
1

IN
F 3110/4110 -2006

Logic Programming II & Revision

Arild B. Torjusen
aribraat@ifi.uio.no

Department of Informatics – University of Oslo

2

IN
F 3110/4110 -2006

Outline

Repetition
• Facts, rules, queries and unification
• Lists in Prolog
• Different views of a Prolog program

Today
• Arithmetic in Prolog
• Cut and negation

Oblig 1
Repetition ML

3

IN
F 3110/4110 -2006

Facts, rules, queries and unification
Remember: A declarative program admits two interpretations
• Declarative interpretation, What is being computed.
• Procedural interpretation, How the computation takes place

A Prolog program consists of a sequence of clauses
clauses are facts (H) or rules (H :- A1,...,Ak)

person(anne, sofia, martin, 1960) or child(X,Y) :- person(X,Z,Y,U))
Declaratively, the rule H:- A1 , A2 is read as: ”H is implied by the
conjunction A1 , A2”
Procedurally, the rule H:- A1 , A2 is interpreted as ”To answer the
query H, answer the conjunctive query A1 , A2”
We initiate a computation by posing a query (|?- A1,...,Ak)

| ?- child(paul,Parent))
For queries without variables we will get a yes/no answer.
For queries with variables the result is the substitutions for
(assignment of) the variables which will make the query true.
The process of matching a query with facts and rules is called
unification. The result of the unification is a substitution. (mgu =
most general unifier)

4

IN
F 3110/4110 -2006

Lists in Prolog

• [] : the empty list
• [a,b,c] : a list with three elements
• [a|[b,c]] : another way of writing [a,b,c]
• [a,b|[c]] : the same
• [X | Y] represents a list with first element X and

tail Y
• the member predicate:

member(X, [X|Rest]).
member(X, [H | Tail]) :- member(X, Tail).

• the append predicate:
append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

5

IN
F 3110/4110 -2006

append

append([], Ys, Ys). /* 1 */
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs). /* 2 */

|-? append([a,b],[c,d],Res)
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

{X=a, Xs=[b], Ys=[c,d], Res=[a|Zs]}

append([b], [c,d], Zs)
append([X1 | Xs1], Ys1, [X1 | Zs1]) :- append(Xs1, Ys1, Zs1).

{X1=b, Xs1=[],Ys1=[c,d],Zs=[b|Zs1]}

append([], [c,d], Zs1)
append([], Ys2, Ys2)

{Ys2=[c,d],Zs1=Ys2=[c,d]}

Res = [a|Zs]
= [a|[b|Zs1]]
= [a|[b|[c,d]]] = [a,b,c,d] .

6

IN
F 3110/4110 -2006

Different views of a Prolog program

For testing:
| ?- member(wed, [mon, wed, fri]). yes

| ?- append([a,b],[c,d],[a,b,c,d]) . yes

For computing:
| ?- member(X, [mon, wed, fri]).
X = mon ? ; X = wed ?: X = fri ?; no

| ?- append([a,b],[c,d],Zs) .
Zs = [a,b,c,d] ? ;

| ?- append(Xs, Ys, [a,b,c,d]).
Xs = [],Ys = [a,b,c,d] ? ;
Xs = [a], Ys = [b,c,d] ? ;
Xs = [a,b],Ys = [c,d] ? ;
...

7

IN
F 3110/4110 -2006

Outline

Repetition
• Facts, rules, queries and unification
• Lists in Prolog
• Different views of a Prolog program

Today
• Arithmetic in Prolog
• Cut and negation

Oblig 1
Repetition ML

8

IN
F 3110/4110 -2006

Arithmetic in Prolog

Prolog programs presented so far were
declarative: they admitted a dual reading as a
formula
• Operations of arithmetic are functional, not relational

Arithmetic compromises Prolog’s declarativeness
• Solved in constraint logic programming languages

9

IN
F 3110/4110 -2006

Arithmetic operators

Built-in data structures:
• Integers: 1,2,3,... (+, -, *, //)
• Floating points: 2.3, 3.4456, 5.4e-13,... (+, -, *, /)

Infix vs prefix notation*

• 45+35
• ’+’(45,35)

It is possible to have user-defined operators with
specified priority, associativity, etc

*We will see later how to evaluate expressions

10

IN
F 3110/4110 -2006

Arithmetic comparison relations

Prolog allows comparison of ground arithmetic expressions (gae, i.e.
expressions without variables). gaes have values
Built-in comparison relations: <, =<, =:= (”equal”), =\=
(”different”), >= and >
Queries
• | ?- 6*3 =:= 9*2.

yes
• | ?- 8 > 5+3.

no
• | ?- 34>=X+4.

uncaught exception: error(instantiation_error,(>=)/2

Note difference between
• = (unifiability relation) 1+1=2 gives no, X = 1 gives X = 1
• == (syntactic equality) 1+1 == 2 gives no , X == x gives no
• \== (syntactic inequality) 1+1\==2 gives yes.
• =:= (value equality) 1+1 =:= 2 gives yes
• =\= (value inequality) 1+1 =\= 2 gives no

11

IN
F 3110/4110 -2006

Example: ordered lists

ordered([]).
ordered([X]).
ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries
• | ?- ordered([3,4,67,8]).

no
• | ?- ordered([3,4,67, 88]).

yes
• | ? - ordered([3,4,X,88]).

{INSTANTIATION ERROR: 4=<_30 - arg 2}

12

IN
F 3110/4110 -2006

Evaluation of arithmetic expressions

We need to introduce a way to evaluate
expressions
• | ?- X=:=3+4. yields an error
• | ?- X=3+4.

X = 3+4
Evaluation is done using ”is”
• | ?- X is 3+4.

X = 7
• ”is” is a builtin predicate which has been defined as an

operator for simpler syntax, we could also write:
| ?- is(X,3+4).
X = 7

13

IN
F 3110/4110 -2006

Example: Factorial

factorial(0,1).
factorial(N,F) :- N>0, N1 is N-1, factorial(N1,F1),

F is N*F1.
Queries
• | ?- factorial(5,X).

X = 120
Yes

The following query gives, however, an error
• | ?- factorial(X,5).

uncaught exception: error(instantiation_error,(>)/2)

”X>0” is not allowed!

14

IN
F 3110/4110 -2006

Example: Length of lists

An intuitive definition
length([],0).
length([_ | Ts], N+1) :- length(Ts,N).
Query
• | ?- length([3,5,56,7],X).

X = 0+1+1+1+1
Yes

What’s the problem?

Expressions are not automatically evaluated in Prolog!

but wrong

15

IN
F 3110/4110 -2006

Example: Length of lists

A good definition
length([],0).
length([_ | Ts], N) :- length(Ts,M), N is M+1.

Queries
• | ?- length([3,5,56,7],X).

X = 4
Yes

• | ?- length(X,5).
X = [_,_,_,_,_]
yes

16

IN
F 3110/4110 -2006

Outline

Repetition
• Facts, rules, queries and unification
• Lists in Prolog
• Different views of a Prolog program

Today
• Arithmetic in Prolog
• Cut and negation

Oblig 1
Repetition ML

17

IN
F 3110/4110 -2006

cut

cut is a built in system predicate which affects the procedural behaviour of a
program
its main function is to reduce the search space of Prolog computations by
dynamically prunig the search tree.
Ex:

p(s1) :- A1
...
p(si) :- B, !, C
...
p(sk) :- Ak

When cut is encountered,
1. all alternative ways of computing B is discarded.
2. all computations of p(t) is discarded as backtrackable alternatives.

cut gives more control to the programmer, but compromises the declarative reading
of the Prolog programs and makes it difficult to see what will happen in the
computatio.

Search tree

no

|-? siblings(anne,X)

child(anne,Z), child(X,Z), anne \== X

p(anne,Y,Z,U)
child(X,Z),

anne \== X

p(anne,Z,Y,U)
child(X,Z),

anne \== X

p(anne,sofia,martin,1960)
child(X,martin),

anne \== X

p(X,martin,V,W),

anne \== X

p(X,V,martin,W),

anne \== X

p(anne,sofia,martin,1960),

anne \== anne

no

p(paul,sofia,martin,1962),

anne \== paul

yes (X=paul)

...

PROGRAM:
person(anne, sofia, martin, 1960).
person(john, sofia, george, 1965).
person(paul, sofia, martin, 1962).
person(maria, anne, mike, 1989).
child(X,Y) :- person(X,Z,Y,U).
child(X,Y) :- person(X,Y,Z,U).
siblings(X,Y) :- child(X,Z), child(Y,Z), X \== Y.

19

IN
F 3110/4110 -2006

cut

Recall the rsiblings rule.
rsiblings(X,Y) :- child(X,Parent1),

child(Y,Parent1),
X \== Y,

child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.

With cut
rsiblings(X,Y) :- child(X,Parent1),

!,
child(Y,Parent1),

X \== Y,
child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.

20

IN
F 3110/4110 -2006

Negation as failure

Negation can be defined by cut.
not(X) :- X, ! , fail
not(_) .

The built-in negation operator is \+
| ?- \+ person(arild,arild,lise,1969) .
yes
The query \+ A succeeds if and only if the query A
fails.
Corresponds to our ”normal” notion of negation if the
negated query always terminates and is ground.
Consider negation of non-ground term X=1:
\+ (X=1)
no

The Zebra puzzle
Consider the following puzzle: There are five houses, each of a different color,
and inhabitated by a man of a different nationality with a different pet, drink,
and brand of cigarettes.

1. The Englishman lives in the red house.
2. The Spaniard owns the dog.
3. Coffee is drunk in the green house.
4. The Ukrainian drinks tea.
5. The green house is immediately to the right (your right) of the ivory house.
6. The Winston smoker owns snails.
7. Kools are smoked in the yellow house.
8. Milk is drunk in the middle house.
9. The Norwegian lives in the first house on the left.
10. The man who smokes Chesterfields lives in the house next to the man with the
fox.
11. Kools are smoked in the house next to the house where the horse is kept.
12. The Lucky Strike smoker drinks orange juice.
13. The Japanese smokes Parliaments.
14. The Norwegian lives next to the blue house.

Now, who drinks water? Who owns the zebra?

solve:- clues(Houses), queries(Houses).

clues(Houses):- house(A, Houses), colour(A, red), nationality(A, english),
house(B, Houses), nationality(B, spaniard), pet(B, dog),
house(C, Houses), colour(C, green), drink(C, coffee),
house(D, Houses), nationality(D, ukranian), drink(D, tea),
immed_to_right(Houses, E, F), colour(E, green), colour(F, ivory),
house(G, Houses), smoke(G, winston), pet(G, snails),
house(H, Houses), smoke(H, kools), colour(H, yellow),
middle(Houses, I), drink(I, milk),
first(Houses, J), nationality(J, norwegian),
next_to(Houses, K, L), smoke(K, chesterfields), pet(L, fox),
next_to(Houses, M, N), smoke(M, kools), pet(N, horse),
house(O, Houses), smoke(O, luckystrike), drink(O, orangejuice),
house(P, Houses), nationality(P, japanese), smoke(P, parliaments),
next_to(Houses, Q, R), nationality(Q, norwegian), colour(R, blue).

colour(house(C,_,_,_,_), C). nationality(house(_,N,_,_,_), N). pet(house(_,_,P,_,_), P). drink(house(_,_,_,D,_), D).
smoke(house(_,_,_,_,S), S).

first(houses(X,_,_,_,_), X). middle(houses(_,_,X,_,_), X).
immed_to_right(houses(L,R,_,_,_), R, L). immed_to_right(houses(_,L,R,_,_), R, L).
immed_to_right(houses(_,_,L,R,_), R, L). immed_to_right(houses(_,_,_,L,R), R, L).

next_to(Xs, X, Y):- immed_to_right(Xs, X, Y).
next_to(Xs, X, Y):- immed_to_right(Xs, Y, X).

house(X, houses(X,_,_,_,_)).house(X, houses(_,X,_,_,_)).house(X, houses(_,_,X,_,_)).house(X,
houses(_,_,_,X,_)).house(X, houses(_,_,_,_,X)).

queries(Houses):-
house(X, Houses), pet(X, zebra), nationality(X, Nationality1),
write("The "), write(Nationality1), write(" owns the zebra"), nl,
house(Y, Houses), drink(Y, water), nationality(Y, Nationality2),
write("The "), write(Nationality2), write(" drinks water"), nl.

http://perso.orange.fr/colin.barker/sands.htm#Ex_14_1_iv

23

IN
F 3110/4110 -2006

Outline

Repetition
• Facts, rules, queries and unification
• Lists in Prolog
• Different views of a Prolog program

Today
• Arithmetic in Prolog

Oblig 1
Repetition ML

24

IN
F 3110/4110 -2006

Oblig 1 exercise 1

(* Helper function: nth : int * 'a list -> 'a retrieves the nth element form a list. *)
(* Define an exception for cases that should not happen *) exception noSuchElement ;
fun nth (n,nil) = raise noSuchElement
fun nth (0,s::ss) = s

| nth (n,s::ss) = nth((n-1),ss) ;

(* c = cursor n = counter for how many digits we shall generate. xs = the rabitt sequenceso far.
If the cursor is at 1, we will always generate 2 digits, thus for some values we will get one digit
extra, we deal with that later in the toStr function We could have dealt with it in this function also. *)

fun buildrabb(c,n,xs) = if (n>0) then
(case nth(c,xs) of 0 => buildrabb(c+1,n-1,xs@[1])

| 1 => buildrabb(c+1,n-2,xs@[0,1])
| _ => raise noSuchElement)

else xs ;
fun rabb(0) = []

| rabb(1) = [0]
| rabb(n) = buildrabb(0,n,[0])

fun toStr([],n) = "“
| toStr(x::xs,n) = if n = 0 then "" else

case x of 0 => "0"^toStr(xs,n-1)
| 1 => "1"^toStr(xs,n-1)
| _ => raise noSuchElement ;

fun rabSeq(n) = toStr(rabb(n),n) ;

(* Exercise 2 string compression *)

fun proc((c,t),[]) = []
| proc((c,t),[x]) = if t=x then [(c+1,t)] else (c,t)::[(1,x)]
| proc((c,t),x::xs) =

case (c,t) of (0,_) => proc((1,x),xs)
| (n,z) => if z=x then

proc((n+1,x),xs)
else
(c,t)::proc((0,#""),x::xs) ;

fun process(s) = proc((0,#" "),explode(s));

fun toString((c:int,t:char)) = ("^Int.toString(c)^","^Char.toString(t)^")";

fun processToString(s) = foldr (op^) "" (map toString (process(s))) ;

26

IN
F 3110/4110 -2006

Paradigms: Overview

Procedural/imperative Programming
• A program execution is regarded as a sequence of operations

manipulating a set of registers (programmable calculator)

Functional Programming
• A program is regarded as a mathematical function

Object-Oriented Programming
• A program execution is regarded as a physical model simulating

a real or imaginary part of the world

Constraint-Oriented/Declarative (Logic) Programming
• A program is regarded as a set of equations

27

IN
F 3110/4110 -2006

Many different languages

Early languages
• Fortran, Cobol, APL, ...

Algol family
• Algol 60, Algol 68, Pascal, …, PL/1, … Clu, Ada, Modula,

Cedar/Mesa, ...

Functional languages
• Lisp, FP, SASL, ML, Miranda, Haskell, Scheme, Setl, ...

Object-oriented languages
• Simula, Smalltalk, Self, Cecil, …
• Modula-3, Eiffel, Sather, …
• C++, Objective C, …. Java

28

IN
F 3110/4110 -2006

Languages are still evolving

Object systems based on asynchronous calls
Adoption of garbage collection
Need of language support for
• Concurrency primitives; abstract view of concurrent systems
• Data-access; ex. XML
• Security
• Contracts; ex. in virtual organizations
Domain-specific languages
Aspect-oriented programming
Concurrent and Distributed Systems (a lot to be done
here!)
• Network programming

29

IN
F 3110/4110 -2006

Algol family and ML (Mitchell’s chapter 5)

Evolution of Algol family
• Recursive functions and parameter passing
• Evolution of types and data structuring

ML: Combination of Lisp and Algol-like features
• Expression-oriented
• Higher-order functions
• Garbage collection
• Abstract data types
• Module system
• Exceptions
• Type inference

30

IN
F 3110/4110 -2006

Basic ML
Interactive compiler: read-eval-print
Basic Types: Booleans, Integers, Strings, Reals
Compound Types:
• Unit (),
• Tuples (4, 5, “ha det!”) : int * int * string;
• Records {name=“Anibal”, hungry=true}: {name: string, hungry: bool};
• Lists: nil, x :: xs , [1,2,3] , 1 :: (2 :: (3 :: nil))
• Operations on lists: append [1,2] @ [3,4]

Value declarations
• val <pat> = <exp> val myList = [1, 2, 3, 4]; val x::rest = myList;
• Local declarations let val x = 2+3 in x*4 end;

Function declarations
• fun f(<pat>) = <expr> fun f (x,y) = x+y;

fun f x y = x + y
• fn <pat> => <expr> fn x => x+1;
• Multiple-clause definition: fun length (nil) = 0

| length (x::s) = 1 + length(s);

31

IN
F 3110/4110 -2006

ML - cont

Data-type declarations:
• datatype color = red | yellow | blue;
• datatype exp = Var of int | Const of int | Plus of exp*exp;
• datatype tree = Leaf of int | Node of int*tree*tree;
Recursive function on tree datatype:

fun sum (Leaf n) = n
| sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2);

Function on exp type defined by a case expression
fun eval(e) = case e of Var(n) => n

| Const(n) => n
| Plus(e1,e2) => eval(e1) + eval(e2) ;

The keyword type can be used to define a type abbreviation, type int_pair
= int * int ;

ML is mostly functional, but has imperative constructs.

32

IN
F 3110/4110 -2006

ML2

Recursion
• Standard vs tail-recursion
• Two examples, reversing a list, and factorial. (also oblig1)

Currying:
• A function over pairs has type

’a * ’b -> ’c
while a curried function has type

’a -> (’b -> ’c)
• A curried function allows partial application: applied to its 1st argument (of type

’a), it results in a function of type ’b -> ’c
Higher order functions (HOF, functionals)

• fun map f nil = nil
| map f (x::xs) = (f x) :: map f xs;

val map = fn : ('a -> 'b) -> 'a list -> 'b list

• map (fn x => x+1) [1,2,3];
val it = [2,3,4] : int list

Equality
• Only certain types admits equality testing – (reals and functions do not!)

33

IN
F 3110/4110 -2006

Something on ML Modules

Signatures and structures are part of the
standard ML module system
An ML structure is a module, which is a
collection of:
• Types
• Values
• Structure declarations

Signatures are module interfaces
• Kind of ”type” for a structure

34

IN
F 3110/4110 -2006

Types (Mitchell’s chapter 6)

Types are important in modern languages
• Program organization and documentation
• Prevent program errors
• Provide important information to compiler
Type safety

• Relative type safety of languages
• Compilee time vs. run-time type checking
Type inference

• Determine best type for an expression, based on known information
about symbols in the expression

Polymorphism
• Single algorithm (function) can have many types
Overloading

• Symbol with multiple meanings, resolved at compile time

35

IN
F 3110/4110 -2006

Another presentation

Example
- fun f(x) = 2+x;
- (val f = fn x => 2+x ;)
val f = fn : int → int

How does this work?

x

λ

@

@

+ 2

1. Assign types to leaves

: t

int → int → int
real → real→real

: int
2. Propagate to internal
nodes and generate
constraints

int (t = int)

int→int

t→int

3. Solve by substitution

= int→int

Graph for λx. ((plus 2) x)

f(x) = 2+x equiv f = λx. (2+x) equiv f = λx. ((plus 2) x)

36

IN
F 3110/4110 -2006

Control (Mitchell’s chapter 8)

Structured Programming
• “goto” considered harmful

Exceptions in ML
• A different kind of entity than types
• “Structured” jumps that may return a value
• Dynamic scoping of exception handler (The user knows best

how to handle an exception)
• Need to declare exceptions before use
• Pattern matching is used to determine the appropriate handler

(C++ uses type matching)
• Can be used to handle errors or for better efficiency.

	Logic Programming II & Revision�
	Outline
	Facts, rules, queries and unification
	Lists in Prolog
	append
	Different views of a Prolog program
	Outline
	Arithmetic in Prolog
	Arithmetic operators
	Arithmetic comparison relations
	Example: ordered lists
	Evaluation of arithmetic expressions
	Example: Factorial
	Example: Length of lists
	Example: Length of lists
	Outline
	cut
	Search tree�
	cut
	Negation as failure
	The Zebra puzzle
	Outline
	Oblig 1 exercise 1
	Paradigms: Overview
	Many different languages
	Languages are still evolving
	Algol family and ML (Mitchell’s chapter 5)
	Basic ML
	ML - cont
	ML2
	Something on ML Modules
	Types (Mitchell’s chapter 6)
	Another presentation
	Control (Mitchell’s chapter 8)

