
INF3110/4110

Problems week 45 (6.11 - 10.11, 2006)

Problem 1

Here is an easy one on type compatibility.

Given the following program fragment in some hypothetical language:

type S1 is struct {
 int y;
 int w;
};
type S2 is struct {
 int y;
 int w;
};
type S3 is struct {
 int y;
};
S3 func(S1 p) { ... };
...
S1 a,x;
S2 b;
S3 c;
int d;
...

a=b; // (1)
x=a; // (2)
c=func(b); // (3)
d=func(a); // (4)

a) Under name compatibility, which of the four statements (1) ... (4)
are type correct (and which are not).

b) Same question under structural compatibility.

Problem 2

We have the following classes:

 class Food {...}
 class Cheese extends Food {...}

Assume that we have the following functions:

 int f(c Cheese) {..}

 int f’(f Food) {...}

someFood is a value of type Food, and someCheese is some value of type
Cheese. Then we know that

 f’(someCheese) can be substituted for f(someCheese)

without causing any static type errors, that is f’ is a subtype of f.

Why cannot f(someFood) be substituted for f’(someFood)? That is why is
f not a subtype of f’? Give an example of class Cheese (that is a more
elaborate Cheese than above) and a definition of f that will create a
type error.

Problem 3

Exercise 11.1 in Mitchell.

Problem 4

Consider the classes C and SC at slide 29 from 6.11.2005.

We know that this language allows overloaded methods to be inherited,
that is the scope for overloaded methods for a subclass includes the
inherited methods.

Here is the answer to the question posed at the lecture (to which
method are the different calls bound):

C c = new C();
SC sc = new SC();
C c’ = new SC();

c.equals(c) //1 equals 1
c.equals(c’) //2 equals 1
c.equals(sc) //3 equals 1

c’.equals(c) //4 equals 1
c’.equals(c’) //5 equals 1
c’.equals(sc) //6 equals 1

sc.equals(c) //7 equals 1
sc.equals(c’) //8 equals 1
sc.equals(sc) //9 equals 2

It is only in //9 that the equals 2 method is called, the reason being
that overloading is resolved at compile time. The three calls to c’
(even though the value of c’ is a SC-object) will be calls to equals 1.
//7 is also a call to equals 1, as the parameter c is of type C – same
with //8.

The method equals 1 comes in two versions: the C_equals 1 and the
redefined SC_equals 1.

a) Indicate for the above 9 cases which of the equals 1 are called.

Now, suppose that class SC does not have the first equals method, the
one with parameter of type C overriding the equals from class C.
Determine which of the remaining methods is executed for each of the 9
cases:

c.equals(c) //1
c.equals(c’) //2
c.equals(sc) //3

c’.equals(c) //4
c’.equals(c’) //5
c’.equals(sc) //6
sc.equals(c) //7
sc.equals(c’) //8
sc.equals(sc) //9

Problem 5

a) Write in Java both an abstract data type and a class for the data
type Date, with year, month and day, operations before and after and
daysBetween. In the abstract data type the operations before, after and
daysBetween shall take two Dates, while the operations for the class
Date shall have just one Data parameter.

b) There is on ‘obvious’ way of doing this, where Date is depending on
how year, month and day is represented (e.g. as int variables). How
would you make Date independent of this representation?

Problem 6

We have seen an example of a polymorphic swap function, where the type
of the parameters is a template parameter in C++:

 template <typename T>
 void swap(T& x, T& y){
 T tmp = x; x=y; y=tmp;

As we here have an explicit type parameter, we will have to define a
specific swap by binding the type parameter before calling the
function. In C++ this looks like

int i, j;
..
swap<int>(i,j);
..

A type template parameter is not restricted to be used as the type of
the parameters, and there may be more than one template parameter.
In the example above it is used that the types of the two parameters
are the same. Suppose that this is not the case: is it possible to
define a parametric function ‘either’ taking three parameters: one
Boolean and two parameters of different type parameters and return the
value of the first parameter in case the Boolean is true, otherwise the
value of the second parameter?

Problem 7

Mitchell has an argument on abstract data types for queue and pqueue,
compared to they would be done with classes. When he comes to the
demonstration of how it is done with object orientation, he uses a
quite different example (Color/ColorPoint).

a) Help Mitchell by providing a class for queue and a class for
pqueue that uses the implementation of queue. Do not necessarily
make the details of all operations, but sketch how it would be
done.

b) Is it possible (or wise) to use the implementation of insert from
queue when making insert in pqueue?

