
Weekly exercises in INF3110 – OO-II

2.11 – 6.11, 2009

Problem 1

Exercise 10.2 in Mitchell. Just sketch a solution.

Problem 2

Consider these two classes in a language that resembles Java:

class Rect {
 Point ul; // upper left corner
 Point lr; // lower right corner

 void setUL(Point newUL){ this.ul = newUL;};
};

class ColorRect extends Rect{
 ColorPoint ul;
 ColorPoint lr;
}

a) The intention with the redefinitions of the inherited ul and lr in
class ColorRect is that the types of ul and lr shall be ColorPoint
instead of Point. This is not allowed in Java. Any idea why?

b) How would this be done had Java had virtual classes?

A virtual class is a class (in a superclass) that can be
redefined in the same way as methods can be redefined in
subclasses, with the constraint that it can only be redefined to
subclasses of the constraint the original class. In the example
with virtual classes from the lecture (Point/Colopoint) this
implies that the virtual class ThisClass can only be redefined to
subclasses of Point, which is the constraint of ThisClass.

What would be the implication for type checking?

c) Virtual classes are not part of Java. Would casting help, like in:

class ColorRect extends Rect {
 void setUL(Point newUL){this.ul = (ColorPoint)newUL;};
}

Problem 3

a) Is there any alternative to multiple inheritance if only re-use of
implementation is wanted?
Use the Stack, Queue and Dequeue example and try both to base Queue and
Stack on Dequeue, and to base Dequeue on Stack and Queue.

b) What if one would also like to have the subtyping relationship, so
that references typed with e.g. both Stack and Queue can denote objects
of the resulting class?

Problem 4

A Java array of type T is declared by T[]. The Java subtype rule for
array types is

 S’[] subtype of S[] if S’ subtype of S

Suppose we have class C with subclass CSub and that the method
‘methodOfCSubOnly()’ is defined in CSub only and not in C.

Look at

class TypeTest {
 C v = new C();
 void arrayProb(C[] anArray) {
 if (anArray.length >0)
 anArray[0] = v; // (2)
 };
 static void main(string[] args) {
 TypeTest tt = new TypeTest();
 CSub paramArray = new CSub[10];
 tt.arrayProb(paramArray); // (1)
 paramArray[0].methodOfCSubOnly(); // (3)
 };
}

What happens? Especially at lines (1) (2) and (3).

Problem 5
Suppose that we have class Reservation with subclasses
FlightReservation and TrainReservation as described in the foil set.
As part of a reservation system it is desirable to have a collection of
reservations that cater for possibly new subclasses for new kinds of
reservations (e.g. for space travels).

How would you make a print method that prints all elements of such a
collection, using the new generic mechanisms of Java?

Problem 6

We have seen structural type compatibility and subtyping wrt e.g.
Smalltalk, as described in Mitchell. Objects of classes that have the
same interface in terms operations if they provide the same set (or
subset) of operations.

Consider the following Java sketch:

interface cowboy {void draw(); ...}
interface shape {void draw(); ...}

class LuckyLuke implements cowboy, shape {...}

Is this an example of structural (sub)typing, given the fact that Java
may very well get the same method from different interfaces, but still
only provide one implementation?

Problem 7

The FlightReservation class we have seen a couple of times has a Flight
attribute. We assume that this is a reference to an object of class
Flight. The Flight object represents the actual flight reserved.

In the flight table of SAS we have entries for e.g. SK451 (Oslo to
Copenhagen). Suppose that we would like to represent such an entry by
means of a FlightType object. Class FlightType would therefore have
attributes that are common to all SK451 Flights, like source,
destination, scheduled departure time (8.20), scheduled flying time
(1.10), scheduled arrival time, etc.

SK451 takes place every day (or almost), so a reservation system would
need to have one Flight object for each actual flight. These Flight
objects will have a representation of seats (free, occupied), and for
other reasons one may imagine that they will also have actual departure
time, actual flight time and delay (departure and arrival delay).

It is perfectly possible to do this without inner classes, but if you
should exploit inner classes, how would this be done. Of special
interest is of course the functions computing the departure and arrival
delays.

Feel free to be inspired by the slide on inner classes exemplified by
class Apartment, specially the fact the attribute hight of Apartment is

visible in the inner classes. Attributes like scheduled departureTime
and arrivalTime should be attributes of the outer class FlightType.

Problem 8

Consider the classes C and SC at slide 29 from 19.10.2009.

We know that this language allows overloaded methods to be inherited,
that is the scope for overloaded methods for a subclass includes the
inherited methods.

Here is the answer to the question posed at the lecture (to which
method are the different calls bound):

C c = new C();
SC sc = new SC();
C c’ = new SC();

c.equals(c) //1 equals 1
c.equals(c’) //2 equals 1
c.equals(sc) //3 equals 1

c’.equals(c) //4 equals 1
c’.equals(c’) //5 equals 1
c’.equals(sc) //6 equals 1

sc.equals(c) //7 equals 1
sc.equals(c’) //8 equals 1
sc.equals(sc) //9 equals 2

It is only in //9 that the equals 2 method is called, the reason being
that overloading is resolved at compile time. The three calls to c’
(even though the value of c’ is a SC-object) will be calls to equals 1.
//7 is also a call to equals 1, as the parameter c is of type C – same
with //8.

The method equals 1 comes in two versions: the C_equals 1 and the
redefined SC_equals 1.

a) Indicate for the above first 8 cases which of the equals 1 are
called.

b) Now, suppose that class SC does not have the first equals method,
the one with parameter of type C overriding the equals from class C.
Determine which of the remaining methods is executed for each of these
8 cases:

c.equals(c) //1
c.equals(c’) //2
c.equals(sc) //3

c’.equals(c) //4
c’.equals(c’) //5
c’.equals(sc) //6

sc.equals(c) //7
sc.equals(c’) //8

