
Weekly exercises in INF3110 – OO-I

26.10 – 30.10, 2009

Problem 1

Here is an easy one on type compatibility.

Given the following program fragment in some hypothetical language:

type S1 is struct {
 int y;
 int w;
};
type S2 is struct {
 int y;
 int w;
};
type S3 is struct {
 int y;
};
S3 f(S1 p) { ... };
...
S1 a, x;
S2 b;
S3 c;
int d;
...

a = b; // (1)
x = a; // (2)
c = f(b); // (3)
d = f(a); // (4)

a) Under name compatibility, which of the four statements (1) ... (4)
are type correct (and which are not).

b) Same question under structural compatibility.

Problem 2

We have the following classes:

 class Food {...}
 class Cheese extends Food {...}

Assume that we have the following functions:

 int f(c Cheese) {...}

 int f’(f Food) {...}

someFood is a value of type Food, and someCheese is a value of type
Cheese. Then we know that

 f’(someCheese) can be substituted for f(someCheese)

that is, whenever we have a call ‘f(someCheese)’ we may just as well
call f’ with the same someCheese parameter without causing any static
type errors: f’ can be said to be a subtype of f.

Why cannot f(someFood) be substituted for f’(someFood)? That is why can
not f said to be a subtype of f’? Give an example of class Cheese (that
is a more elaborate Cheese than above) and a definition of f that will
create a type error.

Problem 3

Exercise 11.1 in Mitchell.

Problem 4

a) Write in Java both an abstract data type and a class for the data
type Date, with year, month and day, operations before and after and
daysBetween. In the abstract data type the operations before, after and
daysBetween shall take two Dates, while the operations for the class
Date shall have just one Date parameter.

b) There is on ‘obvious’ way of doing this, where Date is depending on
how year, month and day is represented (e.g. as int variables). How
would you make Date independent of this representation?

