
IN
F 3110/4110 -2006

8/28/2006 1

Syntax/semantics - I

Program <> program execution
Compiling/interpretation
Syntax
– Classes of languages
– Regular languages
– Context-free languages

Meta models

8/28/2006 2

IN
F 3110/4110 -2006

Programming/Modeling

GeneratorProgram Program
execution

Programming
Real World/

Problem/
...

Generator
Model

(Description) Model

Modeling
Real World/

Problem/
...

8/28/2006 3

IN
F 3110/4110 -2006

Syntax <> Semantics
A description of a programming language consists of two main
components:
– Syntactic rules: what form does a legal program have.
– Semantic rules: what the sentences in the language mean.

Static semantics: rules that may be checked (by the compiler) before
the execution of the program, e.g.:

– All variables must be declared.
– Declaration and use of variables coincide (type check).

Dynamic semantics: rules saying what shall hapen during (as part of)
the execution of the program, e.g. in terms of an operational
semantics, that is a semantics that describes the behaviour of a
(idealised) abstract generator (prosessor/machine) executing a
program.

8/28/2006 4

IN
F 3110/4110 -2006

Compiling/interpretation
An interpreter
reads a
program and
executes its
operations.

A compiler/
translator
translates a
program to
another
language,
typically a
machine
language or to
a language for
a virtual
machine.

Interpreter
Data

Program

Data

Interpreter/
Machine

Data

Program

Data

Program Compiler/
Translator

8/28/2006 5

IN
F 3110/4110 -2006

How to describe syntax – I
BNF-grammar

Syntax diagram
(‘railway diagram’)

<tall> → - <siffer>
<tall> → <sifffer>
<siffer> → 0 <sifre>
<siffer> → 1 <sifre>
<sifre> → 0 <sifre>
<sifre> → 1 <sifre>
<sifre> → ε

0

1
-

tall

8/28/2006 6

IN
F 3110/4110 -2006

Extended BNF
Extended BNF has the following metasymbols (on the right side):

| alternatives

? symbols may occur 0 or 1 time

* symbols may occur 0 or several times

+ symbols may occur 1 or several times

{...} groups symbols

<tall> → - <siffer> | <sifffer>
<siffer> → 0 <sifre> | 1 <sifre>
<sifre> → 0 <sifre> | 1 <sifre> | ε

<tall> → {-}?{0|1}+

8/28/2006 7

IN
F 3110/4110 -2006

How to describe syntax – II
Non-deterministic automaton

Deterministic automaton

8/28/2006 8

IN
F 3110/4110 -2006

Example
BNF-grammar

Syntax diagram

<uttrykk> → <uttrykk> + <term> | <term>

<term> → <term> * navn | navn

production, rule
(produksjon)

terminals
(grunnsymbol)

non-terminals
(metasymbol)

left-
recursion

uttrykk +
uttrykk

term

term

term *
term

navn

navn

8/28/2006 9

IN
F 3110/4110 -2006

Derivation of sentences
The sentences in a language defined by a BNF-grammar are exactly
those that may be produced by the following procedure:
1. Start with the start symbol.
2. For each meta symbol, substitute this with one of alternatives on the

right hand side in the production rule.
3. Repeat step 2 until only terminals.

This is called a derivation from the start symbol to a complete sentence,
and it may be represented by a syntax tree

Abstract syntax tree
– Removing terminals that are

not needed in order

navn * navn + navn

uttrykk

uttrykk term

termto give the meaning

8/28/2006 10

IN
F 3110/4110 -2006

Unambiguous/ambiguous grammars
If every sentence in a language can be derived by one and only one
syntax tree, then the grammar is unambiguous,
otherwise it is ambiguous.

<uttrykk> → navn |
<uttrykk> + <uttrykk> |
<uttrykk> * <uttrykk>

uttrykk

navn +

uttrykk

navn

uttrykk

*

uttrykk

navn

uttrykk

uttrykk

navn +

uttrykk

navn

uttrykk

*

uttrykk uttrykk

navn

8/28/2006 11

IN
F 3110/4110 -2006

Types of languages
Regular languages (type 3)
– A BNF-grammar with one meta symbol to the left and only

terminals to the right, possibly with a metasymbol as the last
symbol

– May be analyzed with non-deterministic and deterministic
automata

Context free languages (type 2)
– A BNF-grammar with just one meta symbol on the left hand side
– Almost all programming languages have grammars of this type
– May be analyzed with parsers

Type 1 languages («context-sensitive») require that the righthand
side is of the same length as the lefthand side. This makes it possible
to cover name bindings and type checks
Type 0 languages have no restrictions
– One of theoretical interest

8/28/2006 12

IN
F 3110/4110 -2006

Meta models
Alternative to grammars and syntax trees
Object model representing the program (not the execution)

AD

B C

A

D

n..m
1

0..1
0..*

*

<statement> → <assignment> | <if-then-else> | <while-do>

statement

if-then-elseassignment while-do

8/28/2006 13

IN
F 3110/4110 -2006

Why meta models?
Inspired by abstract syntax trees in terms of object structures,
interchange formats between tools
Not all modeling/programming tools are grammar (parser)-based
(e.g. wizards)
Growing interest in domain specific languages, often with a mixture
of text and graphics

8/28/2006 14

IN
F 3110/4110 -2006

Use of deterministic automata
To check if a given string is part of the regular language or not:

8/28/2006 15

IN
F 3110/4110 -2006

Use of deterministic automata
What if the string is not in the language?

8/28/2006 16

IN
F 3110/4110 -2006

Howe to make a deterministic automaton?
A deterministic automaton (D-automat) is easy to use, but not
necessarily so intuitive and not so easy to make.
From a regular expression (or a syntax diagram) it is, however, easy
to make a none-deterministic automaton (ID-automat).

Then we can use an algorithm to make a deterministic automaton
from the none-deterministic automaton.

May have:
• Empty transitions (so-called ε - transitions).
• More transitions from same state with the same symbol.

8/28/2006 17

IN
F 3110/4110 -2006

Example

<tall> → 0 <FP> | 1 <IFP>

<IFP> → 1 <IFP> | 0 <IFP> | <FP>

<FP> → ε | . <EP>

<EP> → 0 | 1 | 0 <EP> | 1 <EP>

<tall> → { 0 | 1 {0 | 1 }* } {.{ 0 | 1 }+ }?

Allowed words are

0 1 101 0.10 100.1010 10.1

However, not allowed with leading 0 or
”decimalpoint” without preceeding or following ciffers, so
the following is not allowed:

001 10. .01

8/28/2006 18

IN
F 3110/4110 -2006

Parse/syntax tree

.

1

EP

IFP

tall

1 IFP

0

FP

10.1

8/28/2006 19

IN
F 3110/4110 -2006

From syntax diagram to none-deterministic automaton

1. Every ”switch” becoms a node in the automaton
2. The lines (with symbols) become transitions between the nodes

Some transitions may get an empty symbol (ε)
3. Mark start node and end node(s)

8/28/2006 20

IN
F 3110/4110 -2006

Example
0

1

0

1

. 0

1

ε

0
0 0

1

1
1 ε ε

ε

.

0 ε

ε

0
0 0

1

1
1 ε ε

ε

.

X

8/28/2006 21

IN
F 3110/4110 -2006

From non-deterministic to deterministic automaton

ε

0
0 0

1
1

1 ε ε

ε

.

X

ε

0
0 0

1
1

1 ε ε

ε

.

X

non-
deterministic:

deterministic:

ε

0
0 0

1
1

1 ε ε

ε

.

X

0

1

ε

0
0 0

1
1

1 ε ε

ε

.

X

0

1

ε

0
0 0

1
1

1 ε ε

ε

.

X

0

1

0

1

a,X

X0

1

a,X

X0

1

a,X
ε

0
0 0

1
1

1 ε ε

ε

.

X

ε

0
0 0

1
1

1 ε ε

ε

.

X

ε

0
0 0

1
1

1 ε ε

ε

.

X

X0

1

a,X

X0

1

a,X

a,b,X

X

X0

1

a,X

a,b,X

X

X0

1

a,X

a,b,X

ε

0
0 0

1
1

1 ε ε

ε

.

X

ε

0
0 0

1
1

1 ε ε

ε

.

X

1

X

X0

1

0

a,X

a,b,X 1

X

X0

1

0

a,X

a,b,X

ε

0
0 0

1
1

1 ε ε

ε

.

X

ε

0
0 0

1
1

1 ε ε

ε

.

X

1

X

X0

1

0

.

.

a,X

a,b,X 1

X

X0

1

0

.

.

a,X

a,b,X

c

1

X

X0

1

0

.

.

a,X

a,b,X

c

ε

0
0 0

1
1

1 ε ε

ε

.

X

1

X

X0

1

0

.

.

0

1

a,X

a,b,X

c

ε

0
0 0

1
1

1 ε ε

ε

.

X

1

X

X0

1

0

.

.

0

1

a,X

a,b,X

c

1

X

X0

1

0

.

.

0

1

a,X

a,b,X

c

c,d,X1

X

X

X

0

1

0

.

.

0

1

a,X

a,b,X

c

c,d,X1

X

X

X

0

1

0

.

.

0

1

a,X

a,b,X

c

c,d,X

ε

0
0 0

1
1

1 ε ε

ε

.

X

ε

0
0 0

1
1

1 ε ε

ε

.

X

ε

0
0 0

1
1

1 ε ε

ε

.

X

1

X

X

X

0

1

0

.

.

0

1

0

1

a,X

a,b,X

c

c,d,X1

X

X

X

0

1

0

.

.

0

1

0

1

a,X

a,b,X

c

c,d,X

ε

0
0 0

1
1

1 ε ε

ε

.

Xa

b c d

1

2

3

4

5

8/28/2006 22

IN
F 3110/4110 -2006

As a table

1 2 3 4 5 error

0 2 error 3 5 5

1 3 error 3 5 5

. error 4 4 error error

end ok okok

8/28/2006 23

IN
F 3110/4110 -2006

Syntax checking algorithm
Given such a table t, the following algorithm will check a given string:

Summary - How to make a syntax checking program:
– Make a non-deterministic automaton for the regular expression
– Make a deterministic automaton from the non-deterministic

automaton
– Make the table t
– Use the above algorithm

state := 1;
while <more symbols> do begin

c := <next symbol>;
state := t(state,c);

end while;
if ok(state) then <OK>
else <Not OK>;

	Syntax/semantics - I
	Programming/Modeling
	Syntax <> Semantics
	Compiling/interpretation
	How to describe syntax – I
	Extended BNF
	How to describe syntax – II
	Example
	Derivation of sentences
	Unambiguous/ambiguous grammars
	Types of languages
	Meta models
	Why meta models?
	Use of deterministic automata
	Use of deterministic automata
	Howe to make a deterministic automaton?
	Example
	Parse/syntax tree
	From syntax diagram to none-deterministic automaton
	Example
	From non-deterministic to deterministic automaton
	As a table
	Syntax checking algorithm

