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Outline

Repetition
• Facts, rules, queries and unification
• Lists in Prolog
• Different views of a Prolog program

Today
• Arithmetic in Prolog
• Cut and negation

Oblig 1
Repetition ML 
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Facts, rules, queries and unification
Remember: A declarative program admits two interpretations
• Declarative interpretation, What is being computed.
• Procedural interpretation, How the computation takes place

A Prolog program consists of a sequence of clauses
clauses are facts (H) or rules (H :- A1,...,Ak) 

person(anne, sofia, martin, 1960) or child(X,Y) :- person(X,Z,Y,U))
Declaratively, the rule H:- A1 , A2 is read as: ”H is implied by the
conjunction A1 , A2”
Procedurally, the rule H:- A1 , A2 is interpreted as ”To answer the
query H, answer the conjunctive query A1 , A2”
We initiate a computation by posing a query ( |?- A1,...,Ak) 

| ?- child(paul,Parent))
For queries without variables we will get a yes/no answer. 
For queries with variables the result is the substitutions for 
(assignment of) the variables which will make the query true. 
The process of matching a query with facts and rules is called
unification. The result of the unification is a substitution. (mgu = 
most general unifier) 
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Lists in Prolog

• [] : the empty list
• [a,b,c] : a list with three elements
• [a|[b,c]] : another way of writing [a,b,c]
• [a,b|[c]] : the same
• [X | Y] represents a list with first element X and 

tail Y
• the member predicate:

member(X, [X|Rest]).
member(X, [H | Tail]) :- member(X, Tail).

• the append predicate:
append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).
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append

append([], Ys, Ys).  /* 1 */
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs). /* 2 */

|-? append([a,b],[c,d],Res)
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

{X=a, Xs=[b], Ys=[c,d], Res=[a|Zs]}

append([b], [c,d], Zs)
append([X1 | Xs1], Ys1, [X1 | Zs1]) :- append(Xs1, Ys1, Zs1).

{X1=b, Xs1=[],Ys1=[c,d],Zs=[b|Zs1]}

append([], [c,d], Zs1)
append([], Ys2, Ys2)

{Ys2=[c,d],Zs1=Ys2=[c,d]}

Res = [a|Zs]
= [a|[b|Zs1]]
= [a|[b|[c,d]]] = [a,b,c,d] . 
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Different views of a Prolog program

For testing:
| ?- member(wed, [mon, wed, fri]). yes

| ?- append([a,b],[c,d],[a,b,c,d]) . yes

For computing:
| ?- member(X, [mon, wed, fri]).
X = mon ?  ; X = wed ?: X = fri ?; no

| ?- append([a,b],[c,d],Zs) .
Zs = [a,b,c,d] ? ;

| ?- append(Xs, Ys, [a,b,c,d]).
Xs = [],Ys = [a,b,c,d] ? ;
Xs = [a], Ys = [b,c,d] ? ;
Xs = [a,b],Ys = [c,d] ? ;
...
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• Lists in Prolog
• Different views of a Prolog program

Today
• Arithmetic in Prolog
• Cut and negation

Oblig 1
Repetition ML 
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Arithmetic in Prolog

Prolog programs presented so far were
declarative: they admitted a dual reading as a 
formula
• Operations of arithmetic are functional, not relational

Arithmetic compromises Prolog’s declarativeness
• Solved in constraint logic programming languages
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Arithmetic operators

Built-in data structures:
• Integers: 1,2,3,... (+, -, *, //)
• Floating points: 2.3, 3.4456, 5.4e-13,... (+, -, *, /)

Infix vs prefix notation*

• 45+35
• ’+’(45,35)

It is possible to have user-defined operators with
specified priority, associativity, etc

*We will see later how to evaluate expressions
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Arithmetic comparison relations

Prolog allows comparison of ground arithmetic expressions (gae, i.e. 
expressions without variables). gaes have values
Built-in comparison relations: <, =<, =:= (”equal”), =\=
(”different”), >= and >
Queries
• | ?- 6*3 =:= 9*2.

yes
• | ?- 8 > 5+3.

no
• | ?- 34>=X+4.

uncaught exception: error(instantiation_error,(>=)/2

Note difference between
• = (unifiability relation) 1+1=2 gives no, X = 1 gives X = 1
• == (syntactic equality) 1+1 == 2 gives no , X == x gives no
• \== (syntactic inequality) 1+1\==2 gives yes.
• =:= (value equality) 1+1 =:= 2 gives yes
• =\= (value inequality) 1+1 =\= 2 gives no
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Example: ordered lists

ordered([]). 
ordered([X]). 
ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]). 

Queries
• | ?- ordered([3,4,67,8]). 

no
• | ?- ordered([3,4,67, 88]). 

yes
• | ? - ordered([3,4,X,88]). 

{INSTANTIATION ERROR: 4=<_30 - arg 2}
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Evaluation of arithmetic expressions

We need to introduce a way to evaluate
expressions
• | ?- X=:=3+4. yields an error
• | ?- X=3+4.

X = 3+4
Evaluation is done using ”is”
• | ?- X is 3+4.

X = 7  
• ”is” is a builtin predicate which has been defined as an 

operator for simpler syntax, we could also write: 
| ?- is(X,3+4).
X = 7 
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Example: Factorial

factorial(0,1).
factorial(N,F) :- N>0, N1 is N-1, factorial(N1,F1), 

F is N*F1.
Queries
• | ?- factorial(5,X). 

X = 120
Yes

The following query gives, however, an error
• | ?- factorial(X,5).

uncaught exception: error(instantiation_error,(>)/2)

”X>0” is not allowed!
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Example: Length of lists

An intuitive definition 
length([],0).
length([_ | Ts], N+1) :- length(Ts,N).
Query
• | ?- length([3,5,56,7],X).

X = 0+1+1+1+1
Yes

What’s the problem?

Expressions are not automatically evaluated in Prolog!

but wrong
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Example: Length of lists

A good definition
length([],0).
length([_ | Ts], N) :- length(Ts,M), N is M+1.

Queries
• | ?- length([3,5,56,7],X). 

X = 4
Yes

• | ?- length(X,5). 
X = [_,_,_,_,_]
yes
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cut

cut is a built in system predicate which affects the procedural behaviour of a 
program 
its main function is to reduce the search space of Prolog computations by 
dynamically prunig the search tree. 
Ex: 

p(s1) :- A1
...
p(si) :- B, !, C 
...
p(sk) :- Ak

When cut is encountered, 
1. all alternative ways of computing B is  discarded.   
2. all computations of p(t) is discarded as backtrackable alternatives. 

cut gives more control to the programmer, but compromises the declarative reading
of the Prolog programs and makes it difficult to see what will happen in the
computatio.



Search tree

no

|-? siblings(anne,X)

child(anne,Z), child(X,Z), anne \== X

p(anne,Y,Z,U)
child(X,Z),

anne \== X

p(anne,Z,Y,U)
child(X,Z),

anne \== X

p(anne,sofia,martin,1960)
child(X,martin),

anne \== X

p(X,martin,V,W),

anne \== X

p(X,V,martin,W),

anne \== X

p(anne,sofia,martin,1960),

anne \== anne

no

p(paul,sofia,martin,1962),

anne \== paul

yes (X=paul)

...

PROGRAM: 
person(anne, sofia, martin, 1960). 
person(john, sofia, george, 1965). 
person(paul, sofia, martin, 1962). 
person(maria, anne, mike, 1989). 
child(X,Y) :- person(X,Z,Y,U).
child(X,Y) :- person(X,Y,Z,U).
siblings(X,Y) :- child(X,Z), child(Y,Z), X \== Y.
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cut

Recall the rsiblings rule.
rsiblings(X,Y) :- child(X,Parent1),

child(Y,Parent1), 
X \== Y,

child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.

With cut
rsiblings(X,Y) :- child(X,Parent1),

!,
child(Y,Parent1), 

X \== Y,
child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.
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Negation as failure

Negation can be defined by cut.
not(X) :- X, ! , fail
not(_) . 

The built-in negation operator is \+
| ?- \+ person(arild,arild,lise,1969) .
yes
The query \+ A succeeds if and only if the query A 
fails. 
Corresponds to our ”normal” notion of negation if the
negated query always terminates and is ground. 
Consider negation of non-ground term X=1:
\+ (X=1) 
no



The Zebra puzzle
Consider the following puzzle: There are five houses, each of a different color, 
and inhabitated by a man of a different nationality with a different pet, drink, 
and brand of cigarettes. 

1. The Englishman lives in the red house.
2. The Spaniard owns the dog.
3. Coffee is drunk in the green house.
4. The Ukrainian drinks tea.
5. The green house is immediately to the right (your right) of the ivory house.
6. The Winston smoker owns snails.
7. Kools are smoked in the yellow house.
8. Milk is drunk in the middle house.
9. The Norwegian lives in the first house on the left. 
10. The man who smokes Chesterfields lives in the house next to the man with the 
fox.
11. Kools are smoked in the house next to the house where the horse is kept.
12. The Lucky Strike smoker drinks orange juice.
13. The Japanese smokes Parliaments.
14. The Norwegian lives next to the blue house.

Now, who drinks water? Who owns the zebra?



solve:- clues(Houses),   queries(Houses).

clues(Houses):- house(A, Houses), colour(A, red), nationality(A, english), 
house(B, Houses), nationality(B, spaniard), pet(B, dog),           
house(C, Houses), colour(C, green), drink(C, coffee), 
house(D, Houses), nationality(D, ukranian), drink(D, tea), 
immed_to_right(Houses, E, F), colour(E, green), colour(F, ivory), 
house(G, Houses), smoke(G, winston), pet(G, snails), 
house(H, Houses), smoke(H, kools), colour(H, yellow), 
middle(Houses, I), drink(I, milk), 
first(Houses, J), nationality(J, norwegian), 
next_to(Houses, K, L), smoke(K, chesterfields), pet(L, fox),       
next_to(Houses, M, N), smoke(M, kools), pet(N, horse),             
house(O, Houses), smoke(O, luckystrike), drink(O, orangejuice),    
house(P, Houses), nationality(P, japanese), smoke(P, parliaments), 
next_to(Houses, Q, R), nationality(Q, norwegian), colour(R, blue). 

colour(house(C,_,_,_,_), C). nationality(house(_,N,_,_,_), N). pet(house(_,_,P,_,_), P). drink(house(_,_,_,D,_), D). 
smoke(house(_,_,_,_,S), S). 

first(houses(X,_,_,_,_), X).  middle(houses(_,_,X,_,_), X). 
immed_to_right(houses(L,R,_,_,_), R, L). immed_to_right(houses(_,L,R,_,_), R, L).
immed_to_right(houses(_,_,L,R,_), R, L). immed_to_right(houses(_,_,_,L,R), R, L).

next_to(Xs, X, Y):- immed_to_right(Xs, X, Y).
next_to(Xs, X, Y):- immed_to_right(Xs, Y, X).

house(X, houses(X,_,_,_,_)).house(X, houses(_,X,_,_,_)).house(X, houses(_,_,X,_,_)).house(X, 
houses(_,_,_,X,_)).house(X, houses(_,_,_,_,X)).

queries(Houses):-
house(X, Houses), pet(X, zebra), nationality(X, Nationality1),
write("The "), write(Nationality1), write(" owns the zebra"), nl,
house(Y, Houses), drink(Y, water), nationality(Y, Nationality2),
write("The "), write(Nationality2), write(" drinks water"), nl.

http://perso.orange.fr/colin.barker/sands.htm#Ex_14_1_iv
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Oblig 1 exercise 1

(* Helper function:  nth : int * 'a list -> 'a retrieves the nth element form a list. *)  
(* Define an exception for cases that should not happen *) exception noSuchElement ; 
fun nth (n,nil) = raise noSuchElement
fun nth (0,s::ss) = s 

| nth (n,s::ss) = nth((n-1),ss) ; 

(* c = cursor n = counter for how many digits we shall generate. xs = the rabitt sequenceso far.  
If the cursor is at 1, we will always generate 2 digits, thus for some values we will get one digit 
extra, we deal with that later in the toStr function We could have dealt with it in this function also. *)

fun buildrabb(c,n,xs) = if (n>0) then 
(case nth(c,xs) of 0 => buildrabb(c+1,n-1,xs@[1])

| 1 => buildrabb(c+1,n-2,xs@[0,1])
| _ => raise noSuchElement )

else xs ;
fun rabb(0) = [] 

| rabb(1) = [0]
| rabb(n) = buildrabb(0,n,[0])

fun toStr([],n) = "“
| toStr(x::xs,n) = if n = 0 then "" else

case x of 0 => "0"^toStr(xs,n-1)
| 1 => "1"^toStr(xs,n-1)  
| _ => raise noSuchElement ;

fun rabSeq(n) = toStr(rabb(n),n) ; 



(* Exercise 2 string compression *) 

fun proc((c,t),[]) = []
| proc((c,t),[x]) = if t=x then [(c+1,t)] else (c,t)::[(1,x)]
| proc((c,t),x::xs) = 

case (c,t) of (0,_) => proc((1,x),xs)
| (n,z) => if z=x then 

proc((n+1,x),xs) 
else
(c,t)::proc((0,#""),x::xs) ;

fun process(s) = proc((0,#" "),explode(s));

fun toString((c:int,t:char)) = ("^Int.toString(c)^","^Char.toString(t)^")"; 

fun processToString(s) = foldr (op^) "" (map toString (process(s))) ;
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Paradigms: Overview

Procedural/imperative Programming
• A program execution is regarded as a sequence of operations

manipulating a set of registers (programmable calculator)

Functional Programming
• A program is regarded as a mathematical function

Object-Oriented Programming
• A program execution is regarded as a physical model simulating

a real or imaginary part of the world

Constraint-Oriented/Declarative (Logic) Programming
• A program is regarded as a set of equations
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Many different languages

Early languages
• Fortran, Cobol, APL, ...

Algol family
• Algol 60, Algol 68, Pascal, …, PL/1, … Clu, Ada, Modula, 

Cedar/Mesa, ...

Functional languages
• Lisp, FP, SASL, ML, Miranda, Haskell, Scheme, Setl, ...

Object-oriented languages
• Simula, Smalltalk, Self, Cecil, …
• Modula-3, Eiffel, Sather, …
• C++, Objective C,    ….   Java



28

IN
F 3110/4110 -2006

Languages are still evolving

Object systems based on asynchronous calls
Adoption of garbage collection 
Need of language support for
• Concurrency primitives; abstract view of concurrent systems 
• Data-access; ex. XML
• Security
• Contracts; ex. in virtual organizations
Domain-specific languages
Aspect-oriented programming
Concurrent and Distributed Systems (a lot to be done 
here!)
• Network programming
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Algol family and ML (Mitchell’s chapter 5)

Evolution of Algol family
• Recursive functions and parameter passing
• Evolution of types and data structuring 

ML: Combination of Lisp and Algol-like features
• Expression-oriented
• Higher-order functions
• Garbage collection
• Abstract data types
• Module system
• Exceptions
• Type inference
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Basic ML 
Interactive compiler: read-eval-print
Basic Types: Booleans, Integers, Strings, Reals
Compound Types: 
• Unit  (),
• Tuples (4, 5, “ha det!”) : int * int * string;
• Records {name=“Anibal”, hungry=true}: {name: string, hungry: bool};
• Lists: nil, x :: xs , [1,2,3] , 1 :: (2 :: (3 :: nil))
• Operations on lists: append [1,2] @ [3,4]

Value declarations
• val <pat> = <exp> val myList = [1, 2, 3, 4]; val x::rest = myList;
• Local declarations let val x = 2+3 in x*4 end;

Function declarations
• fun f(<pat>) = <expr> fun f (x,y) = x+y;     

fun f x y = x + y  
• fn <pat> => <expr> fn x => x+1; 
• Multiple-clause definition: fun length (nil)  = 0

|    length (x::s) = 1 + length(s);
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ML - cont

Data-type declarations:
• datatype color = red | yellow | blue;
• datatype exp = Var of int | Const of int | Plus of exp*exp; 
• datatype tree = Leaf of int | Node of int*tree*tree; 
Recursive function on tree datatype:

fun sum (Leaf n) = n
| sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2);

Function on exp type defined by a case expression
fun eval(e) = case e of Var(n)   => n 

| Const(n)  => n 
| Plus(e1,e2) => eval(e1) + eval(e2) ;

The keyword type can be used to define a type abbreviation, type int_pair
= int * int ; 

ML is mostly functional, but has imperative constructs.
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ML2 

Recursion
• Standard vs tail-recursion 
• Two examples, reversing a list, and factorial. (also oblig1) 

Currying: 
• A function over pairs has type

’a * ’b -> ’c
while a curried function has type

’a -> (’b -> ’c)
• A curried function allows partial application: applied to its 1st argument (of type 

’a), it results in a function of type ’b -> ’c
Higher order functions (HOF, functionals) 

• fun map f nil = nil
| map f (x::xs) = (f x) :: map f xs;

val map = fn : ('a -> 'b) -> 'a list -> 'b list

• map (fn x => x+1)  [1,2,3];
val it = [2,3,4] : int list

Equality
• Only certain types admits equality testing – (reals and functions do not!)
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Something on ML Modules

Signatures and structures are part of the
standard ML module system
An ML structure is a module, which is a 
collection of:
• Types
• Values
• Structure declarations

Signatures are module interfaces
• Kind of ”type” for a structure
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Types (Mitchell’s chapter 6)

Types are important in modern languages
• Program organization and documentation
• Prevent program errors
• Provide important information to compiler 
Type safety

• Relative type safety of languages
• Compilee time vs. run-time type checking
Type inference

• Determine best type for an expression, based on known information 
about symbols in the expression

Polymorphism
• Single algorithm (function) can have many types
Overloading

• Symbol with multiple meanings, resolved at compile time
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Another presentation 

Example
- fun f(x) = 2+x;
- (val f = fn x => 2+x ;) 
val f = fn : int → int

How does this work?

x 

λ

@

@

+ 2

1. Assign types to leaves

: t

int → int → int
real → real→real

: int
2. Propagate to internal 
nodes and generate 
constraints

int (t = int)

int→int

t→int

3. Solve by substitution

= int→int

Graph for λx. ((plus 2) x)

f(x) = 2+x equiv f = λx. (2+x) equiv f = λx. ((plus 2) x)
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Control (Mitchell’s chapter 8)

Structured Programming
• “goto” considered harmful

Exceptions in ML
• A different kind of entity than types
• “Structured” jumps that may return a value
• Dynamic scoping of exception handler (The user knows best 

how to handle an exception) 
• Need to declare exceptions before use
• Pattern matching is used to determine the appropriate handler 

(C++ uses type matching)
• Can be used to handle errors or for better efficiency.
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