
1

IN
F 3110/4110 -2006

Logic Programming

Arild B. Torjusen
aribraat@ifi.uio.no

Department of Informatics – University of Oslo

Based on slides by Gerardo Schneider, UiO.

2

IN
F 3110/4110 -2006

Outline

A bit of history

Brief overview of the logical paradigm

Facts, rules, queries and unification

Lists in Prolog

Different views of a Prolog program

3

IN
F 3110/4110 -2006

History of Logic Programming

Origin in automated theorem proving
Based on the syntax of first-order logic
1930s: ”Computation as deduction” paradigm – K. Gödel &
J. Herbrand
1965: ”A Machine-Oriented Logic Based on the Resolution
Principle” – Robinson: Resolution, unification and a
unification algorithm.
• Possible to prove theorems of first-order logic

1974: Logic programs with a restricted form of resolution
introduced by R. Kowalski
• The proof process results in a satisfying subsitution.
• Certain logical formulas can be interpreted as programs

4

IN
F 3110/4110 -2006

History of Logic Programming (cont.)

Programming languages for natural language
processing - A. Colmerauer & colleagues
1971-1973: Prolog - Kowalski and Colmerauer
teams working together
First implementation in Algol-W – Philippe Roussel
1983: WAM, Warren Abstract Machine
Influences of the paradigm:
• Deductive databases (70’s)
• Japanese Fifth Generation Project (1982-1991)
• Constraint Logic Programming
• Inductive Logic Programming (machine learning)

5

IN
F 3110/4110 -2006

Paradigms: Overview

Procedural/imperative Programming
• A program execution is regarded as a sequence of operations

manipulating a set of registers (programmable calculator)

Functional Programming
• A program is regarded as a mathematical function

Object-Oriented Programming
• A program execution is regarded as a physical model simulating

a real or imaginary part of the world

Constraint-Oriented/Declarative (Logic) Programming
• A program is regarded as a set of equations

6

IN
F 3110/4110 -2006

Outline

A bit of history

Brief overview of the logical paradigm

Facts, rules, queries and unification

Lists in Prolog

Different views of a Prolog program

7

IN
F 3110/4110 -2006

Declarative Programming

”Program = Logic + Control”
R. Kowalski

In ”traditional” programming
• Programmer takes care of both aspects

In declarative programming
• The programmer only worries about the Logic
• The interpreter takes care of Control

8

IN
F 3110/4110 -2006

Declarative Programming

Logic prog. supports declarative programming
A declarative program admits two interpretations
• Procedural interpretation:

– How the computation takes place
– Concerned with the method
– A program is a description of an algorithm which can be executed

• Declarative interpretation:
– What is being computed
– Concerned with the meaning
– A program is viewed as a formula; possible to reason about its

correctness without any reference to the underlying computational
meaning

This means that we can write executable specifications.

9

IN
F 3110/4110 -2006

Example

Find all grand children for a specific person X?
Declarative description (defines the relation):
• A grandchild GC is a child to GrandParent’s child

Imperative description (explains how to find a
grandchild):
• To find a grandchild to X, first find a child to X. Then

find a child to this child

Imperative description II:
• To find a grandchild to X, find first a parent to a child,

then check if this parent is a child to X

10

IN
F 3110/4110 -2006

Example: Imperative solution

Let child be a matrix representing the parent
relationship (names coded as Nat)
For finding all the grandchildren of person:

read(person);
for i := 1 to maxChild do
if child[person, i] = true then

for j := 1 to maxChild do
if child[i, j] = true then

writeln(j);
fi

od
fi

od

11

IN
F 3110/4110 -2006

Example: Declarative solution

Logic (specification):

∀x∀y(∃z(child(x,z) ∧ child(z,y)) → grandChild(x,y))

Prolog:
grandChild(X,Y) :- child(X,Z), child(Z,Y).

”:-” is the reverse implication ()
”,” between the two terms child(X,Z) and child(Z,Y) is the
logical and

12

IN
F 3110/4110 -2006

Important features of Logic Prog.

Support interactive programming
• User write a program and interact by means of

various queries

Predicates may fail or succeed
• If they succeed, unbound variables are unified and

may be bound to values

Predicates do not return values
• Terms can only be unified with each other
• Only arithmetic expressions are evaluated

No functions in Prolog!

13

IN
F 3110/4110 -2006

Outline

A bit of history

Brief overview of the logical paradigm

Facts, rules, queries and unification

Lists in Prolog

Different views of a Prolog program

14

IN
F 3110/4110 -2006

Running Prolog at IFI
honbori aribraat $ gprolog
GNU Prolog 1.2.16
By Daniel Diaz
Copyright (C) 1999-2002 Daniel Diaz
| ?-

honbori aribraat $ rlogin solaris
Last login: Mon Oct 16 16:24:34 from barnabas.ifi.ui
Sun Microsystems Inc. SunOS 5.9 Generic May 2002
tre aribraat $ sicstus
SICStus 3.7.1 (SunOS-5.5.1-sparc): Tue Oct 06 13:38:15 MET DST 1998
Licensed to ifi.uio.no
| ?- [myprolog] .
{consulting /ifi/fenris/a06/aribraat/myproglangs/prolog/myprolog.pl...}
{/ifi/fenris/a06/aribraat/myproglangs/prolog/myprolog.pl consulted, 0 msec 2000 bytes}

yes
| ?- <questions> .

...

| ?- halt .

15

IN
F 3110/4110 -2006

Some programming principles

We program by creating a (formal) world which we
explore. Two phases:
1. Describe the formal world.
2. Ask questions about it (the machine answers)

The description of the problem is done through
• Facts: Basic truths in the world.
• Rules: Describes how to divide the problem into

simpler subproblems (”subgoals”). (Facts and Rules
are both called Clauses)

• Queries: Prolog answer questions (”queries”) by
using facts and rules

16

IN
F 3110/4110 -2006

Clauses: Facts
Facts:
• isPrime(7), greaterTh(3,1), sumOf(5,2,3), brorAv(Kain,Abel)

Example: Family relations
• Persons have a name, a mother, a father and a birthday.

person(a,b,c,d) denotes a person with name a, mother b, father
c, and year of birth d.

Represented by facts:
person(anne, sofia, martin, 1960).
person(john, sofia, george, 1965).
person(paul, sofia, martin, 1962).
person(maria, anne, mike, 1989).

Constants: words starting with lower-case letters (”anne”,
”sofia”) and numbers.

Relations: words starting with lower-case letters (”person”)

17

IN
F 3110/4110 -2006

Queries

person(anne, sofia, martin, 1960).
person(john, sofia, george, 1965).
person(paul, sofia, martin, 1962).
person(maria, anne, mike, 1989).

|?- person(anne, sofia, martin, 1960).
yes
| ?- person(paul, anne, martin, 1962).
no

Prolog works in a closed world: what it knows is
what is defined in the database - There is no
don’t know answer!

18

IN
F 3110/4110 -2006

Queries with variables

Variable: a word starting with upper-case letters or with
`_’ (”Year” and ”Child” in the example below)
How are the variables used?
• Prolog searches in the knowledge base until it finds something

that ”fits” (unification) and gives it as a result
• The matching substitution(s) is returned.

| ?- person(anne, sofia, martin, Year).
Year = 1960
yes

| ?- person(Child, anne, mike, Year).
Child = maria
Year = 1989
yes

Unification
Unification: the process of matching a query with
facts/rules (solving equations between terms) (Cf. sec.15.3. for
a more formal exposition).

For that we need to have:
• Same outermost relation (f(X), f(a))
• Same number of arguments (f(a,X), f(a,c))
• For each argument

– Both are constants: ok if they are the same (a, a)
– A free variable X and a constant c: X is bound to c
– Two variables X and Y: Y is replaced by X (f(a,X), f(a,Y))

Example
• fact: child(anne,sofia)
• query: child(X,sofia)
• unification: X:= anne .

20

IN
F 3110/4110 -2006

Composite queries

Composite queries may be done using
comma (,) and semicolon (;)
• Comma represents the logical and
• Semicolon represents the logical or
| ?- person(paul, martin, Father, Year);

person(paul, Mother, martin, Year).
Mother = sofia
Year = 1962
yes

Clauses: Rules
Let child(X,Y) represent ”X is a child of Y”:
person(anne, sofia, martin, 1960).
person(john, sofia, george, 1965).
person(paul, sofia, martin, 1962).
person(maria, anne, mike, 1989).
child(X,Y) :- person(X,Z,Y,U).
child(X,Y) :- person(X,Y,Z,U). /* :- is read ”if” */

| ?- child(paul,martin).
yes

| ?- child(paul,Parent).

Parent = martin ? ;
Parent = sofia ? ;
no

22

IN
F 3110/4110 -2006

Scope of variables

The scope of the occurrence of a variable
is the rule where it appears
• All the occurrences of a variable in a rule are

bound to each other
• Two different rules are completely

independent

The name of the variables are arbitrary,
but try to avoid misleading names

23

IN
F 3110/4110 -2006

Finding the answer to queries

| ?- child(paul,martin).
We can use two different rules:
person(paul,martin,Z,U).

There is no corresponding fact
person(paul,Z,martin,U).

It matches person(paul,sofia,martin,1962).
prolog answers
yes

child(X,Y) :- person(X,Y,Z,U).
child(X,Y) :- person(X,Z,Y,U).

24

IN
F 3110/4110 -2006

Finding the answer to queries

| ?- child(paul,Parent).
Two possibilities:
person(paul,Parent,Z,U).

Matches with person(paul,sofia,martin,1962)
The unification will give Parent = sofia.

person(paul,Z,Parent,U).
Matches person(paul,sofia,martin,1962)
The unification will give Parent = martin.

child(X,Y) :- person(X,Y,Z,U).
child(X,Y) :- person(X,Z,Y,U).

25

IN
F 3110/4110 -2006

Rules with more than one condition
siblings(X,Y) :- child(X,Z), child(Y,Z), X \== Y.

• Comma is the logical and, so all the conditions must be satisfied.

• X \== Y means that X and Y are syntactically unequal (e.g.
siblings(anne,anne) will yield ”no”)

| ?- siblings(anne,X).

X = paul ? ;
X = john ? ;
X = paul ? ;

no

Search tree

no

|-? siblings(anne,X)

child(anne,Z), child(X,Z), anne \== X

p(anne,Y,Z,U)
child(X,Z),

anne \== X

p(anne,Z,Y,U)
child(X,Z),

anne \== X

p(anne,sofia,martin,1960)
child(X,martin),

anne \== X

p(X,martin,V,W),

anne \== X

p(X,V,martin,W),

anne \== X

p(anne,sofia,martin,1960),

anne \== anne

no

p(paul,sofia,martin,1962),

anne \== paul

yes (X=paul)

...

PROGRAM:
person(anne, sofia, martin, 1960).
person(john, sofia, george, 1965).
person(paul, sofia, martin, 1962).
person(maria, anne, mike, 1989).
child(X,Y) :- person(X,Z,Y,U).
child(X,Y) :- person(X,Y,Z,U).
siblings(X,Y) :- child(X,Z), child(Y,Z), X \== Y.

27

IN
F 3110/4110 -2006

More rules

Let rsiblings(X,Y) represent that X and Y
have the same parents (father and mother)

rsiblings(X,Y) :- child(X,Parent1),
child(Y,Parent1),
X \== Y,
child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.

28

IN
F 3110/4110 -2006

More rules

Let hsiblings(X,Y) represent that X and Y
have at most one parent in common
hsiblings(X,Y) :- child(X,Parent),

child(Y,Parent),
X \== Y,
child(X,Parent1),
child(Y,Parent2),
Parent \== Parent1,
Parent \== Parent2,
Parent1 \== Parent2.

29

IN
F 3110/4110 -2006

Some queries

| ?- rsiblings(X, anne).

X = paul ? ;
X = paul ? ;
no

| ?- hsiblings(anne,X).

X = john ? ;
no

30

IN
F 3110/4110 -2006

Recursive rules

Let descendant(X,Y) represent that X is a
descendant of Y
descendant(X,Y) :- child(X,Y).
descendant(X,Y) :- child(X,Z), descendant(Z,Y).
NB! Order of rule definitions:
• Non-recursive rule first
• Recursive goal at the end.

31

IN
F 3110/4110 -2006

Recursive rules - Queries

| ?- descendant(anne, X).

X = sofia ? ;
X = martin ? ;
no

| ?- descendant(X, sofia).

X = anne ? ;
X = john ? ;
X = paul ? ;
X = maria ? ;
no

32

IN
F 3110/4110 -2006

Outline

A bit of history

Brief overview of the logical paradigm

Facts, rules, queries and unification

Lists in Prolog

Different views of a Prolog program

33

IN
F 3110/4110 -2006

Lists in Prolog

• [] : the empty list
• [a,b,c] : a list with three elements
• [a|[b,c]] : another way of writing [a,b,c]
• [X | Y] represents a list with first element

X and tail Y

Unification
• [fi, se, th] = [A | B] will be unified as
• A = fi and B=[se, th]

34

IN
F 3110/4110 -2006

Unification on lists

[a,b,c] unifies with [Head | Tail]
Result: Head=a and Tail=[b,c]
[a] unifies with [H | T]
Result: H=a and T=[]
[a,b,c] unifies with [a | T]
Result: T=[b,c]
[a,b,c] does not unify with [b | T]
[] does not unify with [H | T]
[] unifies with []

35

IN
F 3110/4110 -2006

Unification on lists: Example

• Assume the following fact: p([H | T], H, T).
• Query:

| ?- p([a,b,c], X, Y).

X=a
Y=[b,c]
yes

36

IN
F 3110/4110 -2006

Unification on lists: Example

• Assume the following fact: p([H | T], H, T).
• Query:

| ?- p([a], X, Y).
X=a
Y=[]
yes

| ?- p([], X, Y).
no

37

IN
F 3110/4110 -2006

Find an element in a list
• Check if the first element is the one we are

searching for.
• If not, we look for the element in the rest of

the list.
• Either we find X or the list becomes empty.

member(X, [X|Rest]).
member(X, [H | Tail]) :- member(X, Tail).

member(2,[1,2,3]) ? -> member(2,[2,3]) ? -> yes

38

IN
F 3110/4110 -2006

Append two lists

• We will define a relation to concatenate two lists Xs and
Ys into a third list Zs:

| ?- append([1, 2, 3], [4,5], Result). Should give
Result = [1,2,3,4,5].

• Prolog program:

append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

39

IN
F 3110/4110 -2006

Functions?

There are no functions in Prolog, but relations
• Functions are a particular case of relations
• This allows using Prolog programs in multiple ways

A function f: A -> B can be represented in Prolog as a
relation relf(a,b)
• relf(a,b) may be understod as f(a)=b

So, in append(List1, List2, Result).
• List1 and List2 may be seen as input parameters
• Result is the output parameter

Compare with ML:
• ML: fun fst(x::xs) = x
• Prolog: fst([X|Xs],X) .

| ?- fst([1,2,3],X). X = 1 ? ;

40

IN
F 3110/4110 -2006

Outline

A bit of history

Brief overview of the logical paradigm

Facts, rules, queries and unification

Lists in Prolog

Different views of a Prolog program

41

IN
F 3110/4110 -2006

Anonymous variable

When we are not interested in the value of a certain
parameter, we may use `_´
Example: In the program
member(X, [X|Rest]).
member(X, [Head | Tail]) :- member(X, Tail).

we are not interested in the H parameter
(nor in the Rest parameter).

We can write it as follows:
member(X, [X|_]).
member(X, [_| Tail]) :- member(X, Tail).

42

IN
F 3110/4110 -2006

Multiple uses of a Prolog program (1)

Some Prolog programs may be used both for
testing and for computing

Example: member(X, Xs) means X is a member
of the list Xs

member(X, [X | _]).
member(X, [_ | Xs]):- member(X,Xs).

43

IN
F 3110/4110 -2006

Multiple uses of a Prolog program (1)

For testing:

| ?- member(wed, [mon, wed, fri]).
yes

For computing:

| ?- member(X, [mon, wed, fri]).
X = mon ?
X = wed ?
X = fri ?
no

44

IN
F 3110/4110 -2006

Multiple uses of a Prolog program (2)

It’s possible to use the same program to
concatenate two lists and to split a list in all
possible ways

Example: append(Xs,Ys,Zs)

To concatenate two lists:
| ?- append([first, second, third], [fourth,

fifth], Zs).

Zs = [first, second, third, fourth, fifth].

45

IN
F 3110/4110 -2006

Multiple uses of a Prolog program (2)

To split a list in all possible ways:
| ?- append(Xs, Ys, [first, second, third, fourth, fifth]).

Xs = [] Ys = [first,second,third,fourth,fifth] ?

Xs = [first] Ys = [second,third,fourth,fifth] ?

Xs = [first,second] Ys = [third,fourth,fifth] ?

Xs = [first,second,third] Ys = [fourth,fifth] ?

Xs = [first,second,third,fourth] Ys = [fifth] ?

Xs = [first,second,third,fourth,fifth] Ys = [] ?

no

46

IN
F 3110/4110 -2006

Further reading

Mitchell’s book – Chapter 15

See also the tutorial by J. Power:

http://www.cs.may.ie/~jpower/Courses/PROLOG/

Even further reading: Sterling and E. Shapiro:
The art of Prolog, 1994. MIT Press Series.

http://www.cs.may.ie/~jpower/Courses/PROLOG/

47

IN
F 3110/4110 -2006

Mitchell’s chap 15 – an overview.
15.1 History of logic programming

15.2 Brief overview of the logic programming paradigm

15.3 Equations solved by unification of atomic actions.
The formal basis for unification and the unification algorithm.

15.4 Clauses as parts of procedure declarations – Deals with Clauses = Rules and Facts and how they are computed.
1 Simple Clauses - The point is to make a relationship between logic programming and imperative programming.
2 Computation process
3 Clauses

15.5 Prolog's approach to programming
More about how computations take place. Multiple uses of prolog programs (testing vs. computing). Several examples.

15.6 Arithmetic in prolog

15.7 Control, ambivalent syntax and meta-variables.

15.8 Assessement of prolog.

15. 9 Bibliography

15.10 Summary

48

IN
F 3110/4110 -2006

Further reading

Mitchell’s book – Chapter 15

See also the tutorial by J. Power:

http://www.cs.may.ie/~jpower/Courses/PROLOG/

Even further reading: Sterling and E. Shapiro:
The art of Prolog, 1994. MIT Press Series.

http://www.cs.may.ie/~jpower/Courses/PROLOG/

49

IN
F 3110/4110 -2006

”There is no question that Prolog is essentially a
theorem prover à la Robinson. Our contribution
was to transform that theorem prover into a
programming language”

Colmerauer & Roussel (1996)

Prolog

	Logic Programming�
	Outline
	History of Logic Programming
	History of Logic Programming (cont.)
	Paradigms: Overview
	Outline
	Declarative Programming
	Declarative Programming
	Example
	Example: Imperative solution
	Example: Declarative solution
	Important features of Logic Prog.
	Outline
	Running Prolog at IFI 	
	Some programming principles
	Clauses: Facts
	Queries
	Queries with variables
	Unification
	Composite queries
	Clauses: Rules
	Scope of variables
	Finding the answer to queries
	Finding the answer to queries
	Rules with more than one condition
	Search tree�
	More rules
	More rules
	Some queries
	Recursive rules
	Recursive rules - Queries
	Outline
	Lists in Prolog
	Unification on lists
	Unification on lists: Example
	Unification on lists: Example
	Find an element in a list
	Append two lists
	Functions?
	Outline
	Anonymous variable
	Multiple uses of a Prolog program (1)
	Multiple uses of a Prolog program (1)
	Multiple uses of a Prolog program (2)
	Multiple uses of a Prolog program (2)
	Further reading
	Mitchell’s chap 15 – an overview.
	Further reading
	Prolog

