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ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s
chap. 5 + more)

2. 11.09: More on ML & types (chap. 5 and 6) 
3. 18.09: More on Types, Type Inference and 

Polymorphism (chap. 6)
4. 02.10: Control in sequential languages, Exceptions 

and Continuations (chap. 8)
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Outline

Brief overview of Algol-like programming languages
(Mitchell, Chapter 5)
• Algol 60
• Algol 68
• Pascal
• Modula
• C

Basic ML (Mitchell’s Chapter 5 + more – see at the end)
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A (partial) Language Sequence

Algol 60

Algol 68

Pascal

ML Modula

Lisp (Mc Carthy, MIT)
late 50s

Many other languages in the “family”:
Algol 58, Algol W, Euclid, Ada, Simula 67, BCPL,
Modula-2, Oberon, Modula-3 (DEC), Delphi, …
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Algol 60

Designed: 1958-1963 (J. Backus, J. Mc Carthy, A. Perlis,…)

General purpose language. Features:
• Simple imperative language + functions
• Successful syntax, BNF -- used by many successors

– statement oriented
– Begin … End blocks  (like C { … } )    (local variables) 
– if … then … else 

• Recursive functions and stack storage allocation
• Fewer ad hoc restrictions than Fortran

– General array references:  A[x + B[3]*y]

– Parameters in procedure calls

• Primitive static type system
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Algol 60 Sample

real procedure average(A,n);
real array A; integer n;
begin

real sum; sum := 0;
for i = 1 step 1 until n do

sum := sum + A[i];
average := sum/n

end;

no “;” here

no array bounds

set procedure return value by assignment
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Some trouble spots in Algol 60

Shortcoming of its type discipline
• Type “array” as a procedure parameter

– no array bounds

• “procedure” can be a parameter type
– no argument or return types for procedure parameter

Parameter passing methods
• Pass-by-name had various anomalies (side effects)
• Pass-by-value expensive for arrays

Some awkward control issues
• goto out of a block requires memory management



8

IN
F 3110/4110 -2006

Algol 60 Pass-by-name

Substitute text of actual parameter (copy rule)
• Unpredictable with side effects!

Example
procedure inc2(i, j);

integer i, j;
begin                            

i := i+1;  
j := j+1

end;
inc2 (k, A[k]);

begin                            
k := k+1; 
A[k] := A[k] +1

end;

Is this what you expected?
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Algol 68    

Intended to improve Algol 60
Considered difficult to understand
• New terminology

– types were called “modes”
– arrays were called “multiple values”

• Elaborate type system (e.g. array of pointers to procedures)
• Complicated type conversions

Fixed some problems of Algol 60
• Eliminated pass-by-name (introduced pass-by-reference)

Storage management
• Local storage on stack
• Heap storage, explicit alloc and garbage collection
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Pascal

Designed by N. Wirth (70s)
Evolved from Algol W
Revised type system of Algol
• Good data-structuring concepts (based on C.A.R. Hoare’s ideas)

– records, variants (union type), subranges (e.g. [1…10])

• More restrictive than Algol 60/68
– Procedure parameters cannot have procedure parameters

Popular teaching language (till the 90s)
Simple one-pass compiler
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Limitations of Pascal

Array bounds part of type
procedure p(a : array [1..10] of integer)
procedure p(n: integer, a : array [1..n] of integer)

illegal

• Practical drawbacks:
– Types cannot contain variables
– How to write a generic sort procedure?

• Only for arrays of some fixed length

How could this have happened? Emphasis on teaching

Not successful for “industrial-strength” projects
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Modula

Designed by N. Wirth (late 70s)
Descendent of Pascal
Main innovation over Pascal: Module system
• Modules allow certain declarations to be grouped together

– Definition module: interface
– Implementation module: implementation

Modules in Modula provides minimal information
hiding
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C  Programming Language

Designed for writing Unix by Dennis Ritchie (1969 -
1973)
Evolved from B, which was based on BCPL
• B was an untyped language; C adds some checking

Relation between arrays and pointers
• An array is treated as a pointer to first element
• E1[E2] is equivalent to ptr dereference *((E1)+(E2))
• Pointer arithmetic is not common in other languages

Popular language
• Memory model close to the underlying hardware
• Many programmers like C flexibility (?!)
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ML

A function-oriented imperative language
Typed programming language (sound)
Intended for interactive use
Combination of Lisp and Algol-like features
• Expression-oriented, Higher-order functions, Garbage 

collection, Abstract data types, Module system, Exceptions

General purpose non-C-like, not OO language
OCAML: ML extended with OO and a sophisticated 
module system
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Why study ML ?

Learn an important language that’s different
Discuss general programming languages issues
• Types and type checking (Mitchell’s chapter 6)

– General issues in static/dynamic typing
– Type inference
– Polymorphism and Generic Programming

• Memory management (Mitchell’s chapter 7)
– Static scope and block structure
– Function activation records, higher-order functions

• Control (Mitchell’s chapter 8)
– Exceptions 
– Tail recursion and continuations
– Force and delay
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Why study ML ?

Learn to think about, and solve problems in new 
ways
All programming languages has a functional “part”. 
Useful to know. 
Verifiable programming: Easier to reason about a 
functional language.
More compact (simple?) code. Higher order 
functions.   
Certain aspects are easier to understand and 
program. E.g. recursion.
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History of ML

Designed by Robin Milner – part of the LCF project
Logic for Computable Functions (LCF project)
• Based on Dana Scott’s ideas (1969)

– Formulate logic for proving properties of typed functional programs

• Milner
– Project to automate logic
– Notation for programs
– Notation for assertions and proofs
– Need to write programs that find proofs

• Too much work to construct full formal proof by hand
– Make sure proofs are correct

• Meta-Language of the LCF system
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LCF proof search

Proof tactic: function that tries to find a proof

succeed and return proof
tactic(formula) =        search forever

fail

Express tactics in the Meta-Language (ML)
Use a type system to distinguish successful from 
unsuccessful proofs and to facilitate correctness



19

IN
F 3110/4110 -2006

Tactics in ML type system

Tactic has a functional type
tactic : formula → proof

What if the formula is not correct and there is no 
proof?

Type system must allow “failure”

succeed and return proof
tactic(formula) =        search forever

fail  and raise exception

First type-safe exception mechanism!
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Function types in ML

f : A → B   means
for every x ∈ A,

some element y=f(x) ∈ B
f(x)  =        run forever

terminate by raising an exception
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SML

In the practical part of the course we will use Standard ML
of New Jersey (SML/NJ, v110.49)
• From the prompt: sml

Assistants:
• John Olav Lund (Gr 3) 
• Marius Einan Storeide (Gr 1 & 2)

Mandatory exercise (”oblig”) – next monday on the course
homepage
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Core ML

Basic Types
• Unit (unit)

• Booleans (bool)

• Integers (int)

• Strings (string)

• Reals (real)

• Tuples
• Lists 
• Records

Patterns
Declarations
Functions
Type declarations 
Reference Cells
Polymorphism
Overloading
Exceptions
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Basic Overview of ML

Interactive compiler: read-eval-print
• Expressions are type checked, compiled and executed
• Compiler infers type before compiling or executing

Examples
- (5+3)-2;
> val it = 6 : int “it” is an id bound to the value of last exp

- if 5>3 then “Big” else “Small”;
> val it = “Big” : string
- val greeting = “Hello”;
> val greeting = "Hello" : string
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Overview by Type

Booleans
• true, false : bool
• if … then … else … types must match; “else” is mandatory

Integers
• 0, 1, 2, … -1, -2, … : int
• +, * , … : int * int → int
Strings
• “Universitetet i Oslo” : string
• “Universitetet” ^ “ i ” ^ “Oslo”
Reals
• 1.0, 2.2, 3.14159, … decimal point used to disambiguate
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Compound Types
Unit
• () : unit                          similar to void in C

Tuples
– (4, 5, “ha det!”) : int * int * string;
– #3(4, 5, “ha det!”)

> val it = "ha det" : string

Records
– {name=“Anibal”, hungry=true}: {name: string, hungry: bool};
– #name({name = “Anibal”, hungry=true}); 

> val it = “Anibal” : string

Lists
– nil;
– 1 :: nil ; 
– 1::(2::(3::(4::nil)))
– 1 :: [2, 3, 4]; infix cons notation

> val it = [1,2,3,4] : int list
– [1,2] @ [3,4] append
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Patterns and Declarations

Patterns can be used in place of identifiers
<pat> ::= <id> | <tuple> | <cons> | <record> …

Value declarations
• General form   

val <pat> = <exp>

• Examples
val myTuple = (“Carlos”, “Johan”);

val (x,y)  = myTuple;

val myList = [1, 2, 3, 4];

val x::rest = myList;

• Local declarations
let val x = 2+3 in x*4 end;
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Functions and Pattern Matching

Function declaration
• fun f(<pattern>) = <expr>

– fun f (x,y) = x+y; actual par. must match pattern (x,y)

– fun f x y  = x+y; 

• fn <pattern> => <expr> 
– fn x => x+1; anonymous function (like Lisp “lambda”)

– val addone = fn x => x+1 ; 

Multiple-clause definition
• fun <name> <pat1>  = <exp1>   | …

|  <name> <patn> = <expn>

• Example:
– fun length (nil)  = 0

|    length (x::s) = 1 + length(s);
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Some functions on lists

Insert an element in an ordered list
fun insert (e, nil)     = [e]
|   insert (e,x::xs) = if e>x then x :: insert(e,xs) 

else e::(x::xs); 

Append lists
fun append(nil, ys) = ys
|    append(x::xs, ys) = x :: append(xs, ys);
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Map function on lists

Apply a function to every element of list
fun map (f, nil) = nil
|     map (f, x::xs) = f(x) :: map (f,xs);

map (incr, [1,2,3]); [2,3,4]

Map is a high-order function (or a functional)

fun incr x = x+1 ; 

map (fn x => x*x, [1,2,3]); [1,4,9]
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Data-type Declarations 

General form
datatype <name> = <clause> | … | <clause>
<clause> ::= <constructor> |<contructor> of <type>

Examples
• datatype color = red | yellow | blue;

– elements are: red, yellow, blue

• datatype atom = atm of string | nmbr of int;
– elements are: atm(“A”), atm(“B”), …, nmbr(0), nmbr(1), ...

• datatype list    = nil  |   cons of atom*list;
– elements are: nil, cons(atm(“A”), nil), …

cons(nmbr(2), cons(atm(“ugh”), nil)), ...
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Type Abbreviations

The keyword type can be used to define a type 
abbreviation:
• type int_pair = int * int ;
• (1,2) : int_pair ; 
• type person = {name : string, age : int }

- fun getName(x) = #name(x) 
fun getName (x) = #name(x);
stdIn:1.1-38.6 Error: unresolved flex record

(can't tell what fields there are besides #name)
fun getName(x : person) = #name(x) 
fun getName(x) = #name(x) 
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Datatype and pattern matching

Recursively defined data structure
datatype tree = Leaf of int | Node of int*tree*tree;

Node(4, Node(3,Leaf(1), Leaf(2)),
Node(5,Leaf(6), Leaf(7))         

)

Recursive function
fun sum (Leaf n) = n

| sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2);

4

5

76

3

21
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Case expression

Datatype
datatype exp = Var of int | Const of int | Plus of exp*exp;
Case expression
case e of  Var(n)       =>  … |

Const(n)     => ….  |
Plus(e1,e2) => …

fun eval(e) = 
case e of  Var(n)   => n 

| Const(n)  => n 
| Plus(e1,e2) => eval(e1) + eval(e2) ;
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insert: Three ”different” declarations

1. fun insert (e,nil)    = [e]
| insert (e, x::xs) = if e>x then x::insert(e,xs)                         

else e::(x::xs); 
2. fun insert (e:int, ls : int list) : int list =  

case ls of nil   => [e]   
| x::xs => if e>x then x::insert(e,xs) else e::ls;

3. fun insert (e,ls) =
case ls of nil => [e]   

| x::xs => if e>x then x::insert(e,xs) else e::ls;
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ML imperative constructs

None of the constructs seen so far have side effects
• An expression has a value, but evaluating it does not 

change the value of any other expression
Assignment
• Different from other Programming Languages:

To separate side effects from pure expressions as much as 
possible

• Restricted to reference cells
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Variables and assignment

General terminology: L-values and R-values
• Assignment     y :=  x+3; 

– Identifier on left refers to a memory location, called L-value
– Identifier on right refers to contents, called R-value

Variables
• Most languages

– A variable names a storage location
– Contents of location can be read, can be changed

• ML reference cell (L-value)
– A mutable cell is another type of value
– Explicit operations to read contents or change contents
– Separates naming (declaration of identifiers) from “variables”
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ML reference cells

Different types for location and contents
x : int non-assignable integer value
y : int ref location whose contents must be integer

Operations
ref x expression creating new cell initialized to x
!y the contents of location y 
y := x places value x in reference cell y

Examples
val y  =  ref 0 ; create cell y with initial value 0

y :=  x+3; place value of x+3 in cell y;  requires x:int

y  :=  !y + 3; add 3 to contents of y and store in location y
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ML examples

Create cell and change contents
val x = ref “Bob”;
x := “Bill”;

Create cell and increment
val y = ref 0;
y := !y + 1;

While loop 
val i = ref 0;
while !i < 10 do i := !i +1;
!i;

BobBill
x

10
y

1
y
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Further reading

Extra material on ML. 
See links on the course page:”Pensum/læringskrav”
• Bjørn Kristoffersen: Funksjonell programmering i standard 

ML; kompendium 61, 1995. Pensum!
• Riccardo Pucella: Notes on programming SML/NJ

L.C. Paulson: ML for the working programmer
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ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s chap. 5 
+ more)

2. 11.09: More on ML & types (chap. 5 and 6)
3. 18.09: More on Types, Type Inference and 

Polymorphism (chap. 6)
4. 02.10: Control in sequential languages, Exceptions 

and Continuations (chap. 8)
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