
9/4/2006 1

IN
F 3110/4110 -2006

Syntax/semantics - II
Syntax analysis
– Scanning
– Parsing

”top-down”
”bottom-up”

– LL(1)-parsing
Recursive descent

9/4/2006 2

IN
F 3110/4110 -2006

Scanner

Scanner Parserfile tokens

The scanner groups characters into tokens
Example:

begin OutText (”Hallo”) end
BEGIN IDENT LPAR TEXT RPAR END

A scanner can be constructed as a deterministic automaton

9/4/2006 3

IN
F 3110/4110 -2006

Parsing
To check that a sentence (or a program) is syntactically correct,
that is to construct the corresponding syntax tree.
In general we would like to construct the tree by reading the
sentence/program once, from left to right!

Example grammar

<uttrykk> → <uttrykk> + <term>
<uttrykk> → <term>
<term> → <term> * navn
<term> → navn

Given this grammar, we shall loook at the parsing of the sentence:

9/4/2006 4

IN
F 3110/4110 -2006

Top-down parsing
The tree is constructed from the top and down, that is we start with
the start symbol as the root, and try to derive the sentence from
there:

<uttrykk> → <uttrykk> + <term>
<uttrykk> → <term>
<term> → <term> * navn
<term> → navn

9/4/2006 5

IN
F 3110/4110 -2006

Bottom-up parsing
The tree is constructed from the bottom and up. We start by finding
something in the sentence that matches a right-hand side in a
production, and reduces this part of the sentence to the corresponding
non-terminal on the left-hand side. The goal is to reduce so that we
finally reduce to the start symbol:

<uttrykk> → <uttrykk> + <term>
<uttrykk> → <term>
<term> → <term> * navn
<term> → navn

9/4/2006 6

IN
F 3110/4110 -2006

LL(1)-parsering
LL(1)-parsing is a top-down strategy where we do a
left derivation from the start symbol.
Recursive descent
– To each non-terminal there is a method.
– The method takes care of the terminals of the right hand side,

and calls methods corresponding to the non-terminals:
For every terminal in the right-hand side, check that the next symbol
in the sentence is this terminal.
For every non-terminal in the right-hand side, call the method
corresponding to the non-terminal.

– When the method is called, the first symbol in the text shall be the
first symbol in the corresponding production, in order for the
sentence to be syntactically correct.

– When the method is finished, the scanner will have the next
symbol after the sentence.

9/4/2006 7

IN
F 3110/4110 -2006

Example

<uttrykk> → <uttrykk> + <term> | <term>
<term> → <term> * navn | navn

static void uttrykk() {
uttrykk();
readSymbol(’+');
term();

}

9/4/2006 8

IN
F 3110/4110 -2006

Example
<program> → <stmtList>
<stmtList> → <stmt> +
<stmt> → <input> | <output> | <assignment>
<input> → ? <variable>
<output> → ! <variable>
<assignment> → <variable> = <variable> <operator> <operand>
<operator> → + | -
<operand> → <variable> | <number>
<variable> → v <digit>
<digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<number> → <digit> +

static void assignment() {
variable();
readSymbol('=');
variable();
operator();
operand();

}

9/4/2006 9

IN
F 3110/4110 -2006

Example

static void stmt() {
if (checkSymbol('v')) {

assignment();
} else if (checkSymbol('?')) {

input();
} else if (checkSymbol('!')) {

output();
}

<program> → <stmtList>
<stmtList> → <stmt> +
<stmt> → <input> | <output> | <assignment>
<input> → ? <variable>
<output> → ! <variable>
<assignment> → <variable> = <variable> <operator> <operand>
<operator> → + | -
<operand> → <variable> | <number>
<variable> → v <digit>
<digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<number> → <digit> +

9/4/2006 10

IN
F 3110/4110 -2006

LL(1)-grammars
We cannot make a ”recursive descent”-parser for all grammars; they
have to fulfill the following requirements:
– The grammar must be context free, i.e. only one non-terminal at

the left-hand side.
– During parsing we must know which of the alternatives on the

right-hand side to choose, i.e. that the sets of start symbols for
each alternative must be disjoint.

A LL(1)-grammar is a grammar with these properties, and so that one
just has to look 1 (but not more) symbol ahead in order to choose
alternative.

9/4/2006 11

IN
F 3110/4110 -2006

Example

<uttrykk> → <uttrykk> + <term> | <term>
<term> → <term> * navn | navn

static void uttrykk() {
uttrykk();
readSymbol(’+');
term();

}

9/4/2006 12

IN
F 3110/4110 -2006

What if a grammar is not LL(1)?
Two techniques to turn a grammar into a LL(1) grammar.

Removal of left recursion
Left factorization (making the sets of start symbols for each
alternative disjoint)

Removal of left recursion I

9/4/2006 13

IN
F 3110/4110 -2006

<uttrykk> → <uttrykk> + <term> | <term>
Strategy:
1. Translate to Extended BNF:

2. Back to BNF, but with right recursion (and possibly extra non-
terminals):

<uttrykk> → <term> {+ <term> }*

<uttrykk> → <term> <xterm>
<xterm> → + <term> <xterm> | ε

static void uttrykk() {
term();
xterm();

}

static void xterm() {
if not end then {

readSymbol(’+');
term();
xterm()

}
}

Removal of left recursion II

9/4/2006 14

IN
F 3110/4110 -2006

<term> → <term> * navn | navn
Strategy:
1. Translate to Extended BNF:

2. Back to BNF:

<term> → navn {* navn }*

<term> → navn <xnavn>
<xnavn> → * navn <xnavn> | ε

static void term() {
read(navn);
xnavn();

}

static void xnavn() {
if not end then {

readSymbol(’*’);
read(navn);
xnavn();

}
}

9/4/2006 15

IN
F 3110/4110 -2006

Left factorization
Often two alternatives may begin the same way (non-disjoint sets of
start symbols), but have different endings, such as e.g.:

<setning> → <uttrykk> + <term> | <uttrykk> * <term>

The trick is here to introduce a new non-terminal for the part that
may vary:

<setning> → <uttrykk> <xsetning>
<xsetning> → + <term> | * <term>

	Syntax/semantics - II
	Scanner
	Parsing
	Top-down parsing
	Bottom-up parsing
	LL(1)-parsering
	Example
	Example
	Example
	LL(1)-grammars
	Example
	What if a grammar is not LL(1)?
	Removal of left recursion I
	Removal of left recursion II
	Left factorization

