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Exam in: INF3110 Programming Languages 
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Exam hours: 14:30 – 18:30 

This examination paper consists of 7 pages. 
Appendices:  No  

Permitted materials:  All printed and written, including the textbook  
  

 
Make sure that your copy of this examination paper is complete before answering.  

 
This exam consists of 3 questions that may be answered independently. If you think the 
text of the questions is unclear, make your own assumptions/interpretations, but be sure 
to write these down as part of the answers. 

 
Good luck! 
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Question 1. Runtime-systems, scoping, types (weight 40%) 
 
1a  
Consider the following (admittedly naïve) implementation of a generic stack class in Java: 
public class MyStack<T> { 
   int maxSize; 
   Object[] stackArray; 
   int top = -1; 
 
   public MyStack(int maxSize) { 
      this.maxSize = maxSize; 
      stackArray = new Object[maxSize];  
   }      
   
   public void push(T element) { 
      stackArray[++top] = element; 
      // HERE, see text below     
   } 
   public T pop() { 
      return (T) stackArray[top--]; 
   } 
   public boolean isEmpty() { 
      return top < 0 
   } 
} 

Furthermore, we have the following two classes for persons and students, respectively:  
class Person {  
   public String name; 
   public Person(String name) { this.name = name; } 
   /* some more content here */  
} 
 
class Student extends Person {  
   public Student(String name) { super(name); } 
   /* some more content here */  
} 
 
Suppose now that the stack is used like this: 
class Program { 
   public static void main(String[] args) { 
      MyStack<Student> s = new MyStack<Student>(10); 
      s.push(new Student("Volker")); 
      s.push(new Student("Eyvind")); 
   } 
} 

Draw the runtime stack with activation blocks and objects (including static and dynamic links, 
using this for static links to objects, and local variables), at the point when the call to s.push(new 
Student("Eyvind")) has just been made, and the execution is at the point labeled “// HERE” in the 
code. You may assume that arrays are implemented as objects with an appropriate number of slots 
for their elements. 
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1b 
Consider now the following program fragment, which uses the stack implementation from 1a: 
MyStack<Object> myStack = new MyStack<Object>(10); 
myStack.push("Hello INF3110!"); 
myStack.push(new Object()); 
myStack.push(123); 
 
Does this program fragment work (i.e., does it compile and run without any errors, provided it is 
wrapped in a suitable method and class declaration)? If yes, explain briefly how and why it works. 
If not, explain briefly what is wrong with it. 

 
1c 
Suppose now that we replace the first line of the program fragment from 1b with the following 
code:  
MyStack<Object> myStack = new MyStack<String>(10); 

 
Explain how the fragment now differs from the one in 1b. Will the compiler react differently to it? 
If it compiles correctly, will the runtime behavior of the fragment be different? 
 
1d  
Returning now to persons and students, assume that we want to write a method that can process 
stacks of persons and stacks of students, e.g. like this: 
public static < … > void processPersons(... persons) { 
   while(!persons.isEmpty()) { 
       System.out.println(persons.pop().name); 
   } 
} 

Replace the ellipses (…) two places in the method signature above with the appropriate generic 
declarations to make the following calls to processPersons work: 
MyStack<Person> persons =   // some initialization code here, 
MyStack<Student> students = // you do not need to provide this code 
 
processPersons(persons);  // this call and the next should work 
processPersons(students); 
 

1e  
Java 8 allows the usage of anonymous functions (or “lambdas”). For instance, we could define 
processPersons to have an argument that is a predicate filtering which person’s name to print: 
public static void processPersons(Stack<Person> persons,  
                           Predicate<Person> predicate) { 
   while(!persons.isEmpty()) { 
       Person person = persons.pop(); 
       if(predicate.test(person)) 
           System.out.println(person.name); // HERE 
   } 
} 
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Predicate<T>, as used in the method above, is a built-in interface in Java 8 that has a Boolean 
method test that can be implemented by an anonymous function. Thus, the processPersons 
method could now be called for instance like the following, to only print “Volker”: 
 
public static void main(String[] args) { 
   MyStack<Person> persons = new MyStack<Person>(10); 
   persons.push(new Student("Volker")); 
   persons.push(new Student("Eyvind")); 
   String filter = "V"; 
 
   Predicate<Person> predicate = p -> p.name.startsWith(filter); 
   processPersons(person, predicate); 
} 
 
Draw the call stack as it is in the call to processPersons when the execution has reached the point 
marked “// HERE” in the code above. 

 

Question 2. ML (weight 40%) 
2a 
Evaluate the following ML expressions: 

a) (fn (x,y) => (x+1)::(y@[1])) (2,[3,4]); 
 

b) List.filter (fn x => x > 3) (map (fn x => x+2) [4,1,5,2]); 
where  List.filter = fn : ('a -> bool) -> 'a list -> 'a list  preserves only 
list elements that satisfy the predicate. 

 

 

2b 
Assume the standard definition of foldl: 
fun foldl (f: 'a*'b->'b) (acc: 'b) (l: 'a list): 'b = 

  case l of 

    [] => acc 

  | x::xs => foldl f (f(x,acc)) xs 

 

With the help of foldl, define the function 
val last = fn : 'a list -> 'a option 

which returns NONE for the empty list, or the last element of the list wrapped in SOME. 

 
2c 
In ML, we can define a lookup table as a function from keys to values, using ML’s option 
datatype. NONE indicates that no element with that key could be found, and SOME will be used in the 
case of reporting an existing entry in the table: 
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type ('k , 'v) table = 'k -> 'v option; 
 

1) Define the constant value for the empty table, that is, the table, which will return NONE for 
any key! 

val emptyT : (‘k,’v) table = 

 

2) Define the function 
 
 val addT = fn : ((‘k, ‘v) table) -> ('k * 'v) -> ((‘k,’v) table) 
 

which takes as first argument a table t, as second argument a key/value pair (k,v), and 
returns  a new table modeled as a function that, when asked for the key k that was just 
added, returns the value v, or looks for the key in table t otherwise! 
 
[Note that for technical reasons related to polymorphic use of the equality-test, which you 
should use to compare keys, if you were to try this out in the interpreter, it is not possible to 
manually annotate the above type on the function. Type inference will still find the correct 
type, though of course not use the type synonym declared above: 
   val addT = fn : ('a -> 'b option) -> ('a * 'b) -> 'a -> 'b option 

However, this does not affect your solution.] 

 
   fun addT t (k,v) = 

 

2d 
We define our own datatype to represent directed graphs as a sequence of vertices (edges) between 
nodes with the following declaration: 
datatype 'a graph = Empty 
                  | Vertex of ('a * 'a * 'a graph); 

For example, the expression 
Vertex ("a", "b", 
         Vertex ("a", "c", 
            Vertex ("b", "d", 

               Vertex ("d", "c", Empty)))) 
 

represents the following graph: 
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C D
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Write the function 
     val path = fn : 'a -> 'a -> 'a graph -> bool 
 

which returns true given two nodes x,y and a graph g, if x = y, or if there exists a path from x to y 
in g. You may assume that all graphs are acyclic (that is, they do not contain cycles). 

 

2e 
Calculate the type for the following expression according to the ML type inference algorithm:  
fn x => split ([] :: x). 

Assume val split = fn : 'a list -> 'a * 'a list as given, and the annotated types in the 
parse graph. Use the provided type variables. Derive the corresponding equations for the parse 
graph, and solve the resulting equation system to obtain the type of the root node R. 

 

 
Question 3.  Prolog (weight 20%) 
3a  
Give PROLOG’s answer (that is, the substitutions for all variables in a query, if the terms can be 
unified) for each of the queries below, or simply write “no” if no solution exists. 

1. [X|[a,b]] = [Y,a,B]. 
 

2. f(g(0),X) = f(X,g(Y)). 
 

3. z(k(0),X) = z(k(X),s(0)). 
 

4. c(X,Y) = c(Z,Z). 

@:B

λ:R

@:C

[] : β list

x:X @:A

split :
γ list ➝ (γ, γ list)

(::)
α➝α list➝α list
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3b   

Given the following persons that each have a name, a mother, a father and a birthday, 
person(a,b,c,d) denotes a person with name a, mother b, father c, and year of birth d.  

For example: 
 
person(anne, sofia, martin, 1960). 

person(john, sofia, george, 1965). 

person(paul, sofia, martin, 1962). 

person(maria, anne, mike, 1989).  

1. Define a predicate parents(x,y), that is true if x and y have a child together. 
2. Define a predicate itscomplicated(x), that is true if x has children with more than one 

partner. 

3c 
We define a data structure for trees that store values in their nodes in the following way: 

empty denotes the empty tree. node(L,V,R) denotes a tree with value V in the node, and left and 
right sub-trees L,R. 

1. Define a predicate depth(T,N) that is true if the tree T has depth N. The empty tree has 
depth 0, and a node has depth 1+M, where M is the maximum of the depths of the two 
subtrees. 

2. Define a predicate heap(H,N), that is true if the tree H has the shape of a heap with depth N: 
• The empty tree is a heap with depth 0. 
• A node node(L,V,R) is a heap, if 

• L and R are heaps, and 
• if L and/or R are not empty, then the values at their top are less than or equal to V, 

and 
• If L has depth D, then R has depth D or D – 1 
• The depth N is defined as the maximum depth of the two branches + 1. 

Note that through adequate use of the second argument of heap you do not actually have to use the 
predicate defined in part 1)! 

 

3

52

1

3

5

Heap. Not a heap.


