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ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s
chap. 5 + more)

2. 11.09: More on ML & types (chap. 5 and 6) 
3. 18.09: More on Types, Type Inference 

and Polymorphism (chap. 6)
4. 25.09: Control in sequential languages, 

Exceptions and Continuations (chap. 8)
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Outline

Polymorphisms
• parametric polymorphism
• ad hoc polymorphism
• subtype polymorphism

Type inference

Type declaration
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Polymorphism: three forms

Parametric polymorphism
• Single function may be given (infinitely) many types
• The type expression involves type variables

Example: in ML the identity function is polymorphic

- fn x => x;
val it = fn : 'a -> 'a

An instance of the type scheme may give: 
int→int,  bool→bool,   char→char,   

int*string*int→int*string*int, (int→real)→(int→real), ...   

Type variable may be replaced by any type

This pattern is called type scheme
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Polymorphism: three forms

Parametric polymorphism
• Single function may be given (infinitely) many types
• The type expression involves type variables

Example: polymorphic sort 
sort : ('a * 'a -> bool) * 'a list -> 'a list

- sort((op<),[1,7,3]);
val it = [1,3,7] : int list
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Polymorphism: three forms (cont.)

Ad-hoc polymorphism (or Overloading)
• A single symbol has two (or more) meanings (it refers 

to more than one algorithm)
• Each algorithm may have different type
• Overloading is resolved at compile time
• Choice of algorithm determined by type context 

Example: In ML, + has 2 different associated 
implementations: it can have types int*int→int
and real*real→real, no others
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Polymorphism: three forms (cont.)

Subtype polymorphism
• The subtype relation allows an expression to have 

many possible types
• Polymorphism not through type parameters, but 

through subtyping:
– If method m accept any argument of type t then m may also 

be applied to any argument from any subtype of t

REMARK 1: In OO, the term “polymorphism” is usually used 
to denote subtype polymorphism (ex. Java, OCAML, etc)

REMARK 2: ML does not support subtype polymorphism!
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Parametric polymorphism

Explicit: The program contains type variables
• Often involves explicit instantiation to indicate how

type variables are replaced with specific types
• Example: C++ templates

Implicit: Programs do not need to contain types
• The type inference algorithm determines when a 

function is polymorphic and instantiate the type 
variables as needed

• Example: ML polymorphism
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Parametric Polymorphism: ML vs. C++

C++ function template
• Declaration gives type of funct. arguments and result
• Place inside template to define type variables
• Function application: type checker does instantiation

ML polymorphic function
• Declaration has no type information
• Type inference algorithm 

– Produce type expression with variables
– Substitute for variables as needed

ML also has module system with explicit type parameters
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Example: swap two values

C++

Instantiations:
• int i,j;   … swap(i,j);  //use swap with T replaced with int

• float a,b;… swap(a,b); //use swap with T replaced with 
float

• string s,t;… swap(s,t);  //use swap with T replaced with 
string

void swap (int& x, int& y){
int tmp=x;  x=y;  y=tmp;

}

template <typename T>
void swap(T& x, T& y){

T tmp=x; x=y; y=tmp;
}
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Example: swap two values
ML
- fun swap(x,y) = 

let val z = !x in x := !y; y := z end;
val swap = fn : 'a ref * 'a ref -> unit

val a = ref 3 ; val b = ref 7 ;
- val a = ref 3 : int ref
- val b = ref 7 : int ref
swap(a,b) ; 
- val it = () : unit
- !a ; 
val it = 7 : int

Remark: Declarations look similar in ML and C++, 
but compile code is very different!
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Parametric Polymorphism: Implementation

C++
• Templates are instantiated at program link time
• Swap template may be stored in one file and the 

program(s) calling swap in another 
• Linker duplicates code for each type of use

ML
• Swap is compiled into one function (no need for 

different copies!)
• Typechecker determines how function can be used
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Why the difference?
• C++ arguments passed by reference (pointer), but 

local variables (e.g. tmp, of type T) are on stack
– Compiled code for swap depends on the size of type T => 

Need to know the size for proper addressing 

• ML uses pointers in parameter passing (uniform data 
representation) 

– It can access all necessary data in the same way, regardless 
of its type

Efficiency
• C++: more effort at link time and bigger code
• ML: run more slowly

Parametric Polymorphism: Implementation
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ML overloading

Some predefined operators are overloaded
• + has types  int*int→int and  real*real→real

User-defined functions must have unique type
• fun plus(x,y) = x+y; (compiled to int or real function, not 

both)

In SML/NJ: 
- fun plus(x,y) = x+y;

val plus = fn : int * int -> int
If you want to have plus = fn : real * real -> real  you

must provide the type:
- fun plus(x:real,y:real) = x+y;
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ML overloading (cont.)

Why is a unique type needed? 
• Need to compile code implies need to know which + 

(different algorithm for distinct types)
• Overloading is resolved at compile time

– Choosing one algorithm among all the possible ones
– Automatic conversion is possible (not in ML!)

• Efficiency of type inference – overloading complicates 
type checking

• Overloading of user-defined functions is not allowed in 
ML!
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Outline

Polymorphisms

Type inference

Type declaration
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Type checking and type inference

Type checking: The process of checking 
whether the types declared by the programmer 
“agrees” with the language constraints/ 
requirement 
Type inference: The process of determining the 
type of an expression based on information 
given by (some of) its symbols/sub-expressions

ML is designed to make type inference tractable
(one of the reason for not having subtypes in ML!)
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Type checking and type inference

Standard type checking
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at body of each function and use declared types 
of identifies to check agreement.

Type inference
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at code without type information and figure out 
what types could have been declared.
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Type inference algorithm: some history

Usually known as Milner-Hindley algorithm
1958: Type inference algorithm given by H.B. 
Curry and R. Feys for the typed lambda calculus
1969: R. Hindley extended the algorithm and 
proved it gives the most general type
1978: R. Milner -independently of Hindley-
provided an equivalent algorithm (for ML)
1985: L. Damas proved its completeness and 
extended it with polymorphism
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ML Type Inference

Example
- fun f(x) = 2+x;
val f = fn : int → int

How does this work?
• + has two types: int*int → int, real*real→real
• 2 : int, has only one type
• This implies + : int*int → int
• From context, need x: int
• Therefore f(x:int) = 2+x has type int → int

Overloaded + is unusual. Most ML symbols have unique type. 

In many cases, unique type may be polymorphic.
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Another presentation 

Example
- fun f(x) = 2+x;
- (val f = fn x => 2+x ;) 
val f = fn : int → int

How does this work?

x 

λ

@

@

+ 2

1. Assign types to leaves

: t

int → int → int
real → real→real

: int
2. Propagate to internal 
nodes and generate 
constraints

int (t = int)

int→int

t→int

3. Solve by substitution

= int→int

Graph for λx. ((plus 2) x)

f(x) = 2+x equiv f = λx. (2+x) equiv f = λx. ((plus 2) x)
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Application and Abstraction 

Application 
• f(x)

• f must have function type   
domain→ range

• domain of f must be type 
of argument x

• result type is range of f

Function expression 
• λx.e (fn x => e)
• Type is function type 

domain→ range
• Domain is type of variable x
• Range is type of function 

body e

x

@

f x

λ

e: s: t: s

: r   (s = t→ r)

: t

: s → t
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Types with type variables 

Example
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

How does this work?

2 

λ

@

g

1. Assign types to leaves

: int: s2. Propagate to internal 
nodes and generate 
constraints

t (s= int→t)

s→t = (int→t)→t

Graph for λg. (g 2)

’a is syntax for “type variable” (t in the graph)

3. Solve by substitution
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Use of Polymorphic Function

Function
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

Possible applications

g may be the function:
- fun add(x) = 2+x;
val add = fn : int → int
Then:
- f(add);
val it = 4 : int

g may be the function:
- fun isEven(x) = ...;
val it = fn : int → bool
Then:
- f(isEven);
val it = true : bool
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Recognizing type errors

Function
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

Incorrect use
- fun not(x) = if x then false else  true;
val not = fn : bool → bool
- f(not);

Why?

Type error: cannot make bool → bool = int → ’a
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Another type inference example 

Function Definition
- fun f(g,x) = g(g(x));
val f = fn : (’a→’a)*’a → ’a

Type Inference

Solve by substitution

= (v→v)*v→v 
λ

@

g

x

@

g

Assign types to leaves

: t

: s

: s

Propagate to internal 
nodes and generate 
constraints

v  (s = u→v)

s*t→v

u (s = t→u)

Graph for λ〈g,x〉. g(g x)
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Polymorphic datatypes

Datatype with type variable
- datatype ’a list = nil | cons of ’a*(’a list);
nil : ’a list 
cons : ’a*(’a list) → ’a list

Polymorphic function
- fun length nil = 0

|   length (cons(x,rest)) = 1 + length(rest);
length : ’a list → int

Type inference 
• Infer separate type for each clause
• Combine by making two types equal (if necessary)
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Main points about type inference

Compute type of expression
• Does not require type declarations for variables
• Find most general type by solving constraints
• Leads to polymorphism

Static type checking without type specifications
May lead to better error detection than ordinary 
type checking
• Type may indicate a programming error even if there 

is no type error (example following slide).
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Information from type inference

An interesting function on lists
fun reverse (nil) = nil
|     reverse (x::lst) = reverse(lst);

Most general type
reverse : ’a list → ’b list

What does this mean? 
Since reversing a list does not change its type, 
there must be an error in the definition

x is not used in “reverse(lst)”!
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Outline

Polymorphisms

Type inference

Type declaration
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Type declaration

Transparent: alternative name to a type that
can be expressed without this name

Opaque: new type introduced into the program, 
different to any other

ML has both forms of type declaration
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Type declaration: Examples

Transparent (”type” declaration)

• Since Fahrenheit and Celsius are synonyms for real, 
the function may be applied to a real:

- type Celsius = real;
- type Fahrenheit = real;

- toCelsius(60.4);
val it = 15.77904 : Celsius

More information:
- fun toCelsius(x: Fahrenheit) = ((x-32.0)*0.5556): Celsius;
val toCelsius = fn : Fahrenheit → Celsius

- fun toCelsius(x) = ((x-32.0)*0.5556);
val toCelsius = fn : real → real
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Type declaration: Examples

Opaque (”datatype” declaration)

• A and B are different types
• Since B declaration follows A decl.: C has type int→B
Hence:
- fun f(x:A) = x: B;
Error: expression doesn't match constraint [tycon mismatch]
expression: A constraint: B
in expression:  x: B

• Abstract types are also opaque (Mitchell’s chapter 9)

- datatype A = C of int;
- datatype B = C of int;
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Equality on Types

Two forms of type equality:

Name type equality: Two type names are equal
in type checking only if they are the same name

Structural type equality: Two type names are
equal if the types they name are the same

Example: Celsius and Fahrenheit are structurally
equal although their names are different
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Remarks – Further reading

More on subtype polymorphism (Java): 
Mitchell’s Section 13.3.5
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ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s
chap. 5 + more)

2. 11.09: More on ML & types (chap. 5 and 6) 
3. 18.09: More on Types, Type Inference and 

Polymorphism (chap. 6)
4. 25.09: Control in sequential languages, 

Exceptions and Continuations (chap. 8) 
++?
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