
1

Mandatory assignment 4, INF2820, 2013
· Deadline: April 25, 6:00 pm
· To be delivered in devilry.
· You should put your username in the comments of the submitted files, like

Oblig 5, jtl
· The mentioned files can be found at /projects/nlp/inf2820/

Exercise 1 – Parsing algorithms and efficiency (10 points)
In obligatory assignment 3 we saw how inefficient the original sr_parser() is. We made an improved
version sr_parse_refined and saw how much more efficient it was by comparing
>>> timing("""sr_parse(grammar,("Mary saw a man"+n*" in the park").split())""")
for n =1, 2, …, 5 for the original and the refined version of the parser. But we also saw that the refined
version slowed down if we continued with n=6, 7, 8, 9

We will now study what is gained by using some sort of table parser, e.g. chart parsing. Start with
sr_parse_refined, and in particular with the same example grammar. Make a chart parser, cp, for the
grammar using nltk.ChartParser. Then test
>>> timing("""cp.nbest_parse(("Mary saw a man"+n*" in the park").split())""")

With n=6,7,8,9. How does this compare to the shift-reduce parser? Then test the cp with n=10, 20, 30,
40, 50. What do you see?

Submission: Answers to the questions. A 2*4 table comparing the times of the two parsers for n=6, 7,
8, 9. A table for the times of cp for n=10, 20, 30, 40, 50.

Exercise 2 – Subsumption and unification (20 points)
a) Consider the five feature structures at the next page. For each of the 10 pair of structures A, B: does
A subsume B? Does B subsume A?

b) For each pair A, B, are A, B unifiable? For the pairs that are unifiable, give the unification both as
an attribute-value matrix (AVM) and as a directed acyclic graph (DAG).

Submission: Answers to the questions. The structures in question (b). You do not have to spend time
on fancy type-setting. The best preparation for the exam is to solve (b) by pen and paper. You may
then scan or take a digital photo of your solution and deliver this.

Exercise 3 – Understanding unification grammar (20 points)
We will work on the grammar v.2.1 from the lecture. For the simple sentence “John slept” it yields the
analysis in fig. 1. In a simplified notation this corresponds to the tree (fig. 2). As a grammatical
analysis one should be aware about certain choices that have been made, in particular the strict X-bar
schema:

1. A sentence is considered to be a maximal projection of the verb, i.e. of category V’’.
2. To follow a strict X-bar approach, there will be several unary (non-branching) trees for

phrases without specifiers or complements.
3. The treatment of determiners is simplified

1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HEAD

⎡
⎢⎢⎣AGR

[
PERS 3rd

NUM sg

]

CAT n

⎤
⎥⎥⎦

VAL

⎡
⎢⎢⎢⎢⎣
BAR 0

SPEC

⎡
⎢⎣HEAD

[
CAT det

]
VAL

[
SPEC -

]
⎤
⎥⎦

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HEAD

⎡
⎢⎢⎣AGR

[
PERS 3rd

NUM sg

]

CAT n

⎤
⎥⎥⎦

VAL

⎡
⎢⎢⎢⎢⎣
BAR 1

SPEC

⎡
⎢⎣HEAD

[
CAT det

]
VAL

[
SPEC -

]
⎤
⎥⎦

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HEAD

[
AGR 3

CAT n

]

VAL

⎡
⎢⎢⎢⎣
BAR 0

SPEC

⎡
⎣HEAD

[
CAT det

AGR 3

]⎤
⎦
⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HEAD

⎡
⎢⎢⎣
CAT det

AGR

[
PERS 3rd

NUM sg

]
⎤
⎥⎥⎦

VAL

[
BAR 1

SPEC -

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5)

[
VAL

[
BAR 0

]]

2

2

(For completeness:

· To identify S with V’’ has been proposed in the (early) X-bar literature, although most newer
proposals have chosen a more complex analysis. One reason is the analysis of inflection and
auxiliaries.

· In other approaches the unary trees may be avoided. For example, in HPSG where there is no
explicit BAR feature, where instead the BAR-level is determined by whether the COMPS and
SPEC-lists are empty.)

We have implemented grammar v.2.1 in the NLTK fcfg-format in the file fcfg/grammar_2_1.fcfg. The
result of analyzing “John slept” is

>>> slept= mod.nbest_parse("John slept".split())
>>> len(slept)
1
>>> print slept[0]
(X[FS=[HEAD=[CAT='V'], VAL=[BAR=2, -MOD]]]
 (X[FS=[HEAD=[CAT='N'], VAL=[BAR=2, -MOD]]]
 (X[FS=[HEAD=[CAT='N'], VAL=[BAR=1, -MOD, -SPEC]]]
 (X[FS=[HEAD=[CAT='N'], VAL=[BAR=0, -COMP1, -MOD, -SPEC]]] John)))
 (X[FS=[HEAD=[CAT='V'], VAL=[BAR=1, -MOD, SPEC=[HEAD=[CAT='N'],
VAL=[BAR=2]]]]]
 (X[FS=[HEAD=[CAT='V'], VAL=[BAR=0, -COMP1, -MOD, SPEC=[HEAD=[CAT='N'],
VAL=[BAR=2]]]]]
 slept)))

a) For each of the numbered nodes in (fig. 1): which rule is responsible for the construction of this
node from its daughters?

b) We will see how the grammar describes some other constructions. Consider the sentence

3) A small girl saw John

This sentence is covered by the grammar. The simplified analysis is given by the tree (fig. 3). We want
the full analysis which corresponds to (fig.3) as (fig.1) corresponds to (fig.2). To save you some
repetitive work, you only have to draw the structures corresponding to the nodes within the red
boundary.

Submission: Answers to the questions. The structures in question (b). Also here you may use pen and
paper and take a picture or scan.

3

Some useful tools:
Before we proceed we will introduce some useful tools.

· First repeat the class Tree from Exercise set 6, and in particular the method
<name_of_tree>.draw() which may be used when you want to inspect your analyses. (It is also
possible to save the tree to postscript from which you may include it in your delivery if you
find it convenient.)

· Another tool which we have not used so far : It is possible to draw several trees at the same
time if you like to compare them by
>>> from nltk.draw.tree import draw_trees
>>> draw_trees(t1, t2, t3)
where t1, t2 and t3 are trees. The function takes any number of trees as arguments. If you have
a list of trees, say ts you may pass them as arguments by
>>> draw_trees(*ts)

· Unfortunately even though the tree drawing methods work for feature structure trees, there
seems to be some problems with the vertical alignment and the results are hard to read.

· I have written a small function which converts a tree of the form (fig.1) to form (fig.2), and a
version that rewrites a list of trees. Combining this with draw_trees will give you a quick
indication of whether your analyses are on the right track. These tools are in the file
fcfg/wrap.py. For example, figure 1 is produced by
>>> cp = load_parser("file:grammar_2_1.fcfg")
>>> ts = cp.nbest_parse("John slept".split())
>>> tn = simple_trees(ts)
>>> draw_trees(*tn)

Exercise 4 – Extending a unification grammar (50 points)
a) We will now extend the fragment in grammar_2_1.fcfg. First we will include some more verbs, and
start with the analysis of

4) A small girl told that John slept

a long the lines of fig.4. We should not add new rules, only lexical items. Two entries are needed:

· The verb told should take a complement of type C’’ (=CP, complement phrase)
· The complementizer that should be of category C and take a V’’ as complement.

Complete the details and check that you get the same analysis for the sentence.

b) Going back to earlier obligs, we also want to include some more verbs and constructions like
(* means ungrammatical, should not be in the grammar)

4b)Mary told a girl that John slept
4c) Mary said that John slept
4d) *Mary said a girl that John slept

c) We will also include a construction like the one in

5) John gave a toy to Mary

4

We will analyze it as in the tree in fig. 5. To do this we will have two different entries in the lexicon
for verbs like give. (In a more elaborate model we would have rules relating the two.) Make a new
lexical entry for give and for to to get the analysis.

d) There is one problem. We will also include other prepositions like by, in, with, of,… but avoid
constructions like

5b) John gave a toy by Mary

One possibility is to introduce a new head-feature for each preposition which distinguishes the
prepositions from each other. We may call it FORM and let FORM=’to’ for to, FORM=’by’ for by etc.
And then let give only take a PP as COMP2 if it has the form ‘to’. Fill in the details.

e) We also want PPs as modifiers to nouns as in (cf. fig. 6)

6) A girl with a toy slept.

Look at how adjectives as modifiers are analyzed and make the MOD feature on PPs appropriately.

f) We also want PPs as modifiers of V’. Ideally we would have the same lexical entry for a preposition
whether the PP is an argument (COMP) of a verb, it modifies an N’ or it modifies a V’. It is not easy
with the machinery we have introduced so far. The easiest is to have two different lexical entries, one
where the PP modifies an N’ and another one where it modifies a V’. This solution suffices for this
exercise. There is a possible danger that you will get a spurious ambiguity in the analysis of sentence
(5), but we ignore that.

g) Finally a reasonable analysis of sentences like

7a) John went home.
7b) John saw Mary here.

is to consider home and here to be an intransitive preposition which makes up a full PP by itself. Fill
in the details.

Submission: The extended grammar. At some points you may find the exercise underspecified. Make
your own choices for how you will solve them and explain your choices.

Fig.1

Fig.2 Fig.3

Fig.4

Fig.5 Fig.6

	Mandatory assignment 4, INF2820, 2013
	Exercise 1 – Parsing algorithms and efficiency (10 points)
	Exercise 2 – Subsumption and unification (20 points)
	Exercise 3 – Understanding unification grammar (20 points)
	Some useful tools:
	Exercise 4 – Extending a unification grammar (50 points)

	Trees.pdf
	Slide Number 1
	Slide Number 2

