
1

IN
F 3110/4110 -2006

Polymorphism and
Type Inference

Arild B. Torjusen
aribraat@ifi.uio.no

Department of Informatics – University of Oslo

Based on John C. Mitchell’s slides (Stanford U.) ,
adapted by Gerardo Schneider, UiO.

2

IN
F 3110/4110 -2006

ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s
chap. 5 + more)

2. 11.09: More on ML & types (chap. 5 and 6)
3. 18.09: More on Types, Type Inference

and Polymorphism (chap. 6)
4. 25.09: Control in sequential languages,

Exceptions and Continuations (chap. 8)

3

IN
F 3110/4110 -2006

Outline

Polymorphisms
• parametric polymorphism
• ad hoc polymorphism
• subtype polymorphism

Type inference

Type declaration

4

IN
F 3110/4110 -2006

Polymorphism: three forms

Parametric polymorphism
• Single function may be given (infinitely) many types
• The type expression involves type variables

Example: in ML the identity function is polymorphic

- fn x => x;
val it = fn : 'a -> 'a

An instance of the type scheme may give:
int→int, bool→bool, char→char,

int*string*int→int*string*int, (int→real)→(int→real), ...

Type variable may be replaced by any type

This pattern is called type scheme

5

IN
F 3110/4110 -2006

Polymorphism: three forms

Parametric polymorphism
• Single function may be given (infinitely) many types
• The type expression involves type variables

Example: polymorphic sort
sort : ('a * 'a -> bool) * 'a list -> 'a list

- sort((op<),[1,7,3]);
val it = [1,3,7] : int list

6

IN
F 3110/4110 -2006

Polymorphism: three forms (cont.)

Ad-hoc polymorphism (or Overloading)
• A single symbol has two (or more) meanings (it refers

to more than one algorithm)
• Each algorithm may have different type
• Overloading is resolved at compile time
• Choice of algorithm determined by type context

Example: In ML, + has 2 different associated
implementations: it can have types int*int→int
and real*real→real, no others

7

IN
F 3110/4110 -2006

Polymorphism: three forms (cont.)

Subtype polymorphism
• The subtype relation allows an expression to have

many possible types
• Polymorphism not through type parameters, but

through subtyping:
– If method m accept any argument of type t then m may also

be applied to any argument from any subtype of t

REMARK 1: In OO, the term “polymorphism” is usually used
to denote subtype polymorphism (ex. Java, OCAML, etc)

REMARK 2: ML does not support subtype polymorphism!

8

IN
F 3110/4110 -2006

Parametric polymorphism

Explicit: The program contains type variables
• Often involves explicit instantiation to indicate how

type variables are replaced with specific types
• Example: C++ templates

Implicit: Programs do not need to contain types
• The type inference algorithm determines when a

function is polymorphic and instantiate the type
variables as needed

• Example: ML polymorphism

9

IN
F 3110/4110 -2006

Parametric Polymorphism: ML vs. C++

C++ function template
• Declaration gives type of funct. arguments and result
• Place inside template to define type variables
• Function application: type checker does instantiation

ML polymorphic function
• Declaration has no type information
• Type inference algorithm

– Produce type expression with variables
– Substitute for variables as needed

ML also has module system with explicit type parameters

10

IN
F 3110/4110 -2006

Example: swap two values

C++

Instantiations:
• int i,j; … swap(i,j); //use swap with T replaced with int

• float a,b;… swap(a,b); //use swap with T replaced with
float

• string s,t;… swap(s,t); //use swap with T replaced with
string

void swap (int& x, int& y){
int tmp=x; x=y; y=tmp;

}

template <typename T>
void swap(T& x, T& y){

T tmp=x; x=y; y=tmp;
}

11

IN
F 3110/4110 -2006

Example: swap two values
ML
- fun swap(x,y) =

let val z = !x in x := !y; y := z end;
val swap = fn : 'a ref * 'a ref -> unit

val a = ref 3 ; val b = ref 7 ;
- val a = ref 3 : int ref
- val b = ref 7 : int ref
swap(a,b) ;
- val it = () : unit
- !a ;
val it = 7 : int

Remark: Declarations look similar in ML and C++,
but compile code is very different!

12

IN
F 3110/4110 -2006

Parametric Polymorphism: Implementation

C++
• Templates are instantiated at program link time
• Swap template may be stored in one file and the

program(s) calling swap in another
• Linker duplicates code for each type of use

ML
• Swap is compiled into one function (no need for

different copies!)
• Typechecker determines how function can be used

13

IN
F 3110/4110 -2006

Why the difference?
• C++ arguments passed by reference (pointer), but

local variables (e.g. tmp, of type T) are on stack
– Compiled code for swap depends on the size of type T =>

Need to know the size for proper addressing

• ML uses pointers in parameter passing (uniform data
representation)

– It can access all necessary data in the same way, regardless
of its type

Efficiency
• C++: more effort at link time and bigger code
• ML: run more slowly

Parametric Polymorphism: Implementation

14

IN
F 3110/4110 -2006

ML overloading

Some predefined operators are overloaded
• + has types int*int→int and real*real→real

User-defined functions must have unique type
• fun plus(x,y) = x+y; (compiled to int or real function, not

both)

In SML/NJ:
- fun plus(x,y) = x+y;

val plus = fn : int * int -> int
If you want to have plus = fn : real * real -> real you

must provide the type:
- fun plus(x:real,y:real) = x+y;

15

IN
F 3110/4110 -2006

ML overloading (cont.)

Why is a unique type needed?
• Need to compile code implies need to know which +

(different algorithm for distinct types)
• Overloading is resolved at compile time

– Choosing one algorithm among all the possible ones
– Automatic conversion is possible (not in ML!)

• Efficiency of type inference – overloading complicates
type checking

• Overloading of user-defined functions is not allowed in
ML!

16

IN
F 3110/4110 -2006

Outline

Polymorphisms

Type inference

Type declaration

17

IN
F 3110/4110 -2006

Type checking and type inference

Type checking: The process of checking
whether the types declared by the programmer
“agrees” with the language constraints/
requirement
Type inference: The process of determining the
type of an expression based on information
given by (some of) its symbols/sub-expressions

ML is designed to make type inference tractable
(one of the reason for not having subtypes in ML!)

18

IN
F 3110/4110 -2006

Type checking and type inference

Standard type checking
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at body of each function and use declared types
of identifies to check agreement.

Type inference
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at code without type information and figure out
what types could have been declared.

19

IN
F 3110/4110 -2006

Type inference algorithm: some history

Usually known as Milner-Hindley algorithm
1958: Type inference algorithm given by H.B.
Curry and R. Feys for the typed lambda calculus
1969: R. Hindley extended the algorithm and
proved it gives the most general type
1978: R. Milner -independently of Hindley-
provided an equivalent algorithm (for ML)
1985: L. Damas proved its completeness and
extended it with polymorphism

20

IN
F 3110/4110 -2006

ML Type Inference

Example
- fun f(x) = 2+x;
val f = fn : int → int

How does this work?
• + has two types: int*int → int, real*real→real
• 2 : int, has only one type
• This implies + : int*int → int
• From context, need x: int
• Therefore f(x:int) = 2+x has type int → int

Overloaded + is unusual. Most ML symbols have unique type.

In many cases, unique type may be polymorphic.

21

IN
F 3110/4110 -2006

Another presentation

Example
- fun f(x) = 2+x;
- (val f = fn x => 2+x ;)
val f = fn : int → int

How does this work?

x

λ

@

@

+ 2

1. Assign types to leaves

: t

int → int → int
real → real→real

: int
2. Propagate to internal
nodes and generate
constraints

int (t = int)

int→int

t→int

3. Solve by substitution

= int→int

Graph for λx. ((plus 2) x)

f(x) = 2+x equiv f = λx. (2+x) equiv f = λx. ((plus 2) x)

22

IN
F 3110/4110 -2006

Application and Abstraction

Application
• f(x)

• f must have function type
domain→ range

• domain of f must be type
of argument x

• result type is range of f

Function expression
• λx.e (fn x => e)
• Type is function type

domain→ range
• Domain is type of variable x
• Range is type of function

body e

x

@

f x

λ

e: s: t: s

: r (s = t→ r)

: t

: s → t

23

IN
F 3110/4110 -2006

Types with type variables

Example
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

How does this work?

2

λ

@

g

1. Assign types to leaves

: int: s2. Propagate to internal
nodes and generate
constraints

t (s= int→t)

s→t = (int→t)→t

Graph for λg. (g 2)

’a is syntax for “type variable” (t in the graph)

3. Solve by substitution

24

IN
F 3110/4110 -2006

Use of Polymorphic Function

Function
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

Possible applications

g may be the function:
- fun add(x) = 2+x;
val add = fn : int → int
Then:
- f(add);
val it = 4 : int

g may be the function:
- fun isEven(x) = ...;
val it = fn : int → bool
Then:
- f(isEven);
val it = true : bool

25

IN
F 3110/4110 -2006

Recognizing type errors

Function
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

Incorrect use
- fun not(x) = if x then false else true;
val not = fn : bool → bool
- f(not);

Why?

Type error: cannot make bool → bool = int → ’a

26

IN
F 3110/4110 -2006

Another type inference example

Function Definition
- fun f(g,x) = g(g(x));
val f = fn : (’a→’a)*’a → ’a

Type Inference

Solve by substitution

= (v→v)*v→v
λ

@

g

x

@

g

Assign types to leaves

: t

: s

: s

Propagate to internal
nodes and generate
constraints

v (s = u→v)

s*t→v

u (s = t→u)

Graph for λ〈g,x〉. g(g x)

27

IN
F 3110/4110 -2006

Polymorphic datatypes

Datatype with type variable
- datatype ’a list = nil | cons of ’a*(’a list);
nil : ’a list
cons : ’a*(’a list) → ’a list

Polymorphic function
- fun length nil = 0

| length (cons(x,rest)) = 1 + length(rest);
length : ’a list → int

Type inference
• Infer separate type for each clause
• Combine by making two types equal (if necessary)

28

IN
F 3110/4110 -2006

Main points about type inference

Compute type of expression
• Does not require type declarations for variables
• Find most general type by solving constraints
• Leads to polymorphism

Static type checking without type specifications
May lead to better error detection than ordinary
type checking
• Type may indicate a programming error even if there

is no type error (example following slide).

29

IN
F 3110/4110 -2006

Information from type inference

An interesting function on lists
fun reverse (nil) = nil
| reverse (x::lst) = reverse(lst);

Most general type
reverse : ’a list → ’b list

What does this mean?
Since reversing a list does not change its type,
there must be an error in the definition

x is not used in “reverse(lst)”!

30

IN
F 3110/4110 -2006

Outline

Polymorphisms

Type inference

Type declaration

31

IN
F 3110/4110 -2006

Type declaration

Transparent: alternative name to a type that
can be expressed without this name

Opaque: new type introduced into the program,
different to any other

ML has both forms of type declaration

32

IN
F 3110/4110 -2006

Type declaration: Examples

Transparent (”type” declaration)

• Since Fahrenheit and Celsius are synonyms for real,
the function may be applied to a real:

- type Celsius = real;
- type Fahrenheit = real;

- toCelsius(60.4);
val it = 15.77904 : Celsius

More information:
- fun toCelsius(x: Fahrenheit) = ((x-32.0)*0.5556): Celsius;
val toCelsius = fn : Fahrenheit → Celsius

- fun toCelsius(x) = ((x-32.0)*0.5556);
val toCelsius = fn : real → real

33

IN
F 3110/4110 -2006

Type declaration: Examples

Opaque (”datatype” declaration)

• A and B are different types
• Since B declaration follows A decl.: C has type int→B
Hence:
- fun f(x:A) = x: B;
Error: expression doesn't match constraint [tycon mismatch]
expression: A constraint: B
in expression: x: B

• Abstract types are also opaque (Mitchell’s chapter 9)

- datatype A = C of int;
- datatype B = C of int;

34

IN
F 3110/4110 -2006

Equality on Types

Two forms of type equality:

Name type equality: Two type names are equal
in type checking only if they are the same name

Structural type equality: Two type names are
equal if the types they name are the same

Example: Celsius and Fahrenheit are structurally
equal although their names are different

35

IN
F 3110/4110 -2006

Remarks – Further reading

More on subtype polymorphism (Java):
Mitchell’s Section 13.3.5

36

IN
F 3110/4110 -2006

ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s
chap. 5 + more)

2. 11.09: More on ML & types (chap. 5 and 6)
3. 18.09: More on Types, Type Inference and

Polymorphism (chap. 6)
4. 25.09: Control in sequential languages,

Exceptions and Continuations (chap. 8)
++?

	Polymorphism and �Type Inference
	ML lectures
	Outline
	Polymorphism: three forms
	Polymorphism: three forms
	Polymorphism: three forms (cont.)
	Polymorphism: three forms (cont.)
	Parametric polymorphism
	Parametric Polymorphism: ML vs. C++
	Example: swap two values
	Example: swap two values
	Parametric Polymorphism: Implementation
	Parametric Polymorphism: Implementation
	ML overloading
	ML overloading (cont.)
	Outline
	Type checking and type inference
	Type checking and type inference
	Type inference algorithm: some history
	ML Type Inference
	Another presentation
	Application and Abstraction
	Types with type variables
	Use of Polymorphic Function
	Recognizing type errors
	Another type inference example
	Polymorphic datatypes
	Main points about type inference
	Information from type inference
	Outline
	Type declaration
	Type declaration: Examples
	Type declaration: Examples
	Equality on Types
	Remarks – Further reading
	ML lectures

