Question 1 Runtime-systems, scoping, types (weight 40\%)

```
1a (25%)
```


1 b (15\%)

a)

The call $f(r P)$ via the call rc.mc() will imply that g is called with $r p$ that denotes a Point object, and g attempts to access the c attribute.
b)

No. The problem arises from the assignment of $r P$ to the formal parameter cp as a result of the call $f(r p)$ via the call rc.mc (). An explicit casting should have been $f(($ ColorPoint $) r p)$, but that would rule out calls $f(r p)$ where $r p$ denotes a Point object, and that should be allowed in cases where f is given an actual parameter with a same parameter type, i.e. Point.
c)

Yes. $\mathrm{rP}=$ new ColorPoint()

Question 2 ML (weight 40\%)

2a Type inference (15\%)

a)

The function fl takes two lists as input and returns a list of pairs with corresponding elements. (Extra: The function will fail if the lists are of different lengths.) (The function is also known as the zip function)
b)

The type of fl is 'a list * 'b list -> ('a * 'b) list
The input $\mathrm{x}:$:xs and $\mathrm{y}:$:ys are lists, which we see by the : : operator (and the [] in the second clause). We call the types of the two arguments 'a list and 'b list. The output is also a list, which we see by the : : operator(or the []) in the right hand side. By the first clause we see that it must be a list of pairs (2-tuples). The type of the first member of the pair must match the type of the elements in the first input list (' a) and the second must match the type of the elements in the second list ('b). Hence the output of the function is a value of type ('a*'b) list.
c)

The type is ('a int) * 'a \rightarrow int

1. Assign types to the subexpressions in the tree, using variables ($\mathrm{r}, \mathrm{s}, \mathrm{t}$, etc.) where the type is unknown.

2. generate a set of constraints on the types (using the rules for abstraction and application):

$$
\begin{aligned}
& \mathrm{r}=\mathrm{s} \rightarrow \mathrm{t} \\
& \text { int } \rightarrow \text { int }=\mathrm{t} \rightarrow \mathrm{u}
\end{aligned}
$$

$\mathrm{v}=\mathrm{r} * \mathrm{~s} \rightarrow \mathrm{u}$
3. Solve the constraints by unification/substitution

1. int \rightarrow int $=\mathrm{t} \rightarrow \mathrm{u} \quad \Rightarrow \quad \mathrm{t}=$ int, $\mathrm{u}=$ int
2. $\mathrm{r}=\mathrm{s} \rightarrow \mathrm{t} \quad \Rightarrow \quad \mathrm{r}=\mathrm{s} \rightarrow$ int (by 1.)
3. $\mathrm{v}=\mathrm{r} * \mathrm{~s} \rightarrow \mathrm{u} \quad \Rightarrow \quad \mathrm{v}=(\mathrm{s} \rightarrow \mathrm{int}) * \mathrm{~s} \rightarrow$ int (by 1 and 2$)$

Use ' a for s and the resulting type is: ($\mathrm{a} \rightarrow$ int) * 'a \rightarrow int

2b Programming with lists (15\%)

a)

```
fun getEquals(( \(x, y\) )::ps)= if \(x=y\) then ( \(x, y\) )::getEquals(ps) else getEquals(ps)
    getEquals(nil) = nil ;
fun sumPairs((x,y)::ps) = (x+y)::sumPairs(ps)
    | sumPairs(nil) = nil ;
```

Lots of other variants are also possible. F.ex.

```
fun getEquals(nil) = nil
    | getEquals(p::ps) =
        if #1(p) = #2(p) then (#1p,#2p) :: getEquals(ps) else getEquals(ps) ;
```

b)
fun getEquals(ps) = filter (op=) ps ;
fun sumPairs(ps) = map (op+) ps ;
c)
fun $\operatorname{snoc}(x, x s)=$
case x s of nil $=>\quad[\mathrm{x}]$
| y::ys => y::(snoc(x,ys)) ;
or alternatively
fun $\operatorname{snoc}(x,(y:: y s))=y::(\operatorname{snoc}(x, y s))$
$\mid \operatorname{snoc}(x, n i l)=[x]$;

2c Records

```
fun listToRec(rs:(state list), {il=is,jl=js}) =
    case rs of (r::rs') =>
    listToRec(rs', { il=snoc((#i r),is) , jl=snoc((#j r),js) })
            | nil => {il=is,jl=js} ;
```

Other solutions are possible, but the lists in the resulting record should come out in the same order as the input lists and not reversed.

Question 3 Prolog (weight 20\%)

3a
royal(X,male,_,_).
(1% without the _)
3b

- (male(X) :- royal(X,male,_,_).
- female(X) :- royal(X,female,_,_).
- $\quad \operatorname{child}(X, Y):-\operatorname{royal}\left(X,, Y, _\right)$.
- descendant (X, X).
descendant(X,Y) :- child(X,Z), descendant(Z,Y).
- older(X,Y) :- royal(X,_,,YearX), royal(Y,_,_YearY), YearX < YearY.

3c
candidate $(\mathrm{X}):-\operatorname{regent}(\mathrm{K})$, descendant (X, K), (male(X); female(X), \+ born_before(X,1971)).

3d
yca($\mathrm{X}, \mathrm{X}, \mathrm{X}$).
yca(X,Y,A) :- older(X,Y), child(Y,P), yca(X,P,A).
yca(X,Y,A) :- $\backslash+\operatorname{older}(X, Y)$, child(X,P), yca(P,Y,A).

