
INF3110

Solutions week 28.9 - 2.10, 2009

Problem 1

This is an example on both visibility and block structure, and that it
is important to know the execution model of a language, and especially
how initial values are handled.

(a) The reason that this does not work is that the innermost absVal
are declared together with setting their values to (-)num.
Arriving at the printf statement one has left one of the two
blocks above, so the declared absVal variables do not exist
anymore. Therefore the value of the absVal variable declared in
line 3 is printed, and this has an arbitrary value.

(b) There is a subtle reason why this program works. It is still
wrong to declare absVal in the inner blocks, and the printf
statement will still write the value of the last declared
variable (the two others are not visible), but because the last
block (starting line 18) activation record is allocated on the
top of the stack and thereby in the same area where one of the
inner block activation records were allocated, the last
allocated absVal variable will be allocated in the same area as
the absVal of one of the inner blocks. And, as there is no
default initialization, it will have the value that happens to
be there, and this happens to be (-)num.

(c) E.g. {int arbitraryVal = -1 }
(d) This will allocate an integer at the same place as absVal and

assign it the value -1, which will never be a correct value.

Problem 2

(a) x+f(x)= 7 + f(7) = 7 + (2+7) = 16

 line 2 4 5
 x 2 7 7

(b) x+f(x)= 7 + f(7) = 7 + (7 + 7) = 21

 line 2 4 5
 x 7 7 7

Problem 3

 Scope Life-time
’i’ in block 1 block 1 minus block 2

(and thereby also
minus block 3 and 4,
as these are defined
within block 2), and
block 5 as this does
not define the name
‘i’

block 1

’j’ in block 1 block 1, block 2
(minus block 3), block
4 and 5

block 1

’k’ in block 1 block 1 minus block 2
(and thereby also
block 3 and 4), and
block 5

block 1

’i’ in block 2 block 2 and 3, but not

block 4
block 2

’k’ in block 2 block 2 and 3, but not
block 4

block 2

’j’ in block 3 block 3 block 3

’i’ in block 4 block 4 block 4
’l’ in block 4 block 4 block 4

’a’ in block 5 block 5 block 5
’b’ in block 5 block 5 block 5
’c’ in block 5 block 5 block 5
’d’ in block 5 block 5 block 5

Problem 4

1)

i 8
j 2
k 3

k 6

control link

access link

control link

access link

i 8
j 2
k 3

i 8i 8
j 2j 2
k 3k 3

k 6

control link

access link
k 6k 6

control link

access link

control link

access link

control link

access link

control link

access link

program

main

beta

2)

i 8
j 2
k 3

k 6

control link

access link

control link

access link

i 8

control link

access link

l 5

i 8
j 2
k 3

i 8i 8
j 2j 2
k 3k 3

k 6

control link

access link
k 6k 6

control link

access link

control link

access link

control link

access link

control link

access link

i 8

control link

access link

l 5
i 8i 8

control link

access link

control link

access link

l 5l 5

program

main

beta

alpha

3)

i 8
j 2
k 3

k 6

control link

access link

control link

access link

k 6

control link

access link

i 4

control link

access link

l 4

i 8
j 2
k 3

i 8i 8
j 2j 2
k 3k 3

k 6

control link

access link
k 6k 6

control link

access link

control link

access link

control link

access link

control link

access link

k 6

control link

access link
k 6k 6

control link

access link

control link

access link

i 4

control link

access link

l 4
i 4i 4

control link

access link

control link

access link

l 4l 4

program

main

beta

alpha

beta

Problem 5

f1()in main: ’i’ is bound to ’i’ in main, ’k’ is bound to ’k’ in main
f2()in f1: ’i’ is bound to ’i’ in f2, ’j’ is bound to ’j’ in f1
f2()in main: ’i’ is bound to ’i’ in f2, ’j’ is bound to ’j’ in main

Problem 6

x
y
z

xx
yy
zz

z
t
zz
tt

t
u

control link

access link
tt
uu

control link

access link

control link

access link

x
w

control link

access link
xx
ww

control link

access link

control link

access link

y
w
t

control link

access link

yy
ww
tt

control link

access link

control link

access link

x
w

control link

access link
xx
ww

control link

access link

control link

access link

program

main

f1

f2

f3

f2

control link

access link

control link

access link

Problem 7

a)

The following three cases for proc power (x, y, z: int) will work:

 power(x by-value, y by value, z by-reference)

 power(x by-value, y by reference, z by-reference)

 power(x by-reference, y by value, z by-reference)

while the cases where z is by-value will not work.

Obviously z must be by-reference, otherwise c would not be changed. The
power procedure is not a function that delivers a value, so the only
way of changing c in power(a,a,c) is by having z by reference. If z is
by-value, then z corresponds to a local variable, and power will just
changes the value of this local variable and not the c.

power(x by-value, y by value, z by-reference): For this alternative the
code in the while-loop computes the value of z based upon local x and
y.

power(x by-value, y by reference, z by-reference): For this alternative
it may look dangerous that changing y in the loop really changes the
value of a, however, with x by-value, the value of a at the time of the
call is taken care of in the local x. The x used in the loops will
therefore give the right value (the value of a).

power(x by-reference, y by value, z by-reference): This alternative is
ok since x is only used on the right hand side of an assignment within
the loop. Decrementing y in the loop will just decrement the local y.

Problem 8

 by-value by-reference by-value-result
x:= x + 1; x=2 i=2 x=2
y:= x + 1; y=3 i=3 y=3
x:= y; x=3 i=3 x=3
i:= i + 1 i=2 i=4 i=2 result 3

Problem 9

As an example we assume a(i)=1 and a(j)=2. In the following table x and
y are only used in the call-by-result case, while for call by reference
the addresses are used. For i=j we just use i and thereby a(i)=1.

by reference, not(i=j)

a(i) = a(i) + a(j) = 1 + 2 = 3
a(j) = a(i) - a(j) = 3 - 2 = 1
a(i) = a(i) - a(j) = 3 - 1 = 2

by value-result, not(i=j)

x = a(i) = 1
y = a(j) = 2
x = x + y = 1 + 2 = 3
y = x - y = 3 - 2 = 1
x = x - y = 3 - 1 = 2

a(i) = x = 2
a(j) = y = 1

by reference, i=j

a(i) = a(i) + a(i) = 1 + 1 = 2
a(j) = a(i) - a(i) = 2 - 2 = 0
a(i) = a(i) - a(i) = 0 - 0 = 0

by value-result, i=j

x = a(i) = 1
y = a(i) = 1
x = x + y = 1 + 1 = 2
y = x - y = 2 - 1 = 1
x = x - y = 1 - 1 = 0

a(i) = x = 0

