
1

IN
F 3110/4110 -2006

Control in Sequential Languages

Arild B. Torjusen
aribraat@ifi.uio.no

Department of Informatics – University of Oslo

Based on John C. Mitchell’s slides (Stanford U.) ,
adapted by Gerardo Schneider, UiO.

2

IN
F 3110/4110 -2006

ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s
chap. 5 + more)

2. 11.09: More on ML & types (chap. 5 and 6)
3. 18.09: More on Types, Type Inference and

Polymorphism (chap. 6)
4. 25.09: Control in sequential languages,

Exceptions and Continuations (chap. 8)

3

IN
F 3110/4110 -2006

Outline

Structured Programming
• go to considered harmful

Exceptions
• “Structured” jumps that may return a value
• Dynamic scoping of exception handler

4

IN
F 3110/4110 -2006

Control flow in sequential programs

The execution of a (sequential) program is done
by following a certain control flow
The end-of-line (or semi-colon) terminates a
statement
What is the next instruction to be executed?
• The flow of control goes top-down in general
• Jumps (loops, conditionals, etc)
It is not easy, in general to ”see” whether a
given instruction is reachable from another
(Program Analysis)

5

IN
F 3110/4110 -2006

Fortran Control Structure

10 IF (X .GT. 0.000001) GO TO 20
11 X = -X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30 X = X+Y

...
50 CONTINUE

X = A
Y = B-A
GO TO 11
…

Similar structure may occur in assembly code

Just a label

6

IN
F 3110/4110 -2006

Historical Debate

Dijkstra: “Go To Statement Considered Harmful”
(1968)
• “… the go to statement should be abolished from all

‘higher level’ programming languages…”

Knuth: “Structured Programming with go to
Statements” (1974)
• You can use goto, but do so in structured way …

General questions
• Do syntactic rules force good programming style?
• Can they help?

7

IN
F 3110/4110 -2006

Advance in Computer Science

Standard constructs that structure jumps
if … then … else … end
while … do … end
for … { … }
case …

Modern style
• Group code in logical blocks
• Avoid explicit jumps except for function return
• Cannot jump into middle of block or function body
• Exceptions and continuations (?!)

8

IN
F 3110/4110 -2006

Jumps into Blocks – Why not?

Label in the body of a function

Should an activation record be
created?
If not, what about local variables?
• They are meaningless

If so, how to set function parameters?
• There are no parameter values

fun bizarre(pars);
local vars;
...

a:
...

end;

Program P;
....
goto a;
....

end;

No clear answers! Better to reject these programs!

9

IN
F 3110/4110 -2006

Outline

Structured Programming
• go to considered harmful

Exceptions
• “Structured” jumps that may return a value
• Dynamic scoping of exception handler

10

IN
F 3110/4110 -2006

Exceptions: Structured Exit

Terminate part of computation
• Jump out of construct
• Pass data as part of jump
• Return to most recent site set up to handle exception

Memory management needed
• Unnecessary activation records may be deallocated

Two main language constructs
• Statement or expression to raise or throw exception
• Declaration to establish exception handler

Possible to have more than one handler

Often used for unusual or exceptional condition, but not necessarily

11

IN
F 3110/4110 -2006

ML Example

exception Determinant; (* declare exception name *)
fun invert (M) = (* function to invert matrix *)

…
if Det = 0

then raise Determinant (* exit if Det=0 *)
else …

end;
...
invert (myMatrix) handle Determinant => … ;

Value for expression if determinant of myMatrix is 0

12

IN
F 3110/4110 -2006

ML Exceptions

Exceptions are a different kind of entity than
types
Declare exceptions before use
Exceptions are dynamically scoped
• Control jumps to the handler most recently

established (run-time stack) (more later…)

• ML is otherwise statically scoped.
Pattern matching is used to determine the
appropriate handler (C++/Java uses type matching)

13

IN
F 3110/4110 -2006

ML Exceptions

Declaration
exception 〈name〉 of 〈type〉

gives name of exception and type of data passed when raised

Raise
raise 〈name〉 〈parameters〉

expression form to raise and exception and pass data

Handler
〈exp1〉 handle 〈pattern〉 => 〈exp2〉

evaluate first expression exp1
if exception that matches pattern is raised,

then evaluate second expression exp2 instead
General form allows multiple patterns.

14

IN
F 3110/4110 -2006

ML Exceptions - example

- exception noSuchElement ;
- fun nth (n,nil) = raise noSuchElement

| nth (0,s::ss) = s
| nth (n,s::ss) = nth((n-1),ss) ;

val nth = fn : int * 'a list -> 'a
- nth(2,[1,2,3]) ;
val it = 3 : int
- nth(4,[1,2,3]) ;
uncaught exception noSuchElement

raised at: stdIn:10.25-10.38
- fun safeNth(n,xs) = nth(n,xs) handle noSuchElement => 0 ;
val safeNth = fn : int * int list -> int
- safeNth(4,[1,2,3]) ;
val it = 0 : int

15

IN
F 3110/4110 -2006

Which Handler is Used?

exception Ovflw;
fun reciprocal(x) =

if x<=min then raise Ovflw else 1.0/x;
(reciprocal(x) handle Ovflw=>0.0) / (reciprocal(x) handle Ovflw=>1.0);

Dynamic scoping of handlers
• First call handles exception one way
• Second call handles exception another
• General dynamic scoping rule

Jump to most recently established handler on run-time stack

Dynamic scoping is not an accident
• User knows how to handler error
• Author of library function does not

16

IN
F 3110/4110 -2006

Handlers with pattern matching

> val it = 10 : int

The expression to the left of the handler is
evaluated
If it terminates normally the handler is not
invoked
If the handler is invoked, pattern matching works
as usual in ML

- f(10) handle Signal(0) => 0
| Signal(1) => 1
| Signal(x) => x+8;

- exception Signal of int;
- fun f(x) = if x=0 then raise Signal(0)

else if x=1 then raise Signal(1)
else if x=10 then raise Signal(x-8)
else (x-2) mod 4;

17

IN
F 3110/4110 -2006

Exception for Error Condition

- datatype ‘a tree = LF of ‘a | ND of (‘a tree)*(‘a tree);
- exception No_Subtree;
- fun lsub (LF x) = raise No_Subtree
| lsub (ND(x,y)) = x;

> val lsub = fn : ‘a tree -> ‘a tree
This function raises an exception when there is
no reasonable value to return
- lsub(LF(3));
> uncaught exception No_Subtree raised at:…

- lsub(ND (LF(3),LF(5)));
> val it = LF 3 : int tree

18

IN
F 3110/4110 -2006

Exception for Efficiency

Function to multiply values of tree leaves
- fun prod(LF x) = x: int
| prod(ND(x,y)) = prod(x) * prod(y);

Optimize using exception
- fun prod(tree) =

let exception Zero
fun p(LF x) = if x=0 then (raise Zero) else x
| p(ND(x,y)) = p(x) * p(y)

in
p(tree) handle Zero => 0

end;

19

IN
F 3110/4110 -2006

Runtime organization, a preview

• Block structured languages, in-line blocks
– C/C++/Java {...}
– in ML each declaration is a separate block
– When a program enters a new block an activation record is

added to the run-time stack

20

IN
F 3110/4110 -2006

Runtime organization, a preview

• Run-time stack
...
{int x=0;
int y = x + 1;

{int z = (x+y) * (x-y);}
};
...

Global vars

y 1
x 0
Global vars

z -1
y 1
x 0
Global vars

y 1
x 0
Global vars

21

IN
F 3110/4110 -2006

Runtime organization, a preview

• Activation record
– Data structure stored on run-time stack
– Contains space for local variables
– Access link (aka static link)
– Control link (dynamic link)

22

IN
F 3110/4110 -2006

Dynamic Scope of Handler

- exception X;
(let fun f(y) = raise X

and g(h) = h(1) handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

scope

handler

What is the value of g(f)?

It depends on which handler is used!

23

IN
F 3110/4110 -2006

Dynamic Scope of Handler

exception X;
(let fun f(y) = raise X

and g(h) = h(1) handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

handler X 6

formal h
handler X 2

access link

formal y 1
access link

g(f)

f(1)

fun f
access link

access link
fun g

Dynamic scope:
find first X handler,
going up the
dynamic call chain
leading to raise X.

handler X 4
access link

Answer: g(f) = 2

Run-time stack

Dynamic call

24

IN
F 3110/4110 -2006

Compare to Static Scope of Variables

exception X;
(let fun f(y) = raise X

and g(h) = h(1)
handle X => 2

in
g(f) handle X => 4

end) handle X => 6;

val x=6;
(let fun f(y) = x

and g(h) =
let val x=2 in h(1)

in
let val x=4 in g(f)

end);

25

IN
F 3110/4110 -2006

Static Scope of Declarations

val x=6;
(let fun f(y) = x

and g(h) =
let val x=2 in h(1)

in
let val x=4 in g(f)

end);

val x 6

formal h
val x 2

access link

formal y 1
access link

g(f)

f(1)

fun f
access link

access link
fun g

Static scope: find
first x, following
access links from
the reference to x.

val x 4
access link

Answer: g(f) = 6

26

IN
F 3110/4110 -2006

Typing of Exceptions

Typing of raise 〈exp〉
• Recall definition of typing

– Expression e has type t if normal termination of e
produces value of type t

• Raising exception is not normal termination
- 1 + raise No_value (the sum will not be performed)

Typing of handle 〈exp〉 => 〈value〉
• Converts exception to normal termination
• Need type agreement
• Examples

- 1 + ((raise X) handle X => e) Type of e must be int
- 1 + (e1 handle X => e2) Type of e1, e2 must be int

27

IN
F 3110/4110 -2006

Exceptions and Resource Allocation

exception X;
(let

val x = ref [1,2,3]
in

let
val y = ref [4,5,6]

in
… raise X

end
end); handle X => ...

[1,2,3] built in the heap, ref x pushed into stack

Control is transferred outside the scope

[4,5,6] built in the heap, ref y pushed into stack

x and y popped off the stack
[1,2,3] and [4,5,6] garbage collected

28

IN
F 3110/4110 -2006

Exceptions and Resource Allocation

exception X;
(let

val x = ref [1,2,3]
in

let
val y = ref [4,5,6]

in
… raise X

end
end); handle X => ...

Resources allocated
between handler and
raise may be “garbage”
after exception

Open files might not be
closed

General problem: no obvious solution

29

IN
F 3110/4110 -2006

Further Reading

Mitchell’s chapter 8

30

IN
F 3110/4110 -2006

ML summary

Is ML unpractical?, what about
• Input/Output, using files
• Interacting with underlying OS
• Making executable applications
• etc. etc.
We have focused on the basics

• Basic ML constructs
• Learning to think ”functional”, recursion
• Higher order functions
• Type system and type inference
• Exceptions

31

IN
F 3110/4110 -2006

Something on non-Java-like
languages

Arild B. Torjusen
aribraat@ifi.uio.no

Department of Informatics – University of Oslo

Inf3110/4110

•Based on slides by Gerardo Schneider, UiO.

32

IN
F 3110/4110 -2006

Outline

Why (not only) Java?

Some successful stories of non-Java-like
languages

33

IN
F 3110/4110 -2006

Object-oriented programming: a
small part of a big world

Object-oriented programming is just one tool in a vastly
bigger world
For example, consider the task of building robust
telecommunications systems
• Ericsson has developed a highly available ATM switch, the AXD

301, using a message-passing architecture (more than one
million lines of Erlang code)

• The important concepts are isolation, concurrency, and higher-
order programming

• Not used are inheritance, classes and methods, UML diagrams,
and monitors

Source: Peter Van Roy’s slide of an invited talk at CLEI’05 – Cali, Colombia

34

IN
F 3110/4110 -2006

Something on concurrent prog.

There are three main paradigms of concurrent programming
• Declarative (dataflow; deterministic) concurrency
• Message-passing concurrency (active entities that send asynchronous

messages; Actor model, Erlang style)
• Shared-state concurrency (active entities that share common data

using locks and monitors; Java style)

Declarative concurrency is very useful, yet is little known
• No race conditions; allows declarative reasoning techniques
• Large parts of programs can be written with it

Shared-state concurrency is the most complicated (the worst to
program in), yet it is the most widespread (e.g. Java)!
• Multiple threads accessing shared variables
• Interleaving semantics: huge number of cases and complicated

reasoning
Source: Based on Peter Van Roy’s slides of an invited talk at CLEI’05 – Cali, Colombia

35

IN
F 3110/4110 -2006

Some problems with Java

Java is based on the shared-state concurrency
model
Shared-state and message-passing models are
equaly expressive (theoretically) but not in
practice: The shared-state model is harder to
program than the message-passing model!

Better model: objects communicating
asynchronously through message-passing

36

IN
F 3110/4110 -2006

Limitations of Java

Not good for
• Internet programming (e.g. web services)
• Safety critical systems (e.g. aeoronautics)
• Dynamic upgrading (e.g. telecommunication)
• Real-time systems (e.g. robotics)
• Embedded safe systems (e.g. Smart cards)
• Component-based applications
• Systems involving cross-cutting concerns like history

information and synchronization (problems with the
aggregation and inheritance mechanism)

• ...

37

IN
F 3110/4110 -2006

Why to study ML then?

There are enough applications of ML-like languages!
Anyway, the intention of the course is to teach new
concepts, not a new language
ML is a simple function-oriented language with many
interesting features
• Type inference algorithm
• Polymorphism
• Higher-order functions
• Garbage collection
• Abstract data types
• Module system
• Exceptions

38

IN
F 3110/4110 -2006

Outline

Why (not only) Java?

Some successful stories of non-Java-like
languages

39

IN
F 3110/4110 -2006

Text editing: Lisp

Emacs is an extensible, customizable, self-
documenting real-time display editor
It is a text editor and more. At its core is an
interpreter for Emacs Lisp (”elisp'', for short), a
dialect of the Lisp PL with extensions to support
text editing
Lisp is a family of functional languages. The two
major dialects in use today are Common Lisp
and Scheme (see http://www.lisp.org/table/lisp.htm)
See http://www.lisp.org/table/good.htm for more
applications of Lisp

Source:http://www.gnu.org/software/emacs/emacs.html#Whatis

40

IN
F 3110/4110 -2006

Telecommunications: Erlang

Erlang is a functional language for reliable
concurrent and distributed systems developped
at Ericsson and SICS (Sweden)
Some applications: used by Ericsson in the
phone switches AXD301, DWOS, A910, and ANx
Highly reliable: less than 3 minutes of downtime
in one year of operation

Source: http://homepages.inf.ed.ac.uk/wadler/realworld/index.html

41

IN
F 3110/4110 -2006

Finance: Haskell

Haskell is a lazy pure functional language (see
http://www.haskell.org)

Application: a combinator library for describing
compositional financial contracts (by S. Peyton
Jones, J.-M. Eber and J. Seward)
A new enterprise was created based on these
ideas (Lexifi Technologies)
There are many other applications! (see
http://www.haskell.org/practice.html)

Source: http://homepages.inf.ed.ac.uk/wadler/realworld/index.html

42

IN
F 3110/4110 -2006

More applications of Haskell

Galois is a Sw development company based in U.S.A
developing Sw under contract, and every project uses
Haskell (also SML-NJ and OCaml)
Some applications:
• Cryptol, a domain-specific language for cryptography (with an

interpreter and a compiler);
• A cross-domain file and web server;
• A GUI debugger for a specialized chip;
• A tool for easily embedding new syntax in the client's own

language;
• A legacy code translator (translating from K&R C to ANSI C, while

moving from SunOS 4 to Solaris and a new abstract API)

Source: http://homepages.inf.ed.ac.uk/wadler/realworld/index.html

43

IN
F 3110/4110 -2006

Theorem prover 1: ML

Isabelle is a generic theorem prover. New logics
are introduced by specifying their syntax and
rules of inference. Proof procedures can be
expressed using tactics and tacticals
It was developped by L.C. Paulson and T.
Nipkow
Written in SML

Source: http://homepages.inf.ed.ac.uk/wadler/realworld/index.html

44

IN
F 3110/4110 -2006

Theorem prover 2: Lisp and ML

The HOL system is a powerful computer program
for constructing formal specifications and proofs in
higher order logic
Used in both industry and academia to support
formal reasoning in Hw design and verification,
reasoning about security, proofs about real-time
systems, semantics of Hw description lang.,
compiler verification, program correctness,
modelling concurrency, and program refinement
HOL88 is the original Cambridge HOL system built
using Lisp; HOL90 is a reimplementation in SML

Source: http://homepages.inf.ed.ac.uk/wadler/realworld/index.html

45

IN
F 3110/4110 -2006

Theorem prover 3: ML

ALF is an interactive theorem prover (a proof
editor) based on Martin-Löf's type theory with
explicit substitution
The proof engine of ALF is written in SML
Developers: Thierry Coquand, Lena Magnusson
and Bengt Nordström/ Programming Logic Group
at Chalmers, Sweden

Source: http://homepages.inf.ed.ac.uk/wadler/realworld/index.html

46

IN
F 3110/4110 -2006

Verification tool: ML and Lisp

The Java PathFinder, JPF, is a translator from
Java to Promela, the programming language of
the SPIN model checker. The purpose is to
establish a framework for verification and
debugging of Java programs using model
checking. The system detects deadlocks and
violations of assertions stated by the
programmer
Written in Common Lisp and Moscow ML
Developed at NASA Ames (USA)

Source: http://homepages.inf.ed.ac.uk/wadler/realworld/index.html

47

IN
F 3110/4110 -2006

Web, HTML, XML

SXML and SXML tools are S-expression-based
implementations of W3C XML recommendations, the
embedding of XML data and XML query and
manipulation tools. Written in Scheme
HaXml is a collection of utilities for parsing, filtering,
transforming, and generating XML documents using
Haskell.

Source: http://homepages.inf.ed.ac.uk/wadler/realworld/index.html

48

IN
F 3110/4110 -2006

More applications of non-Java like PL

Much, much more: I haven’t mentioned here
much on actor- and aspect-oriented
programming, Internet programming, real-time
languages, embedded systems, logic
programming (Prolog), etc
For more applications of functional languages
see for instance ”Functional Programming in the
Real World”:

http://homepages.inf.ed.ac.uk/wadler/realworld/index.html

	Control in Sequential Languages
	ML lectures
	Outline
	Control flow in sequential programs
	Fortran Control Structure
	Historical Debate
	Advance in Computer Science
	Jumps into Blocks – Why not?
	Outline
	Exceptions: Structured Exit
	ML Example
	ML Exceptions
	ML Exceptions
	ML Exceptions - example
	Which Handler is Used?
	Handlers with pattern matching
	Exception for Error Condition
	Exception for Efficiency
	Runtime organization, a preview
	Runtime organization, a preview
	Runtime organization, a preview
	Dynamic Scope of Handler
	Dynamic Scope of Handler
	Compare to Static Scope of Variables
	Static Scope of Declarations
	Typing of Exceptions
	Exceptions and Resource Allocation
	Exceptions and Resource Allocation
	Further Reading
	ML summary
	Something on non-Java-like languages
	Outline
	Object-oriented programming: a small part of a big world
	Something on concurrent prog.
	Some problems with Java
	Limitations of Java
	Why to study ML then?
	Outline
	Text editing: Lisp
	Telecommunications: Erlang
	Finance: Haskell
	More applications of Haskell
	Theorem prover 1: ML
	Theorem prover 2: Lisp and ML
	Theorem prover 3: ML
	Verification tool: ML and Lisp
	Web, HTML, XML
	More applications of non-Java like PL

