
Solution - Exam in INF3110/INF4110, 4. December 2007  Side 1 

 

Question 1 Runtime-systems, scoping, types (weight 40%) 
1a (25%) 

main

md

mc

g

D

rD

control link

access link

control link

access link

control link

access link

i

C

i

rC

f

<     ,     >

|  code for g  |

|  code for mc  |

|  code for md |

activation records                                         objects                                  closures 

<     ,     >

<     ,     >

1

4

main

md

mc

g

D

rDrD

control link

access link

control link

access link

control link

access link

control link

access link

control link

access link

ii

C

ii

rCrC

ff

<     ,     >

|  code for g  |

|  code for mc  |

|  code for md |

activation records                                         objects                                  closures 

<     ,     >

<     ,     >

1

4

 
 

1 b (15%) 
a) 

The call f(rP) via the call rc.mc()will imply that g is called with rp that denotes a Point object, 
and g attempts to access the c attribute. 

 

b) 

No.  The problem arises from the assignment of rP to the formal parameter cp as a result of the call 
f(rp) via the call rc.mc(). An explicit casting should have been f((ColorPoint)rp), but that 
would rule out calls f(rp)where rp denotes a Point object, and that should be allowed in cases 
where f is given an actual parameter with a same parameter type, i.e. Point. 

 

c) 
 

Yes. rP = new ColorPoint() 

 



Solution - Exam in INF3110/INF4110, 4. December 2007  Side 2 

 

Question 2 ML (weight 40%) 
 

2a Type inference (15%) 
 

a)  

The function f1 takes two lists as input and returns a list of pairs with corresponding elements. 
(Extra: The function will fail if the lists are of different lengths.) (The function is also known as the 
zip function) 

b)  

The type of f1 is 'a list * 'b list -> ('a * 'b) list 

The input x::xs and y::ys are lists, which we see by the :: operator (and the [] in the second 
clause). We call the types of the two arguments 'a list and 'b list . The output is also a list, 
which we see by the :: operator(or the []) in the right hand side. By the first clause we see that it 
must be a list of pairs (2-tuples). The type of the first member of the pair must match the type of the 
elements in the first input list ('a) and the second must match the type of the  elements in the 
second list ('b). Hence the output of the function is a value of type ('a*'b) list .  

c)  

 

The type is  ('a → int) * 'a →  int  

1. Assign types to the subexpressions in the tree, using variables (r,s,t, etc. ) where the type is 
unknown. 

 

    

 

 

 

 

 

 

 

 

 

 
2. generate a set of constraints on the types (using the rules for abstraction and application): 

r  = s → t  

int → int = t → u  

λ : v  

@ : u 

abs : int → int  @ : t   

h : s g : r 

   : (r*s)  



Solution - Exam in INF3110/INF4110, 4. December 2007  Side 3 

 

v = r * s → u  

3. Solve the constraints by unification/substitution 

1. int → int = t → u   =>  t=int, u=int  

2. r  = s → t    =>  r = s → int (by 1.)   

3. v = r * s → u  =>  v = (s → int) * s →  int  (by 1 and 2)  

Use 'a for s and the resulting type is: ('a →  int) * 'a → int   

2b Programming with lists (15%)  
a)  
fun getEquals((x,y)::ps)= if x=y then (x,y)::getEquals(ps) else getEquals(ps)   

  | getEquals(nil) = nil ; 

 

fun sumPairs((x,y)::ps) = (x+y)::sumPairs(ps) 

  | sumPairs(nil) = nil ;  

Lots of other variants are also possible.  F.ex.  
fun getEquals(nil) = nil 

  | getEquals(p::ps) =   

    if #1(p) = #2(p) then (#1p,#2p) :: getEquals(ps) else getEquals(ps) ; 

b)  
fun getEquals(ps) = filter (op=) ps ; 

fun sumPairs(ps) = map (op+) ps ; 

 

c) 
 
fun snoc(x,xs) =  

    case xs of nil => [x] 
      | y::ys => y::(snoc(x,ys)) ; 
or alternatively 

 
fun snoc(x,(y::ys)) = y::(snoc(x,ys)) 

    |snoc(x,nil) = [x] ; 
 
 
  

 

2c Records  
fun listToRec(rs:(state list), {il=is,jl=js}) =  

    case rs of (r::rs') => 

listToRec(rs', { il=snoc((#i r),is) , jl=snoc((#j r),js) })  

        | nil => {il=is,jl=js} ; 

 

Other solutions are possible, but the lists in the resulting record should come out in the same order 
as the input lists and not reversed.  



Solution - Exam in INF3110/INF4110, 4. December 2007  Side 4 

 

Question 3 Prolog (weight 20%) 
3a  
royal(X,male,_,_). 

(1% without the _) 

3b 
 

•  (male(X) :- royal(X,male,_,_). 

•  female(X) :- royal(X,female,_,_). 

•  child(X,Y) :- royal(X,_,Y,_). 

•  descendant(X,X). 
descendant(X,Y) :- child(X,Z), descendant(Z,Y). 

• older(X,Y) :- royal(X,_,_,YearX), royal(Y,_,_,YearY), YearX < YearY. 

3c 
candidate(X) :- regent(K), descendant(X,K),  
 ( male(X); 
   female(X), \+ born_before(X,1971) ). 
 

3d 
yca(X,X,X). 
yca(X,Y,A) :- older(X,Y), child(Y,P), yca(X,P,A). 
yca(X,Y,A) :- \+ older(X,Y), child(X,P), yca(P,Y,A). 
 


