INF3110/4110
Problems week 45 (6.11 - 10.11, 2006)
Problem 1
Here is an easy one on type compatibility.
Given the following program fragment in some hypothetical language:

type S1 is struct {
int y;
int w;

};

type S2 is struct {
int y;
int w;

};

type S3 is struct {
int y;

};

S3 func(S1 p) { --- };

S1 a,Xx;
S2 b;
S3 c;
int d;

/7 (1)
/7 (2)
nc(b); 7/ (3)
nc(a); // (4)

Q0 X9
([T V||
== T
C Cour s

a) Under name compatibility, which of the four statements (1) ... (4)
are type correct (and which are not).

b) Same question under structural compatibility.
Problem 2
We have the following classes:

class Food {...}
class Cheese extends Food {...}

Assume that we have the following functions:
int f(c Cheese) {..}
int f7(f Food) {.-..}

someFood is a value of type Food, and someCheese is some value of type
Cheese. Then we know that

T”(someCheese) can be substituted for F(someCheese)
without causing any static type errors, that is f” is a subtype of f.

Why cannot f(someFood) be substituted for f”(someFood)? That is why is
f not a subtype of f’? Give an example of class Cheese (that is a more
elaborate Cheese than above) and a definition of ¥ that will create a
type error.

Problem 3

Exercise 11.1 in Mitchell.

11.1 Simula Inheritance and Access Links

In Simula, a class is a procedure that returns a pointer to its activation record.
Simula prefixed classes were a precursor to C++ -derived classes, providing a form
of inheritance. This question asks about how inheritance might work in an early
version of Simula, assuming that the standard static scoping mechanism associated
with activation records is used to link the derived class part of an object with the
base class part of the object.

Sample Point and ColorPt classes are given in the text. For the purpose of this
problem, assume that if cp is a ColorPt object, consisting of a Point activation record
followed by a ColorPt activation record, the access link of the parent-class (Point)
activation record points to the activation record of the scope in which the class
declaration occurs, and the access link of the child-class (ColorPt) activation record
points to activation record of the parent class.

(a) Fillin the missing information in the following activation records, created by
execution of the following code:

ref(Point) p;

ref(ColorPt) cp;

r :- new Point(2.7, 4.2);

cp :- new ColorPt(3.6, 4.9, red);
cp.distance(r);

Remember that function values are represented by closures and that a closure
is a pair consisting of an environment (pointer to an activation record) and a
compiled code.

In the following illustration, a bullet (e) indicates that a pointer should be
drawn from this slot to the appropriate closure or compiled code. Because the

(®)

(©)

(d)
(e)

pointers to activation records cross and could become difficult to read, each
activation record is numbered at the far left. In each activation record, place
the number of the activation record of the statically enclosing scope in the
slot labeled “access link.” The first two are done for you. Also use activation
record numbers for the environment pointer part of each closure pair. Write
the values of local variables and function parameters directly in the activation
records.

Activation Records Closures Compiled Code

© X
y
) r— | accesslink | (0)
X
¥ (), o)
equals
distance . (('), o)
@) Point part of cp | accesslink | (0)
X
y (C) o)
equals B
distance . {(C), e)
) cp— | access link | ()
¢ (L), o)
equals .
4 cp.distance(r) | access link

(.
q (r

equals

code for ‘

code for
distance

cpt equals

code for i

The body of distance contains the expression
sqrt((x - g.x)** 2+ (y - q.y) ** 2)

that compares the coordinates of the point containing this distance procedure
to the coordinate of the point q passed as an argument. Explain how the value
of x is found when cp.distance(r) is executed. Mention specific pointers in your
diagram. What value of x is used?

This illustration shows that a reference cp to a colored point object points to
the ColorPt part of the object. Assuming this implementation, explain how the
expression cp.x can be evaluated. Explain the steps used to find the right x
value on the stack, starting by following the pointer cp to activation record (3).

Explain why the call cp.distance(r) needs access to only the Point part of cp and
not the ColorPt part of cp.

If you were implementing Simula, would you place the activation records rep-
resenting objects r and cp on the stack, as shown here? Explain briefly why you
might consider allocating memory for them elsewhere.

Problem 4

Consider the classes C and SC at slide 29 from 6.11.2005.

We know that this language allows overloaded methods to be inherited,
that is the scope for overloaded methods for a subclass includes the

inherited methods.

Here is the answer to the question posed at the lecture (to which
method are the different calls bound):

Cc = new CQ;

SC sc = new SCQ);

Cc’ = new SCQ);

c.equals(c) //1 equals 1
c.equals(c?) //2 equals 1
c.equals(sc) //3 equals 1
c” .equals(c) /74 equals 1
c’.equals(c’) //5 equals 1
c’.equals(sc) //6 equals 1
sc.equals(c) /77 equals 1
sc.equals(c’) //8 equals 1
sc.equals(sc) //9 equals 2

It is only in //9 that the equals 2 method is called, the reason being
that overloading is resolved at compile time. The three calls to c”’
(even though the value of c” is a SC-object) will be calls to equals 1.
//7 is also a call to equals 1, as the parameter c is of type C — same
with //8.

The method equals 1 comes in two versions: the C_equals 1 and the
redefined SC_equals 1.

a) Indicate for the above 9 cases which of the equals 1 are called.

Now, suppose that class SC does not have the First equals method, the
one with parameter of type C overriding the equals from class C.
Determine which of the remaining methods is executed for each of the 9
cases:

c.equals(c) //1
c.equals(c?) //2
c.equals(sc) //3

c’ .equals(c) //4
c’.equals(c’) //5
c’.equals(sc) //6
sc.equals(c) /77
sc.equals(c’) //8
sc.equals(sc) //9

Problem 5

a) Write in Java both an abstract data type and a class for the data
type Date, with year, month and day, operations before and after and
daysBetween. In the abstract data type the operations before, after and
daysBetween shall take two Dates, while the operations for the class
Date shall have just one Data parameter.

b) There is on “obvious” way of doing this, where Date is depending on
how year, month and day is represented (e.g. as int variables). How
would you make Date independent of this representation?

Problem 6

We have seen an example of a polymorphic swap function, where the type
of the parameters is a template parameter in C++:

template <typename T>
void swap(T& x, T& y){
T tmp = X; X=y; y=tmp;

As we here have an explicit type parameter, we will have to define a
specific swap by binding the type parameter before calling the
function. In C++ this looks like

int i, j;

swap<int>(i,j);

A type template parameter is not restricted to be used as the type of
the parameters, and there may be more than one template parameter.

In the example above it is used that the types of the two parameters
are the same. Suppose that this is not the case: is it possible to
define a parametric function “either” taking three parameters: one
Boolean and two parameters of different type parameters and return the
value of the first parameter in case the Boolean is true, otherwise the
value of the second parameter?

Problem 7

Mitchell has an argument on abstract data types for queue and pqueue,
compared to they would be done with classes. When he comes to the
demonstration of how it is done with object orientation, he uses a
quite different example (Color/ColorPoint).

a) Help Mitchell by providing a class for queue and a class for
pqueue that uses the implementation of queue. Do not necessarily
make the details of all operations, but sketch how it would be
done.

b) Is it possible (or wise) to use the implementation of insert from
queue when making insert in pqueue?

