
1 ML

1.1 Exercise 1

Infer the type of the following function:

fun f(g,h) = g(g(h)) * 3;

Complete the parse tree by following the steps of the ML type-inference
algorithm, explicitely describing the 3 steps of the algorithm.

: int

@

@

@

g h

: d

: b

: s

: t : r

: e

g : t

* : w

@ : c 3

λ

1



1.2 Exercise 2

Higher-order programming is one of the remarkable features of ML. Some of
ML’s higher-order functions operating over lists are map, foldr and foldl,
which are defined as follows:

fun map f [] = []

| map f (x::xs) = (f x) :: map f xs;

fun foldr f e [] = e

| foldr f e (x::xs) = f (x, foldr f e xs);

fun foldl f e [] = e

| foldl f e (x::xs) = foldl f (f(x, e)) xs;

1. Using higher-order programming, define a function firstElems with
type

val firstElems = fn : ’a list list -> ’a list

such that when applied to a list of lists of integers, it gives a list
containing only the first elements of each sublist. For example, if a is
defined to be the following list:

val a = [[2,5,76,8], [3,23,45], [5,27,1,43], [34,2,56]];

then the result of applying firstElems to a will be:

- firstElems a;

> val it = [2,3,5,34] : int list

(Hints: Use the map function. Remember that lists have an operation
hd to obtain the first element of a list, and tl to obtain the tail of a
list.)

2. Using higher-order programming, define a function prodFirstElems

val prodFirstElems = fn : int list list -> int

2



such that when applied to a list of lists of integers, it gives the product
of the first elements of each sublist. For example, if a is defined as in
item 1. above, then:

- prodFirstElems a;

> val it = 1020 : int

since 2 ∗ 3 ∗ 5 ∗ 34 = 1020.

(Hints: Use foldr or foldl. Remember that an infix operator may
be transformed into prefix form by using the keyword op; for example,
instead of writing 3*5, you may write op*(3,5).)

1.3 Exercise 3

We say that a function (program) f1 : int ∗ real → real is defined for
given arguments x : int and y : real if there is a value z : real, such that
f1(x, y) = z; otherwise we say that the function is undefined for the given
arguments. We can define the following three undefined values:

• “uncaught exception”: this happens when an exception is raised with-
out being handled;

• nan: this is a result given by ML when you perform “0.0/0.0”, for
instance;

• inf: this is the result given by division by zero (“1.0/0.0”), for instance.

We say that two functions f1 : int∗real → real and f2 : int∗real → real are
equivalent if and only if (a) when one of the functions is defined the other
one is also defined and they give the same result (i.e., f1(x, y) = f2(x, y)),
and (b) both are undefined for the same values of the arguments.

Let f be the following ML function:

exception OddNum;

fun f(0,count) = count

| f(1,count) = raise OddNum

| f(x,count) = f(x-2, count+1.0) handle OddNum => ~1.0;

Write an ML function eqTof equivalent to f, without using exceptions.

3



2 Prolog

2.1 Exercise 1

Let the following be a partial family database:

father(jon,mikael).

father(jon,juan).

father(jon,per).

father(mikael,carlos).

father(per,karl).

father(per,anne).

father(per,sofia).

male(jon).

male(mikael).

male(juan).

male(per).

male(carlos).

male(karl).

female(sarah).

female(anne).

female(sofia).

1. Add 4 facts defining a mother relation between the three female per-
sons and other persons (chosen by you) in the above database, (e.g.
mother(sarah,carlos)).

2. Add rules for defining the following relationships: son, daughter,
uncle, brother and parent. Some rules might use (some of) the
facts male, female, mother and father, as well as some of the rules
you are defining here.

3. Write two rules atleastonebrother and unclefemale in order to be
able to ask queries for getting the following information:

(a) All the persons who have at least one brother (use atleastonebrother)

(b) All the persons who are uncle of a female (use unclefemale).

4



2.2 Exercise 2

Natural numbers may be defined as follows in Prolog:

natural_number(0).

natural_number(s(X)) :- natural_number(X).

The first fact asserts that ”0” is a natural number while the second one
says that if X is a natural number, then the s(X) is also a natural number.

The sum and product of two natural numbers may be defined as follows:

plus(0,X,X) :- natural_number(X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

prod(0,X,0) :- natural_number(0).

prod(s(X),Y,Z) :- prod(X,Y,XY), plus(XY,Y,Z).

Write a Prolog program exp(M,X,Y) which computes the mathematical
exponentiation: XM = Y . For example, writing the query

exp(s(s(0)), s(s(s(0))), Y).

(which represents 32 = Y ), it would produce the answer

Y = s(s(s(s(s(s(s(s(s(0)))))))))

(which represents Y = 9).

5


