Some Examples

(for data representation)
Example: Disk Organization – I

- Consider a (very old) disk with the following characteristics:
 - block size $B=512$ bytes
 - gap size $G=128$ bytes
 - 20 sectors per track
 - 400 tracks per surface
 - 15 double-sided platters
 - disk platters rotates at a speed of 2400 RPM
 - average seek time 30 ms

 (all numbers are given as a factor of 2, i.e., KB = 2^{10}, MB = 2^{20})

- What is the total capacity of a track
 \Rightarrow Total = 20 * (512+128) = 12800 bytes = 12.5 KB

- What is its useful capacity of a track (excluding interblock gaps)
 \Rightarrow Useful = 20 * 512 = 10240 bytes = 10 KB
Example: Disk Organization – II

- How many cylinders are there?
 - Number of cylinders = number of tracks = 400
- What is the total capacity of a cylinder?
 - Total = 15 * 2 * 20 * (512+128) = 384000 B = 375 KB
- What is the useful capacity of a cylinder?
 - Useful = 15 * 2 * 20 * 512 = 307200 B = 300 KB
- What is the total capacity of the disk?
 - Total = 15 * 2 * 400 * 20 * (512+128) = 153600000 B = 146.5 MB
- What is the useful capacity of a disk?
 - Useful = 15 * 2 * 400 * 20 * 512 = 117.18 MB
- What is the average rotational delay \(r_d \)?
 - \(r_d = (\text{time for one disk revolution}) / 2 = 25 / 2 = 12.5 \text{ ms} \)
Example: Disk Organization – III

- What is the total transfer rate (ttr)?
 \[ttr = \frac{\text{total track size in bytes}}{\text{time for one disk revolution}} \]
 \[= \frac{12800 \text{ B}}{\frac{60}{2400} \text{ s}} = \frac{12800 \text{ B}}{25 \text{ ms}} = 500 \text{ KB/s} \]

- What is the efficient (formatted) transfer rate (etr)?
 \[etr = \frac{\text{useful capacity of a track}}{\text{time for one disk revolution}} \]
 \[= \frac{10240 \text{ B}}{\frac{60}{2400} \text{ s}} = \frac{10240 \text{ B}}{25 \text{ ms}} = 400 \text{ KB/s} \]

- What is the sector transfer time (stt)?
 \[512 / (512 + 128) \times 360 / 20 = 14.4 \text{ degrees per sector} \]
 \[stt = 14.4 / 360 \times 25 \text{ ms} = 1 \text{ ms} \]
Example: Disk Organization – IV

• What is the time to transfer 4 KB (sectors in same track)?

> 7 gaps and 8 sectors must pass under disk head
 14.4 degrees per sector
 128 / (512 + 128) * 360 / 20 = 3.6 degrees per gap
 btt = ((8 * 14.4) + (7 * 3.6)) / 360 * (60 / 2400) s
 = 140.4 / 360 * 25 ms = 9.75 ms

> an approximate value may be calculated using the efficient transfer time or bulk transfer rate (btr)
 btr = (B/(B + G)) * ttr = 0.8 * 500 = 400 KB/s
 time to transfer 4 KB ≈ 4096 / 400 KB/s = 10 ms
Example: Disk Organization – V

• How much time does it take (on average) to locate and transfer a single sector given its address?
 \[\text{average time} = s + rd + stt = 30 + 12.5 + 1 = 43.5 \text{ ms}\]

• Calculate the average time to transfer 20 random sectors
 \[\text{time} = 20 \times (s + rd + stt) = 20 \times 43.5 = 870 \text{ ms}\]

• How much time is saved if the 20 sectors are stored contiguously (on same track)?
 \[\text{20 sectors and 19 gaps} = 356.6 \text{ degrees}\]
 \[\text{time} = 30 + 12.5 + (356.6/360 \times 25) = 67.25 \text{ ms}\]
 \[\text{you save} = 870 - 67.25 = 802.75 \text{ ms} \quad (92.2 \%)\]
Example: Disk Organization – VI

• Assume a process uses 100 ms to process the data in a 4 KB block.

How much time is saved using double buffering compared to single buffering if we shall process 10 blocks?

\[
\begin{align*}
\text{savings} & = 1097.5 - 1009.75 = 87.75 \text{ ms (8 %)} \\
\text{single} & = 10 \times (\text{retrieval time} + \text{processing time}) \\
& = 10 \times (9.75 + 100) = 1097.5 \text{ ms} \\
\text{double} & = \text{retrieval time} + 10 \times \text{processing time} \\
& = 9.75 + 10 \times 100 = 1009.75 \text{ ms}
\end{align*}
\]
Example: Disk Organization – VI

- Assume we want to read an MPEG movie in DVD quality (average 3.5 Mbps). How many disks do we need in parallel to achieve requested bandwidth assuming (i) random placement

\[3.5 \text{ Mbit/s} \approx 458.8 \text{ KB/s} \]

per-disk-transfer-rate = \(\frac{512 \text{ byte}}{(30+12.5+1) \text{ ms}} \approx 11.5 \text{ KB/s} \)

number of needed disks = \(\text{ceiling}(458.8 / 11.5) = 40 \text{ disks} \)

- (i) random placement, but increasing block size to 4 KB

\[\text{per-disk-transfer-rate} = \frac{4096 \text{ byte}}{(30+12.5+9.75) \text{ ms}} \approx 214 \text{ KB/s} \]

number of needed disks = \(\text{ceiling}(458.8 / 214) = 3 \text{ disks} \)
Example: Disk Organization – VI

- The disk we have used is OLD. What would the total transfer time (using bulk/efficient transfer time) be for a 4 KB blocks if use specifications from Seagate X15 to change (i) only data density on the platter to 617 sectors per track (20)

 - the new track can hold 315904 B data (10240 B)
 - etr = (useful capacity of a track) / (time for one disk revolution)
 - = (617 * 512) B / (60 / 2400) s = 12.05 MB/s (400 KB/s)
 - total = 30 + 12.5 + (4 / 12340) = 42.5003 ms (52.5 ms)

- (ii) only seek time to 3.6 ms (30 ms)

 - total = 3.6 + 12.5 + 10 = 26.1 ms (52.5 ms)

- (iii) only rotational speed to 15.000 RPM (2400 RPM)

 - etr = 10240 / (60 / 15000) = 10240 / 0.004 = 2.44 MB/s (400 KB/s)
 - total = 30 + 2 + (4 / 2500) = 32.502 ms (52.5 ms)

- (iv) all the above

 - etr = 315904 / 0.004 = 75.31 MB/s (400 KB/s)
 - total = 3.6 + 2 + (4 / 77125) = 5.60005 ms (52.5 ms)
Example: File Organization – I

- A file has \(r = 20000 \) fixed-length STUDENT records. Each record has the following fields:
 - NAME (30 bytes),
 - SSN (9 bytes),
 - ADDRESS (40 bytes),
 - PHONE (9 bytes),
 - BIRTHDATE (8 bytes),
 - SEX (1 byte),
 - MAJORDEPTCODE (4 bytes),
 - MINORDEPTCODE (4 bytes),
 - CLASSCODE (4 bytes),
 - DEGREEPROGRAM (3 bytes)

The file is stored on the disk used in the previous example.
Example: File Organization – II

• If the record header have 5 fields of 4 bytes for pointers to schema, record length, etc. Calculate the record size R in bytes

\[
R = \text{record header} + \text{record fields} = (4+4+4+4+4) + (30+9+40+9+8+1+4+4+4+3) = 132 \text{ B}
\]

• Calculate the blocking factor bfr

\[
bfr = \text{floor}(B / R) = \text{floor}(512 / 132) = 3 \text{ records per block}
\]

• Calculate the number of file blocks b needed assuming

 (i) an unspanned organization.

\[
b = \text{ceiling}(r / bfr) = \text{ceiling}(20000 / 3) = 6667 \text{ blocks}
\]

 (ii) a spanned organization (assume 3 * 2 B extra for record header)

\[
b = 138 \text{ bytes per record} \times 20000 \text{ records} / 512 \text{ B} = 5391 \text{ blocks}
\]
Example: File Organization – III

• If the 32-bit processor requires 4-byte alignment. What is the new record size?
 ⇢ For each field: \(size = \text{ceiling}(\text{old}_\text{size}/4) \times 4 \)
 \[R = 144 \text{ B} \]

• If the block header have 3 fields of 4 bytes for ID, pointer to first record, and pointer to overflow. What is the new blocking factor?
 ⇢ \(bfr = \text{floor}((512 – 12) / 144) = 3 \text{ records per block} \)

• What is the new number of file blocks \(b \) needed assuming
 (i) an unspanned organization.
 ⇢ \(b = \text{ceiling}(r / bfr) = \text{ceiling}(20000 / 3) = 6667 \text{ blocks} \)
 (ii) a spanned organization (assume 3 * 2 B extra for record header)
 ⇢ \(b = 156 \text{ bytes per record} \times 20000 \text{ records} / 500 \text{ B} = 6240 \text{ blocks} \)
Example: File Organization – IV

• What is the time to retrieve the whole file assuming random placement on disk for
 (i) unspanned records?
 ∴ Average time to retrieve a block is 43.5 ms
 Total time = 6667 * 43.5 ms = 290 s
 (i) spanned records?
 ∴ Total time = 6240 * 43.5 ms = 271 s

• How much time is saved using larger block sizes (4096 B) when using unspanned records?
 ∴ bfr = floor((4096 – 12) / 144) = 28 records per block
 b = ceiling(20000 / 28) = 715 blocks
 time to transfer one block is = 30 + 12.5 + 9.75 = 52.25 ms
 total time = 52.25 * 715 = 37 s
 savings = 290 – 37 = 253 s (87 %)
Example: File Organization – V

- Assume we want to change the order of the fields of all records, i.e., update all fields. The update processing operation takes 1 µs \(10^{-6}\) per record. What is the time to update the database using contiguous placement and
 (i) single buffering, 512 B blocks, unspanned records
 \[3 \text{ records per block} \rightarrow 6667 \text{ blocks},\]
 update operation: read, update, write, verify
 total time = \(6667 \times (43.5 + (3 \times 10^{-3}) + 43.5 + 25) = 747 \text{ s}\)
- (ii) single buffering, 4 KB blocks, unspanned records
 \[28 \text{ records} \rightarrow 715 \text{ blocks}\]
 total time = \(715 \times (52.25 + (28 \times 10^{-3}) + 52.25 + 25) = 93 \text{ s}\)

- NOTE: processing time consumes about 0.003 % and 0.022 % of the total time, respectively \(\rightarrow\) disk I/O consumes VERY much time