Solution - Exam in INF3110/INF4110, 4. December 2007 Side 1

Question 1 Runtime-systems, scoping, types (weight 40%)
1a (25%)

activation records objects closures

main _4 D C

f < , > | code for mc |
i 1
md — control link < >
access link \» | code forg |
me L control link
R p— D < > | code for md |
i 4
rc
g L control link
access link
1b (15%)
a)

The call £(rP) via the call rc.mcQwill imply that g is called with rp that denotes a Point object,
and g attempts to access the c attribute.

b)

No. The problem arises from the assignment of rP to the formal parameter cp as a result of the call
f(rp) via the call rc.mc(). An explicit casting should have been f((ColorPoint)rp), but that
would rule out calls f(rp)where rp denotes a Point object, and that should be allowed in cases
where f is given an actual parameter with a same parameter type, i.e. Point.

¢)

Yes. rP = new ColorPoint()

Solution - Exam in INF3110/INF4110, 4. December 2007 Side 2

Question 2 ML (weight 40%)

2a Type inference (15%)

a)

The function f1 takes two lists as input and returns a list of pairs with corresponding elements.
(Extra: The function will fail if the lists are of different lengths.) (The function is also known as the
zip function)

b)

The type of f1 is "a list * "b list -> ("a * "b) list

The input x: :xs and y: :ys are lists, which we see by the : - operator (and the [] in the second
clause). We call the types of the two arguments "a list and "b list. The output is also a list,
which we see by the : : operator(or the []) in the right hand side. By the first clause we see that it
must be a list of pairs (2-tuples). The type of the first member of the pair must match the type of the

elements in the first input list (*a) and the second must match the type of the elements in the
second list ("b). Hence the output of the function is a value of type ("a*"b) list.

¢)

The typeis (*a — int) * "a — int

1. Assign types to the subexpressions in the tree, using variables (r,s,t, etc.) where the type is
unknown.

abs : int — int @ (t

N\

2. generate a set of constraints on the types (using the rules for abstraction and application):
r =s—t

int—int=t—u

Solution - Exam in INF3110/INF4110, 4. December 2007 Side 3

v=r*s—ou
3. Solve the constraints by unification/substitution
l.int—->int=t—u => t=int, u=int
2.r =s—t => r=s— int (by 1.)
3.v=r*s—u => v=(s —int) *s — int (by I and 2)

Use "a for s and the resulting type is: (*a — int) * "a — int

2b Programming with lists (15%)

a)

fun getEquals((x,y)::ps)= if x=y then (X,y)::getEquals(ps) else getEquals(ps)
| getEquals(nil) = nil ;

fun sumPairs((Xx,y)::ps) = (x+y)::sumPairs(ps)

| sumPairs(nil) = nil
Lots of other variants are also possible. F.ex.
fun getkEquals(nil) = nil

| getEquals(p::ps) =

if #1(p) = #2(p) then (#1lp,#2p) :: getkEquals(ps) else getEquals(ps) ;

b)
fun getEquals(ps) = Filter (op=) ps ;
fun sumPairs(ps) = map (op+) ps ;

c)

fun snoc(x,xs) =
case xs of nil => [X]

| v::ys => y::(snoc(X,ys)) ;
or alternatively

fun snoc(x,(y::ys)) = y::(snoc(X,ys))
|snoc(x,nil) = [X] ;

2c Records
fun listToRec(rs:(state list), {il=is,jl=js}) =
case rs of (r::rs") =>
listToRec(rs®, { il=snoc((#i r),is) , jl=snoc((#jJ r),js) P
| nil => {il=is,jl=js} ;

Other solutions are possible, but the lists in the resulting record should come out in the same order
as the input lists and not reversed.

Solution - Exam in INF3110/INF4110, 4. December 2007 Side 4

Question 3 Prolog (weight 20%)

3a
royal(X,male, ,).

(1% without the)

3b

e (male(X) :- royal(X,male, ,).
o female(X) :- royal(X,female, ,).
o child(X,Y) :- royal(X, ,Y,).

e descendant(X,X).
descendant(X,Y) :- child(X,Z), descendant(Z,Y).

older(X,Y) :- royal(X, , ,YearX), royal(Y, , ,YearY), YearX < YearY.

3c
candidate(X) :- regent(K), descendant(X,K),
(male(X);
female(X), \+ born_before(X,1971)).

3d

yea(X, X, X).

yca(X,Y,A) :- older(X,Y), child(Y,P), yca(X,P,A).
yca(X,Y,A) :- \+ older(X,Y), child(X,P), yca(P,Y,A).

