
1

IN
F 3110/4110 -2006

The Algol family and ML

Arild B. Torjusen
aribraat@ifi.uio.no

Department of Informatics – University of Oslo

Based on John C. Mitchell’s slides (Stanford U.) ,
adapted by Gerardo Schneider, UiO.

2

IN
F 3110/4110 -2006

ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s
chap. 5 + more)

2. 11.09: More on ML & types (chap. 5 and 6)
3. 18.09: More on Types, Type Inference and

Polymorphism (chap. 6)
4. 02.10: Control in sequential languages, Exceptions

and Continuations (chap. 8)

3

IN
F 3110/4110 -2006

Outline

Brief overview of Algol-like programming languages
(Mitchell, Chapter 5)
• Algol 60
• Algol 68
• Pascal
• Modula
• C

Basic ML (Mitchell’s Chapter 5 + more – see at the end)

4

IN
F 3110/4110 -2006

A (partial) Language Sequence

Algol 60

Algol 68

Pascal

ML Modula

Lisp (Mc Carthy, MIT)
late 50s

Many other languages in the “family”:
Algol 58, Algol W, Euclid, Ada, Simula 67, BCPL,
Modula-2, Oberon, Modula-3 (DEC), Delphi, …

5

IN
F 3110/4110 -2006

Algol 60

Designed: 1958-1963 (J. Backus, J. Mc Carthy, A. Perlis,…)

General purpose language. Features:
• Simple imperative language + functions
• Successful syntax, BNF -- used by many successors

– statement oriented
– Begin … End blocks (like C { … }) (local variables)
– if … then … else

• Recursive functions and stack storage allocation
• Fewer ad hoc restrictions than Fortran

– General array references: A[x + B[3]*y]

– Parameters in procedure calls

• Primitive static type system

6

IN
F 3110/4110 -2006

Algol 60 Sample

real procedure average(A,n);
real array A; integer n;
begin

real sum; sum := 0;
for i = 1 step 1 until n do

sum := sum + A[i];
average := sum/n

end;

no “;” here

no array bounds

set procedure return value by assignment

7

IN
F 3110/4110 -2006

Some trouble spots in Algol 60

Shortcoming of its type discipline
• Type “array” as a procedure parameter

– no array bounds

• “procedure” can be a parameter type
– no argument or return types for procedure parameter

Parameter passing methods
• Pass-by-name had various anomalies (side effects)
• Pass-by-value expensive for arrays

Some awkward control issues
• goto out of a block requires memory management

8

IN
F 3110/4110 -2006

Algol 60 Pass-by-name

Substitute text of actual parameter (copy rule)
• Unpredictable with side effects!

Example
procedure inc2(i, j);

integer i, j;
begin

i := i+1;
j := j+1

end;
inc2 (k, A[k]);

begin
k := k+1;
A[k] := A[k] +1

end;

Is this what you expected?

9

IN
F 3110/4110 -2006

Algol 68

Intended to improve Algol 60
Considered difficult to understand
• New terminology

– types were called “modes”
– arrays were called “multiple values”

• Elaborate type system (e.g. array of pointers to procedures)
• Complicated type conversions

Fixed some problems of Algol 60
• Eliminated pass-by-name (introduced pass-by-reference)

Storage management
• Local storage on stack
• Heap storage, explicit alloc and garbage collection

10

IN
F 3110/4110 -2006

Pascal

Designed by N. Wirth (70s)
Evolved from Algol W
Revised type system of Algol
• Good data-structuring concepts (based on C.A.R. Hoare’s ideas)

– records, variants (union type), subranges (e.g. [1…10])

• More restrictive than Algol 60/68
– Procedure parameters cannot have procedure parameters

Popular teaching language (till the 90s)
Simple one-pass compiler

11

IN
F 3110/4110 -2006

Limitations of Pascal

Array bounds part of type
procedure p(a : array [1..10] of integer)
procedure p(n: integer, a : array [1..n] of integer)

illegal

• Practical drawbacks:
– Types cannot contain variables
– How to write a generic sort procedure?

• Only for arrays of some fixed length

How could this have happened? Emphasis on teaching

Not successful for “industrial-strength” projects

12

IN
F 3110/4110 -2006

Modula

Designed by N. Wirth (late 70s)
Descendent of Pascal
Main innovation over Pascal: Module system
• Modules allow certain declarations to be grouped together

– Definition module: interface
– Implementation module: implementation

Modules in Modula provides minimal information
hiding

13

IN
F 3110/4110 -2006

C Programming Language

Designed for writing Unix by Dennis Ritchie (1969 -
1973)
Evolved from B, which was based on BCPL
• B was an untyped language; C adds some checking

Relation between arrays and pointers
• An array is treated as a pointer to first element
• E1[E2] is equivalent to ptr dereference *((E1)+(E2))
• Pointer arithmetic is not common in other languages

Popular language
• Memory model close to the underlying hardware
• Many programmers like C flexibility (?!)

14

IN
F 3110/4110 -2006

ML

A function-oriented imperative language
Typed programming language (sound)
Intended for interactive use
Combination of Lisp and Algol-like features
• Expression-oriented, Higher-order functions, Garbage

collection, Abstract data types, Module system, Exceptions

General purpose non-C-like, not OO language
OCAML: ML extended with OO and a sophisticated
module system

15

IN
F 3110/4110 -2006

Why study ML ?

Learn an important language that’s different
Discuss general programming languages issues
• Types and type checking (Mitchell’s chapter 6)

– General issues in static/dynamic typing
– Type inference
– Polymorphism and Generic Programming

• Memory management (Mitchell’s chapter 7)
– Static scope and block structure
– Function activation records, higher-order functions

• Control (Mitchell’s chapter 8)
– Exceptions
– Tail recursion and continuations
– Force and delay

16

IN
F 3110/4110 -2006

Why study ML ?

Learn to think about, and solve problems in new
ways
All programming languages has a functional “part”.
Useful to know.
Verifiable programming: Easier to reason about a
functional language.
More compact (simple?) code. Higher order
functions.
Certain aspects are easier to understand and
program. E.g. recursion.

17

IN
F 3110/4110 -2006

History of ML

Designed by Robin Milner – part of the LCF project
Logic for Computable Functions (LCF project)
• Based on Dana Scott’s ideas (1969)

– Formulate logic for proving properties of typed functional programs

• Milner
– Project to automate logic
– Notation for programs
– Notation for assertions and proofs
– Need to write programs that find proofs

• Too much work to construct full formal proof by hand
– Make sure proofs are correct

• Meta-Language of the LCF system

18

IN
F 3110/4110 -2006

LCF proof search

Proof tactic: function that tries to find a proof

succeed and return proof
tactic(formula) = search forever

fail

Express tactics in the Meta-Language (ML)
Use a type system to distinguish successful from
unsuccessful proofs and to facilitate correctness

19

IN
F 3110/4110 -2006

Tactics in ML type system

Tactic has a functional type
tactic : formula → proof

What if the formula is not correct and there is no
proof?

Type system must allow “failure”

succeed and return proof
tactic(formula) = search forever

fail and raise exception

First type-safe exception mechanism!

20

IN
F 3110/4110 -2006

Function types in ML

f : A → B means
for every x ∈ A,

some element y=f(x) ∈ B
f(x) = run forever

terminate by raising an exception

21

IN
F 3110/4110 -2006

SML

In the practical part of the course we will use Standard ML
of New Jersey (SML/NJ, v110.49)
• From the prompt: sml

Assistants:
• John Olav Lund (Gr 3)
• Marius Einan Storeide (Gr 1 & 2)

Mandatory exercise (”oblig”) – next monday on the course
homepage

22

IN
F 3110/4110 -2006

Core ML

Basic Types
• Unit (unit)

• Booleans (bool)

• Integers (int)

• Strings (string)

• Reals (real)

• Tuples
• Lists
• Records

Patterns
Declarations
Functions
Type declarations
Reference Cells
Polymorphism
Overloading
Exceptions

23

IN
F 3110/4110 -2006

Basic Overview of ML

Interactive compiler: read-eval-print
• Expressions are type checked, compiled and executed
• Compiler infers type before compiling or executing

Examples
- (5+3)-2;
> val it = 6 : int “it” is an id bound to the value of last exp

- if 5>3 then “Big” else “Small”;
> val it = “Big” : string
- val greeting = “Hello”;
> val greeting = "Hello" : string

24

IN
F 3110/4110 -2006

Overview by Type

Booleans
• true, false : bool
• if … then … else … types must match; “else” is mandatory

Integers
• 0, 1, 2, … -1, -2, … : int
• +, * , … : int * int → int
Strings
• “Universitetet i Oslo” : string
• “Universitetet” ^ “ i ” ^ “Oslo”
Reals
• 1.0, 2.2, 3.14159, … decimal point used to disambiguate

25

IN
F 3110/4110 -2006

Compound Types
Unit
• () : unit similar to void in C

Tuples
– (4, 5, “ha det!”) : int * int * string;
– #3(4, 5, “ha det!”)

> val it = "ha det" : string

Records
– {name=“Anibal”, hungry=true}: {name: string, hungry: bool};
– #name({name = “Anibal”, hungry=true});

> val it = “Anibal” : string

Lists
– nil;
– 1 :: nil ;
– 1::(2::(3::(4::nil)))
– 1 :: [2, 3, 4]; infix cons notation

> val it = [1,2,3,4] : int list
– [1,2] @ [3,4] append

26

IN
F 3110/4110 -2006

Patterns and Declarations

Patterns can be used in place of identifiers
<pat> ::= <id> | <tuple> | <cons> | <record> …

Value declarations
• General form

val <pat> = <exp>

• Examples
val myTuple = (“Carlos”, “Johan”);

val (x,y) = myTuple;

val myList = [1, 2, 3, 4];

val x::rest = myList;

• Local declarations
let val x = 2+3 in x*4 end;

27

IN
F 3110/4110 -2006

Functions and Pattern Matching

Function declaration
• fun f(<pattern>) = <expr>

– fun f (x,y) = x+y; actual par. must match pattern (x,y)

– fun f x y = x+y;

• fn <pattern> => <expr>
– fn x => x+1; anonymous function (like Lisp “lambda”)

– val addone = fn x => x+1 ;

Multiple-clause definition
• fun <name> <pat1> = <exp1> | …

| <name> <patn> = <expn>

• Example:
– fun length (nil) = 0

| length (x::s) = 1 + length(s);

28

IN
F 3110/4110 -2006

Some functions on lists

Insert an element in an ordered list
fun insert (e, nil) = [e]
| insert (e,x::xs) = if e>x then x :: insert(e,xs)

else e::(x::xs);

Append lists
fun append(nil, ys) = ys
| append(x::xs, ys) = x :: append(xs, ys);

29

IN
F 3110/4110 -2006

Map function on lists

Apply a function to every element of list
fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);

map (incr, [1,2,3]); [2,3,4]

Map is a high-order function (or a functional)

fun incr x = x+1 ;

map (fn x => x*x, [1,2,3]); [1,4,9]

30

IN
F 3110/4110 -2006

Data-type Declarations

General form
datatype <name> = <clause> | … | <clause>
<clause> ::= <constructor> |<contructor> of <type>

Examples
• datatype color = red | yellow | blue;

– elements are: red, yellow, blue

• datatype atom = atm of string | nmbr of int;
– elements are: atm(“A”), atm(“B”), …, nmbr(0), nmbr(1), ...

• datatype list = nil | cons of atom*list;
– elements are: nil, cons(atm(“A”), nil), …

cons(nmbr(2), cons(atm(“ugh”), nil)), ...

31

IN
F 3110/4110 -2006

Type Abbreviations

The keyword type can be used to define a type
abbreviation:
• type int_pair = int * int ;
• (1,2) : int_pair ;
• type person = {name : string, age : int }

- fun getName(x) = #name(x)
fun getName (x) = #name(x);
stdIn:1.1-38.6 Error: unresolved flex record

(can't tell what fields there are besides #name)
fun getName(x : person) = #name(x)
fun getName(x) = #name(x)

32

IN
F 3110/4110 -2006

Datatype and pattern matching

Recursively defined data structure
datatype tree = Leaf of int | Node of int*tree*tree;

Node(4, Node(3,Leaf(1), Leaf(2)),
Node(5,Leaf(6), Leaf(7))

)

Recursive function
fun sum (Leaf n) = n

| sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2);

4

5

76

3

21

33

IN
F 3110/4110 -2006

Case expression

Datatype
datatype exp = Var of int | Const of int | Plus of exp*exp;
Case expression
case e of Var(n) => … |

Const(n) => …. |
Plus(e1,e2) => …

fun eval(e) =
case e of Var(n) => n

| Const(n) => n
| Plus(e1,e2) => eval(e1) + eval(e2) ;

34

IN
F 3110/4110 -2006

insert: Three ”different” declarations

1. fun insert (e,nil) = [e]
| insert (e, x::xs) = if e>x then x::insert(e,xs)

else e::(x::xs);
2. fun insert (e:int, ls : int list) : int list =

case ls of nil => [e]
| x::xs => if e>x then x::insert(e,xs) else e::ls;

3. fun insert (e,ls) =
case ls of nil => [e]

| x::xs => if e>x then x::insert(e,xs) else e::ls;

35

IN
F 3110/4110 -2006

ML imperative constructs

None of the constructs seen so far have side effects
• An expression has a value, but evaluating it does not

change the value of any other expression
Assignment
• Different from other Programming Languages:

To separate side effects from pure expressions as much as
possible

• Restricted to reference cells

36

IN
F 3110/4110 -2006

Variables and assignment

General terminology: L-values and R-values
• Assignment y := x+3;

– Identifier on left refers to a memory location, called L-value
– Identifier on right refers to contents, called R-value

Variables
• Most languages

– A variable names a storage location
– Contents of location can be read, can be changed

• ML reference cell (L-value)
– A mutable cell is another type of value
– Explicit operations to read contents or change contents
– Separates naming (declaration of identifiers) from “variables”

37

IN
F 3110/4110 -2006

ML reference cells

Different types for location and contents
x : int non-assignable integer value
y : int ref location whose contents must be integer

Operations
ref x expression creating new cell initialized to x
!y the contents of location y
y := x places value x in reference cell y

Examples
val y = ref 0 ; create cell y with initial value 0

y := x+3; place value of x+3 in cell y; requires x:int

y := !y + 3; add 3 to contents of y and store in location y

38

IN
F 3110/4110 -2006

ML examples

Create cell and change contents
val x = ref “Bob”;
x := “Bill”;

Create cell and increment
val y = ref 0;
y := !y + 1;

While loop
val i = ref 0;
while !i < 10 do i := !i +1;
!i;

BobBill
x

10
y

1
y

39

IN
F 3110/4110 -2006

Further reading

Extra material on ML.
See links on the course page:”Pensum/læringskrav”
• Bjørn Kristoffersen: Funksjonell programmering i standard

ML; kompendium 61, 1995. Pensum!
• Riccardo Pucella: Notes on programming SML/NJ

L.C. Paulson: ML for the working programmer

40

IN
F 3110/4110 -2006

ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s chap. 5
+ more)

2. 11.09: More on ML & types (chap. 5 and 6)
3. 18.09: More on Types, Type Inference and

Polymorphism (chap. 6)
4. 02.10: Control in sequential languages, Exceptions

and Continuations (chap. 8)

	The Algol family and ML�
	ML lectures
	Outline
	A (partial) Language Sequence
	Algol 60
	Algol 60 Sample
	Some trouble spots in Algol 60
	Algol 60 Pass-by-name
	Algol 68
	Pascal
	Limitations of Pascal
	Modula
	 C Programming Language
	ML
	Why study ML ?
	Why study ML ?
	History of ML
	LCF proof search
	Tactics in ML type system
	Function types in ML
	SML
	Core ML
	Basic Overview of ML
	Overview by Type
	Compound Types
	Patterns and Declarations
	Functions and Pattern Matching
	Some functions on lists	
	Map function on lists
	Data-type Declarations
	Type Abbreviations
	Datatype and pattern matching
	Case expression
	insert: Three ”different” declarations
	ML imperative constructs
	Variables and assignment
	ML reference cells
	ML examples
	Further reading
	ML lectures

