
08.11.2009

1

Logic Programming II

IN
F 3110/4110 –

2009

09.11.2009

Christian M. Hansen
chrisha@ifi.uio.no

D t t f I f ti U i it f O l

1

Department of Informatics – University of Oslo

Based on slides by Martin Giese and Arild B. Torjusen

Outline

Repetition
C lti Q i

IN
F 3110/4110 –

2009

Consulting vs. Querying
Lists in Prolog
Different views of a Prolog program
Arithmetic in Prolog
Cut and negation

2

Cut and negation
Problems with Prolog

Facts and rules

Remember: A declarative program admits two
interpretations

Declarative: What is being computed

IN
F 3110/4110 –

2009

• Declarative: What is being computed.
• Procedural: How the computation takes place

A Prolog program consists of a sequence of clauses
clauses are facts (H) or rules (H :- A1,...,Ak)
• person(anne, sofia, martin, 1960)
• child(X,Y) :- person(X,Z,Y,U)

Declaratively, the rule H:- A1 , A2 is read as:
”H is implied by the conjunction A A ”

3

• ”H is implied by the conjunction A1 , A2”
Procedurally, the rule H:- A1 , A2 is interpreted as:
• ”To answer the query H, answer the conjunctive query A1 , A2”

Queries and unification

We initiate a computation by posing a query (|?-
A1,...,Ak)
| ? hild(l P t)

IN
F 3110/4110 –

2009

| ?- child(paul,Parent)
For queries without variables we will get a yes/no answer.
For queries with variables the result is the substitutions
for (assignment of) the variables which will make the
query true.
The process of matching a query with facts and rules is
called unification. The result of the unification is a
substitution

4

substitution.

08.11.2009

2

Outline

Repetition
C lti Q i

IN
F 3110/4110 –

2009

Consulting vs. Querying
Lists in Prolog
Different views of a Prolog program
Arithmetic in Prolog
Cut and negation

5

Cut and negation
Problems with Prolog

Consulting vs. Querying

Prolog treats all expressions entered after | ?-
as queries

IN
F 3110/4110 –

2009

as queries
• Program:

hungry(anne).
hungry(sofia).

• Typing | ?- hungry(martin). produces no
In order to define new predicates, or redefine
existing ones, enter consulting mode
• | ?- consult(file). or | ?- [file]. consults file.pl
• | ?- consult(user). or | ?- [user]. consults user to

enter facts and rules directly
• End user consulting mode with Ctrl+D

Outline

Repetition
C lti Q i

IN
F 3110/4110 –

2009

Consulting vs. Querying
Lists in Prolog
Different views of a Prolog program
Arithmetic in Prolog
Cut and negation

7

Cut and negation
Problems with Prolog

Lists in Prolog

Basic idea: same as in ML.

IN
F 3110/4110 –

2009

Conceptually, a list is either:
• nil, the empty list

• cons(hd,tl), the list with head hd and a tail tl

A list of prime numbers:
(2 (3 (5 (7 il))))

8

cons(2,cons(3,cons(5,cons(7,nil))))

BUT: use special syntax [] and [hd | tl]
[2 | [3 | [5 | [7 | []]]]]

08.11.2009

3

Prettier Syntax for Lists

• [] : the empty list
• [a,b,c] : a list with three elements, same

IN
F 3110/4110 –

2009

[a,b,c] : a list with three elements, same
as
[a | [b | [c | []]]]

• [a,b|X] : another way of writing
• [a | [b | X]]

9

Unification: just like always...
• [a, b, c] [A | B] will be unified as
• A/a and B/[b, c]

Unification on lists

[a,b,c] unifies with [Head | Tail]
Result: Head=a and Tail=[b c]

IN
F 3110/4110 –

2009

Result: Head=a and Tail=[b,c]
[a] unifies with [H | T]
Result: H=a and T=[]
[a,b,c] unifies with [a | T]
Result: T=[b,c]

10

[,]
[a,b,c] does not unify with [b | T]
[] does not unify with [H | T]
[] unifies with []

Unification on lists: Example

• Assume the following fact: p([H | T], H, T).
• Query:

IN
F 3110/4110 –

2009

• Query:

| ?- p([a,b,c], X, Y).

X=a

11

Y=[b,c]
yes

Unification on lists: Example

• Assume the following fact: p([H | T], H, T).
• Query:

IN
F 3110/4110 –

2009

• Query:

| ?- p([a], X, Y).
X=a
Y=[]
yes

12

| ?- p([], X, Y).
no

08.11.2009

4

Find an element in a list
• Check if the first element is the one we are

searching for.

IN
F 3110/4110 –

2009

• If not, we look for the element in the rest of the
list.

• Either we find X or the list becomes empty.

member(X, [X|Rest]).

13

member(X, [H | Tail]) :- member(X, Tail).

member(2,[1,2,3]) ? -> member(2,[2,3]) ? -> yes

Append two lists

• We will define a relation to concatenate two lists Xs and
Ys into a third list Zs:

IN
F 3110/4110 –

2009

| ?- append([1, 2, 3], [4,5], Result). Should give
Result = [1,2,3,4,5].

• Prolog program:

14

append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

Functions?

There are no functions in Prolog, but relations
• Functions are a particular case of relations

IN
F 3110/4110 –

2009

• This allows using Prolog programs in multiple ways

A function f: A -> B can be represented in Prolog as a
relation relf(a,b)
• relf(a,b) may be understod as f(a)=b

So, in append(List1, List2, Result).
• List1 and List2 may be seen as input parameters

15

• Result is the output parameter

Compare with ML:
• ML: fun fst(x::xs) = x
• Prolog: fst([X|Xs],X) .

| ?- fst([1,2,3],X). X = 1 ? ;

Anonymous variables

When we are not interested in the value of a certain
parameter, we may use `_´

IN
F 3110/4110 –

2009

Example: In the program
member(X, [X|Rest]).
member(X, [Head | Tail]) :- member(X, Tail).

we are not interested in the Head parameter
(nor in the Rest parameter).

We can write it as follows:

16

We can write it as follows:
member(X, [X|_]).
member(X, [_| Tail]) :- member(X, Tail).

08.11.2009

5

Outline

Repetition
C lti Q i

IN
F 3110/4110 –

2009

Consulting vs. Querying
Lists in Prolog
Different views of a Prolog program
Arithmetic in Prolog
Cut and negation

17

Cut and negation
Problems with Prolog

Multiple uses of a Prolog program (1)

Some Prolog programs may be used both for
testing and for computing

IN
F 3110/4110 –

2009

testing and for computing

Example: member(X, Xs) means X is a member
of the list Xs

member(X [X |])

18

member(X, [X | _]).
member(X, [_ | Xs]):- member(X,Xs).

Multiple uses of a Prolog program (1)

For testing:

IN
F 3110/4110 –

2009

| ?- member(wed, [mon, wed, fri]).
yes

For computing:

| ?- member(X [mon wed fri])

19

| ?- member(X, [mon, wed, fri]).
X = mon ?
X = wed ?
X = fri ?
no

Multiple uses of a Prolog program (2)

It’s possible to use the same program to
concatenate two lists and to split a list in all

IN
F 3110/4110 –

2009

concatenate two lists and to split a list in all
possible ways

Example: append(Xs,Ys,Zs)

To concatenate two lists:

20

To concatenate two lists:
| ?- append([first, second, third], [fourth,

fifth], Zs).

Zs = [first, second, third, fourth, fifth].

08.11.2009

6

Multiple uses of a Prolog program (2)

To split a list in all possible ways:
| ?- append(Xs, Ys, [first, second, third, fourth, fifth]).

IN
F 3110/4110 –

2009

Xs = [] Ys = [first,second,third,fourth,fifth] ?

Xs = [first] Ys = [second,third,fourth,fifth] ?

Xs = [first,second] Ys = [third,fourth,fifth] ?

Xs = [first,second,third] Ys = [fourth,fifth] ?

21

Xs [first,second,third] Ys [fourth,fifth] ?

Xs = [first,second,third,fourth] Ys = [fifth] ?

Xs = [first,second,third,fourth,fifth] Ys = [] ?

Outline

Repetition
C lti Q i

IN
F 3110/4110 –

2009

Consulting vs. Querying
Lists in Prolog
Different views of a Prolog program
Arithmetic in Prolog
Cut and negation

22

Cut and negation
Problems with Prolog

Arithmetic in Prolog

Prolog programs presented so far were
declarative: they admitted a dual reading as a

IN
F 3110/4110 –

2009

declarative: they admitted a dual reading as a
formula
• Operations of arithmetic are functional, not relational

Arithmetic compromises Prolog’s declarativeness
• Solved in constraint logic programming languages

23

Arithmetic operators

Built-in data structures:
• Integers: 1 2 3 (+ - * //)

IN
F 3110/4110 –

2009

• Integers: 1,2,3,... (+, -, , //)
• Floating points: 2.3, 3.4456, 5.4e-13,... (+, -, *, /)
Infix vs prefix notation*

• 45+35
• ’+’(45,35)

It is possible to have user-defined operators with

24

It is possible to have user-defined operators with
specified priority, associativity, etc

*We will see later how to evaluate expressions

08.11.2009

7

Arithmetic comparison relations

Prolog allows comparison of ground arithmetic expressions (gae, i.e.
expressions without variables). gaes have values
Built in comparison relations: < < : (”equal”) \

IN
F 3110/4110 –

2009

Built-in comparison relations: <, =<, =:= (equal), =\=
(”different”), >= and >
Queries
• | ?- 6*3 =:= 9*2.

yes
• | ?- 8 > 5+3.

no
• | ?- 34>=X+4.

uncaught exception: error(instantiation error (>=)/2

25

uncaught exception: error(instantiation_error,(>=)/2

Note difference between
• = (unifiability relation) 1+1=2 gives no, X = 1 gives X = 1
• == (syntactic equality) 1+1 == 2 gives no , X == x gives no
• \== (syntactic inequality) 1+1\==2 gives yes.
• =:= (value equality) 1+1 =:= 2 gives yes
• =\= (value inequality) 1+1 =\= 2 gives no

Example: ordered lists

ordered([]).
ordered([X])

IN
F 3110/4110 –

2009

ordered([X]).
ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries
• | ?- ordered([3,4,67,8]).

26

no
• | ?- ordered([3,4,67, 88]).

yes
• | ? - ordered([3,4,X,88]).

{INSTANTIATION ERROR: 4=<_30 - arg 2}

Evaluation of arithmetic expressions

We need to introduce a way to evaluate
expressions

IN
F 3110/4110 –

2009

p
• | ?- X=:=3+4. yields an error
• | ?- X=3+4.

X = 3+4
Evaluation is done using ”is”
• | ?- X is 3+4.

X = 7

27

X 7
• ”is” is a builtin predicate which has been defined as an

operator for simpler syntax, we could also write:
| ?- is(X,3+4).
X = 7

Example: Factorial

factorial(0,1).
factorial(N F) :-N>0 N1 is N-1

IN
F 3110/4110 –

2009

factorial(N,F) :-N>0, N1 is N-1,
factorial(N1,F1),

F is N*F1.
Queries
• | ?- factorial(5,X).

X = 120

28

X 120
Yes

The following query gives an error however:
• | ?- factorial(X,120).

uncaught exception: error(instantiation_error,(>)/2)
”X>0” is not allowed!

08.11.2009

8

Example: Length of lists

An intuitive definition
length([] 0)

but wrong

IN
F 3110/4110 –

2009

length([],0).
length([_ | Ts], N+1) :- length(Ts,N).
Query
• | ?- length([3,5,56,7],X).

X = 0+1+1+1+1
Yes

29

Yes

What’s the problem?

Expressions are not automatically evaluated in Prolog!

Example: Length of lists

A good definition
length([] 0)

IN
F 3110/4110 –

2009

length([],0).
length([_ | Ts], N) :- length(Ts,M), N is M+1.

Queries
• | ?- length([3,5,56,7],X).

X = 4

30

X = 4
Yes

• | ?- length(X,5).
X = [_,_,_,_,_]
yes

length(X,5)

length([],0).
length([_ | Ts], N) :- length(Ts,M), N is M+1.

IN
F 3110/4110 –

2009

:- length(X,5)
:- length(Ts,M), 5 is M+1
1. :- 5 is 0+1 Ts/[], M/0 FAIL
2. :- length(Ts1,M1), M is M1+1, 5 is M+1 Ts/[_,Ts1]
2.1 :- M is 0+1, 5 is M+1 Ts1/[], M1/0, Ts/[_,Ts1]
2.1 :- 5 is 1+1 Ts1/[], M1/0, Ts/[_,Ts1], M/1 FAIL

31

[], , [,],
2.2 :- length(Ts2,M2), M1 is M2+1, M is M1+1, 5 is M+1

Ts1/[], M1/0, Ts/[_,Ts1], Ts1/[_,Ts2]
...

Outline

Repetition
C lti Q i

IN
F 3110/4110 –

2009

Consulting vs. Querying
Lists in Prolog
Different views of a Prolog program
Arithmetic in Prolog
Cut and negation

32

Cut and negation
Problems with Prolog

08.11.2009

9

Cut - !

Cut is a built in system predicate which affects the procedural behaviour of
a program
Its main function is to reduce the search space of Prolog computations by

IN
F 3110/4110 –

2009

Its main function is to reduce the search space of Prolog computations by
dynamically prunig the search tree
Example:
p(s1) :- A1
...
p(si) :- B, !, C
...
p(sk) :- Ak

We compute p(t) using the i th clause B succeeds and ! is encountered:

33

We compute p(t) using the i-th clause, B succeeds, and ! is encountered:
• All alternative ways of computing B are discarded
• All computations of p(t) using the i-th to k-th clauses are discarded as

backtrackable alternatives

Cut gives more control to the programmer, but compromises the
declarative reading of the Prolog programs and makes it difficult to see
what will happen in the computation.

rsiblings example

Recall the rsiblings rule.
rsiblings(X,Y) :- child(X,Parent1),

child(Y Parent1)

IN
F 3110/4110 –

2009

child(Y,Parent1),
X \== Y,

child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.

| ?- rsiblings(anne,X).

X paul ? ;

34

X = paul ? ;

X = paul ? ;

no

rsiblings with cut

With cut
rsiblings(X,Y) :- child(X,Parent1),

!,

IN
F 3110/4110 –

2009

!,
child(Y,Parent1),
X \== Y,
child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.

| ?- rsiblings(anne,X).

35

X = paul ? ;

no
| ?- rsiblings(X,anne).

no

rsiblings with cut, next try...
rsiblings(X,Y) :- child(X,Parent1),

child(Y,Parent1),
X \== Y,
!

IN
F 3110/4110 –

2009

!,
child(X,Parent2),
child(Y,Parent2),
Parent1 \== Parent2.

| ?- rsiblings(anne,X).

X = paul

yes

36

yes
| ?- rsiblings(X,anne).

X = paul

yes

But what if anne has more than one sibling?

08.11.2009

10

Cut destroys declarativity

Cut makes it possible to control program execution
> Added efficiency

IN
F 3110/4110 –

2009

-> Added efficiency.

On the other hand:
Programs become hard to understand.
Need to document in which ways predicates can
b ll d

37

be called.
Compromises the original intension of the
language.

Negation as failure

Negation can be defined by cut.
not(X) :- X, ! , fail .

IN
F 3110/4110 –

2009

() , ,
not(_) .

The built-in negation operator is \+
| ?- \+ person(haakon,sonja,harald,1973) .
yes
The query \+ A succeeds if and only if the query A
fails.
Corresponds to our ”normal” notion of negation if the

38

Corresponds to our normal notion of negation if the
negated query always terminates and is ground.
Consider negation of non-ground term X=1:
\+ (X=1)
no

IO in Prolog

Various predicates for input/output.
print(f(a)) prints out a term

IN
F 3110/4110 –

2009

print(f(a)) prints out a term.
display('Hello World') prints a string.

print_list([]) :- print(nothing).
print_list([X]):- write('only '), print(X).
print_list([X|Ys]) :- print(X), print_list_help(Ys).

39

print_list_help([]).
print_list_help([X|Xs]) :- write(' and '),print(X),

print_list_help(Xs).

Outline

Repetition
C lti Q i

IN
F 3110/4110 –

2009

Consulting vs. Querying
Lists in Prolog
Different views of a Prolog program
Arithmetic in Prolog
Cut and negation

40

Cut and negation
Problems with Prolog

08.11.2009

11

Problems with Prolog

No types
No (standardized) module system

IN
F 3110/4110 –

2009

No (standardized) module system
Non-declarative arithmetic
Need to use cut
Cut makes automated optimization hard
IO disaggrees with backtracking

41

Problem with IO

IO and backtracking breaks program semantics
Example:

IN
F 3110/4110 –

2009

Example:

The programs are semantically identical...

io_problem :- print(one), fail.
io_problem :- print(two). prints onetwo

io_problem :- fail, print(one).
io_problem :- print(two). prints two

42

e p og a s a e se a t ca y de t ca
• and (,) is commutative

...and should produce the same output: two

Further reading

Mitchell’s book – Chapter 15

IN
F 3110/4110 –

2009

See also the tutorial by J. Power: [removed?]
http://www.cs.may.ie/~jpower/Courses/PROLOG/

Learn Prolog Now! – www.learnprolognow.org

43

Even further reading: Sterling and E. Shapiro:
The art of Prolog, 1994. MIT Press Series.

Mitchell’s chap 15 – an overview.
15.1 History of logic programming

15.2 Brief overview of the logic programming paradigm

IN
F 3110/4110 –

2009

15.3 Equations solved by unification of atomic actions.
The formal basis for unification and the unification algorithm.

15.4 Clauses as parts of procedure declarations – Deals with Clauses = Rules and Facts and how they are
computed.
1 Simple Clauses - The point is to make a relationship between logic programming and imperative programming.
2 Computation process
3 Clauses

15.5 Prolog's approach to programming
More about how computations take place. Multiple uses of prolog programs (testing vs. computing). Several
examples.

44

15.6 Arithmetic in prolog

15.7 Control, ambivalent syntax and meta-variables.

15.8 Assessement of prolog.

15. 9 Bibliography

15.10 Summary

08.11.2009

12

”There is no question that Prolog is essentially a

Prolog

IN
F 3110/4110 –

2009

There is no question that Prolog is essentially a
theorem prover à la Robinson. Our contribution
was to transform that theorem prover into a
programming language”

Colmerauer & Roussel (1996)

45

()

Appendix

Mercury

IN
F 3110/4110 –

2009

The Mercury Language

Logic PL developed at Univ. Of Melbourne
First release 1995

IN
F 3110/4110 –

2009

First release 1995
Compiled
Strict type (and `mode') system
Module system
No cut

47

Clean integration of IO
Includes functional features
A `pure' language

The Module System

hello.m
:- module hello

IN
F 3110/4110 –

2009

: module hello.

:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is det.

48

:- implementation.
main(IOState_in, IOState_out) :-

io.write_string("Hello World\n", IOState_in, IOState_out).

08.11.2009

13

The Module system (cont.)

Can have private/public predicates, types
Can compile modules separately

IN
F 3110/4110 –

2009

Can compile modules separately
Can refer to names with module prefix:
io.write_string
is predicate write_string in module io

49

The Type system

Type system similar to ML
Built in types int float string etc

IN
F 3110/4110 –

2009

Built-in types int, float, string, etc
User-defined types

:- type weekday ---> mon;tue;wed;thu;fri;sat;sun.
:- type intOrString ---> anInt(int);aString(string).

Parameterized (polymorphic) types
[1 2 3] is of type list(int)

50

[1,2,3] is of type list(int)
{"a",12} is of type {string,int}
:- type maybe(T) ---> nothing ; just(T).

Function types (Lambda terms)

The Type system (cont)

Need to declare types of predicates:
: pred append(list(T) list(T) list(T))

IN
F 3110/4110 –

2009

:- pred append(list(T), list(T), list(T)).
:- pred length(list(T), int).

Compiler checks that predicates are used with
correct types.

51

The mode system

In Prolog, predicates can be used in different ways.
: append([1 2] [3 4 5] Zs)

IN
F 3110/4110 –

2009

:- append([1,2],[3,4,5],Zs).
:- append(Xs,Ys,[1,2,3,4,5]).

In Mercury, declare this with modes:
:- mode append(in,in,out) is det.

52

:- mode append(out,out,in) is multi.

Predicates can be declared with multiple modes.

08.11.2009

14

The mode system (cont)

Predicate has only one mode: Shorthand
: pred append(list(T)::in list(T)::in list(T)::out)

IN
F 3110/4110 –

2009

:- pred append(list(T)::in,list(T)::in,list(T)::out).
:- pred length(list(T)::in,int::out).

Compiler checks that predicates are only used
according to declared modes.

53

Implementation can be shared among modes or
not.

IO

hello.m
:- module hello

IN
F 3110/4110 –

2009

: module hello.

:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is det.

54

:- implementation.
main(IOState_in, IOState_out) :-

io.write_string("Hello World\n", IOState_in, IOState_out).

IO (cont.)

Special modes for IO:
di: destructive input:

IN
F 3110/4110 –

2009

di: destructive input:
Destroys input
The reference is therefore worthless afterwards.

uo: unique output:
Guarantee: only this reference to the output.
Therefore be used for destructive input

55

Therefore be used for destructive input.

IO (cont.)

To do more output:
:- pred io write string(string::in io::di io::uo) is det

IN
F 3110/4110 –

2009

: pred io.write_string(string::in, io::di, io::uo) is det.
:- pred io.write_int(int::in, io::di, io::uo) is det.
:- pred io.nl(io::di, io::uo) is det.

main(IO0, IO3) :-
io.write_string("The meaning of life is ", IO0, IO1),

56

io.write_int(42, IO1, IO2),
io.nl(IO2, IO3).

08.11.2009

15

Functions

If a function is a function, why encode it as
predicate?

IN
F 3110/4110 –

2009

predicate?

:- pred fib(int::in, int::out) is det.

fib(N, X) :-
(if N 2

57

(if N =< 2
then X = 1
else fib(N-1, A), fib(N-2, B), X = A + B

).

fib as a function

:- func fib(int) = int.

IN
F 3110/4110 –

2009

fib(N) = X :-
(if N =< 2

then X = 1
else X = fib(N-1) + fib(N-2)

).

58

or:

fib(N) = (if N =< 2 then 1 else fib(N-1) + fib(N-2)).

A note on functions

In Prolog, 1+1 is just a term. To evaluate, use
X is 1+1

IN
F 3110/4110 –

2009

X is 1+1
In Mercury 1+1 is evaluated, since + is declared
as a function
Programming with terms still possible
Not all symbols are equal.

Possible cause for confusion

59

Possible cause for confusion
Usually easier to use

What about the cut?

Why use cut?
For if then else;

IN
F 3110/4110 –

2009

For if-then-else;
p(X) :- c(X), !, if-part(X).
p(X) :- else-part(X).
In Mercury, use if then else construct:
p(X) :- if c(X) then if-part(X) else else-part(X).
To reduce search space

60

To reduce search space
In Mercury, use modes and determinism

08.11.2009

16

Mercury, Conclusion

Mercury is a modern language, incorporating
many ideas of PL design that did not exist when

IN
F 3110/4110 –

2009

many ideas of PL design that did not exist when
Prolog was invented.
Has many aspects and details that make it harder
to learn. (types, modes, determinism, terms vs.
functions, higher order, modules, etc.)
Has a cleaner, more `logical' semantics than

61

as a c ea e , o e og ca se a t cs t a
Prolog.

More Logic PLs

Higher-order logic programming, Lambda-Prolog
Like Prolog but lambda terms instead of first order

IN
F 3110/4110 –

2009

Like Prolog, but lambda terms instead of first order
Higher-order unification
Not a functional language!

Constraint Logic Programming languages
Prolog just gathers instantiations for variables.
Instead, gather constraints that need to be satisfied.

62

Instead, gather constraints that need to be satisfied.

E.g. X > 3, X < 6, X \== 5

System infers instantiation X=4

