operator arg2), and returning
the value of applying the operator in the middle to the two operands arg1 and arg2. Example calls:

(define exp1 (list 1 + 3))

(define exp2 (list 10 / 5))

(eval-infix exp1) → 4

(eval-infix exp2) → 2

4 Paradigms and idioms (25 points)

For this question you will write some different versions of a simple procedure scale. The arguments will
be a number x and a list of numbers seq, and the return value a list where every element of seq has been
multiplied by x. Example call:

(define foo (list 1 2 3 4))

(scale 3 foo) → (3 6 9 12)

(a) Write a purely functional version of scale based on tail recursion.

(b) Write a purely functional version of scale based on ordinary recursion.

(c) Write a purely functional version of scale based on higher-order sequence operations (it’s fine to use built-in
procedures here).

2

(d) Write a destructive version scale! that modifies its list argument.

(e) Write a stream version of you solution for (b) above: It should take a stream of numbers as argument and return
a new stream of the scaled elements. You can here assume that the entire interface for working with streams
that we have used in the course is available.

(f) Considering the example call on the sequence foo above, how many cons operations are spawned by calling
your respective scale procedures from (b), (d) and (e)? For (e) you should assume that the sequence is a
stream instead of a list, but with the same four elements.

5 Functional procedures (6 points)

Two built-in procedures in Scheme are for-each and map which we can think of as implemented like
shown below (slightly simplified). Spend a sentence or two explaining the similarity and, more importantly,
the difference between the two higher-order procedures as shown here. An important difference between
functional and non-functional procedures is reflected in the difference between for-each and map; briefly
explain what we are referring to here.

(define (for-each proc items)
(if (null? items)

’done
(begin (proc (car items))

(for-each proc (cdr items)))))

(define (map proc items)
(if (null? items)

’()
(cons (proc (car items))

(map proc (cdr items)))))

6 Environments (10 points)

We here turn to the environment model for evaluation. Draw an environment diagram showing all relevant
frames and bindings after all the expressions in the following sequence have been evaluated.

(define items ’(a b))

(define (keeper x)
(set! items (cons x items))
items)

(define (make-keeper items)
(lambda (x)

(set! items (cons x items))
items))

(define k1 (make-keeper ’(c d)))

(k1 ’e)

(keeper ’f)

3

7 Encapsulation (17 points)

Write a procedure make-accumulator that returns a new procedure that encapsulates a local variable sum
(initialized to 0) and lets us add a number (with the message ’add) or subtract a number (with the message
’sub). The procedure should also accept the message ’undo, letting us undo a given number of previous
calls and restore the sum to what is was before. In all cases the updated sum should be returned. Feel free to
define additional helper procedures if you like. Example calls:

(define acc (make-accumulator))

(define acc2 (make-accumulator))

(acc ’add 5) → 5

(acc ’add 15) → 20

(acc ’add 80) → 100

(acc ’add 10) → 110

(acc ’sub 20) → 90

(acc ’undo 3) → 20

(acc2 ’sub 5) → -5

8 Evaluation strategies (7 points)

Towards the end of course we looked at how the metacircular Scheme evaluator could be modified to implement
a form of so-called normal-order evaluation (lazy evaluation) as its standard evaluation strategy (for non-
primitive procedures). As part of this we also chose to memoize the evaluation of expressions that denote the
arguments for a procedure. Briefly explain the motivation for doing this. Also explain why it was not relevant
to do this as long as the evaluator stuck to so-called applicative-order evaluation (eager evaluation) as its
standard evaluation strategy.

4

