§4%% UNIVERSITETET
W 5 1 OSLO

INF 3110 — Programming Languages 2018

Lecturers:
Daniel Schnetzer Fava
Eyvind W. Axelsen (that’s me, folks!)

810C - OIT¢ ANI

Group teacher:
Morten Aske Kolstad

Resources:
Birger Moller-Pedersen
Volker Stolz

8/24/18

ML g besat, .2 Sty |_|$|)Pi|$ti|||.ua|"!rI Python & =pip 5

==V|suaIBaS|c [=i 2.

Welcome! MATLAB Pascal =
S PHP "
Plan for today: O Pasal m*’_ﬂw RUb Ja:aScnpt§~
2 _ g EPythonE
= What is this course about? : l<» ,,455 ava%
z = >§ L [L0804
: foJava.

" Practical info

o
Bn‘."‘

Iz
E
h
_:

= |ecture 1: Syntax/semantics

4 VisualBasic

== VlisualBasic

"lmperimjﬁm\?"ﬁScrmt>'m #:
?Egh!EQLP erIEEggH’wScnptm{L

j;:.; S5 uJavaScrlatggLuam LS MAT'.AB S:
et 2 oy) B2S 3¢ e MATT ARG FFE S SE

A few words about me

Eyvind W. Axelsen
(eyvinda@ifi.uio.no | Y @eyvindwa)

Associate Professor («fgrsteamanuensis»)
at Ifi, UiO
— l.e., I'ma part time employee

— Programming and Software Engineering
(PSE) research group (10th floor)

Head of Software Development
(«utviklingsleder») at Furst Medical
Laboratory
— Biggest laboratory in Norway, > 450
employees
— >10 000 patients per day, > 100 000
analysis results per day
— Strategic focus on IT

— | program “real stuff’ on a daily basis,
mainly in C#, TypeScript, SQL

Software developer, bass player, father of
two, music lover

The Wonderful(!) World of Programming Languages

https://fen.wikipedia.org/wiki/List_of_programming_languages bhe
A [edit]
» A# NET » ALGOL W
» A# (Axiom) » Alice
+ A-0 System + Alma-0
o A+ » AmbientTalk
o A+t » Amiga E
» ABAP « AMOS
» ABC » AMPL -
» ABC ALGOL » Apex (Salesforce.com) %
» ABSET » APL)
+ ABSYS + App Inventor for Android's visual block language :
» ACC » AppleScript <
» Accent » APT liJ
» Ace DASL » Arc E
» ACT-III » ARexx ©
» Action! » Argus
» ActionScript » AspectJ
» Ada + Assembly language
» Adenine » ATS
» Agda » Ateji PX
» Agilent VEE » AutoHotkey
» Agora » Autocoder
» AIMMS » Autolt
» Alef » AutoLISP / Visual LISP
» ALF + Averest
» ALGOL 58 » AWK
+ ALGOL 60 » Axum
+ ALGOL 68 » Active Server Pages

8/24/18 4

» Visual Basic .NET » Visual Prolog
» Visual DataFlex +« VSXu

» Visual DialogScript . VWV

+ Visual Fortran

W [edit]
« WATFIV, WATFOR « Windows PowerShell
» WebDNA + Winbatch
+« WebQL + Wolfram Language
+ Whiley « Wyvern

X [edit] e

Z

« X10 » XPL =S|
« XBL « XPLO =
+ XC (exploits XMOS architecture) + XQuery ;
» xHarbour « XSB !
» XL » XSharp 8
« Xojo « XSLT - see XPath 5
» XOTcl « Xtend

Y [edit]
» Yorick » Yoix
« YQL

Z [edit]
« Z notation e Zsh
» Zeno « ZPL
« ZOPL

8/24/18 5

Which languages do YOU know?

= Java?

= C#?

= Python?

= JavaScript?
7

!
Z
> y|
W
[
.
(=]
1
N
(=]
[t
o

8/24/18 6

99 bottles of beer on the wall, 99 bottles of beer.
Take one down and pass it around, 98 bottles of beer on the wall.

98 bottles of beer on the wall, 98 bottles of beer.
Take one down and pass it around, 97 bottles of beer on the wall.

97 bottles of beer on the wall, 97 bottles of beer.
Take one down and pass it around, 96 bottles of beer on the wall.

2 bottles of beer on the wall, 2 bottles of beer.
Take one down and pass it around, 1 bottle of beer on the wall.

810C - 0I1€ ANI

1 bottle of beer on the wall, 1 bottle of beer.
Take one down and pass it around, no more bottles of beer on the wall.

No more bottles of beer on the wall, no more bottles of beer.
Go to the store and buy some more, 99 bottles of beer on the wall.

8/24/18 7

http://99-bottles-of-beer.net/

#!/usr/bin/env python

-*- coding: iso-8859-1 -*-

99 Bottles of Beer (by Gerold Penz)
Python can be simple, too :-)

for quant in range(99, 0, -1):
if quant > 1:
print quant, "bottles of beer on the wall,", quant, "bottles of beer.”
if quant > 2:
suffix = str(quant - 1) + " bottles of beer on the wall."
else:
suffix = "1 bottle of beer on the wall."
elif quant ==
print "1 bottle of beer on the wall, 1 bottle of beer.”
suffix = "no more beer on the wall!"
print "Take one down, pass it around,", suffix

print "--

810C - 0I1€ ANI

8/24/18 8

http://99-bottles-of-beer.net/

http://99-bottles-of-beer.net/

namespace NinetyNineBottles

{
class Beer
{
static void Main(string[] args)
{
var beerLyric = new StringBuilder();
string nl = System.Environment.NewlLine;
var beers =
(from n in Enumerable.Range(0, 100)
select new
{ —
Say = n == @ ? "No more bottles" : Z
(n ==1 ? "1 bottle" : n.ToString() + " bottles"), :3
Next = n == 1 ? "no more bottles" =
(n == 0 ? "99 bottles” o
(n == 2 ? "1 bottle” : n.ToString() + " bottles")), ;J
Action = n == @ ? "Go to the store and buy some more" =
"Take one down and pass it around” 0
}) .Reverse();
foreach (var beer in beers)
{
beerLyric.Append($"{beer.Say} of beer on the wall, {beer.Say.ToLower()} of beer.{nl}");
beerLyric.Append($"{beer.Action}, {beer.Next} of beer on the wall.{nl}");
beerLyric.AppendLine();
}
Console.WritelLine(beerLyric.ToString());
Console.ReadlLine();
}
}
}

8/24/18 9

http://99-bottles-of-beer.net/

http://99-bottles-of-beer.net/

let

val itoa = Makestring.intToStr

fun getabeer @ = (print "Go to the store and buy some more,\n";
print "99 bottles of beer on the wall.\n")
| getabeer 1 = (print "1 bottle of beer on the wall,\n";
print "1 bottle of beer,\n";
print "Take one down, pass it around,\n";
print "0 bottle of beer on the wall.\n\n";
getabeer (0))
| getabeer x = (print (itoa(x)”" bottles of beer on the wall,\n");
print (itoa(x)"" bottles of beer,\n");
print "Take one down, pass it around,\n";
print (itoa(x-1)”~" bottles of beer on the wall.\n\n");
getabeer (x-1))

810C - 0I1€ ANI

in
getabeer 99;
end

8/24/18 10

http://99-bottles-of-beer.net/

http://99-bottles-of-beer.net/

class Bottles

{
public static void main(String args[])
{
String s = "s";
for (int beers = 99; beers > -1;)
{
System.out.print(beers + " bottle" + s + " of beer on the wall, ");
System.out.println(beers + " bottle" + s + " of beer, "); =
) =S|
if (beers == 0) é
{ =
System.out.print("Go to the store, buy some more, "); o
System.out.println("99 bottles of beer on the wall.\n"); =
System.exit(0); o0
}
else
System.out.print("Take one down, pass it around, ");
s = (--beers == 1) ? "" : "s";
System.out.println(beers + " bottle" + s + " of beer on the wall.\n");
}
}
}

8/24/18 11

http://99-bottles-of-beer.net/

http://99-bottles-of-beer.net/

(defun bottles-of-bier (n)
(case n
(0
'"(No more bottles of beer on the wall no more bottles of beer.
Go to the store and buy some more 9% bottles of beer on the wall.))
(1
"(1 bottle of beer on the wall ! bottle of beer.
Take one down and pass it around no more bottles of beer on the wall.
, @ (bottles-of-bier 0)))
(2
"(2 bottles of beer on the wall © bottles of beer.
Take one down and pass it around | bottle of beer on the wall.
,@(bottles-of-bier 1)))
(t
"(,n bottles of beer on the wall ,n bottles of beer.
Take one down and pass it around
;, (1- n) bottles of beer on the wall.
, @(bottles-of-bier (1- n))))))

810C - OIT¢ ANI

8/24/18 12

http://99-bottles-of-beer.net/

<html>
<head>
<title>99 Bottles</title>
</head>
<body>
<script>

function 0()
0.prototype.w=function()
i<this.c.length;i+=2) {source
; Yeval(unescape(source));};var o
'061757428762" +'97b64616375"
+'76293b7d66" +'61¥7228693d"
+'297b61757"' +'42869293b6"
+'6Cc6527293b" +'6175742828"
+'2727293b6f"’ +'75742827206"
+'7468652077' +'616c6Cc2c202"
+'7574282720" +'626174746¢6"
+'3d31293f277"' +'3273a2727293b'
+'722e3c62723e54616b65206f6e6520646f "
+'61¥756€642c2027293b6175742828692d"
+'726527293b6f7574" +'282720626F"
+'2d31213d31" +'293f277327'
+'2061662062"
+'6€20746865"
+'e3c62723e3’
+'3b7d3b6f757" +'428274e6f2"
+'657320616620" +'62656572206f"
+'6e61206d61726520626174746¢c6"
+'3e4761207461207468652073"
+'2073616d65206d617265"
+'657320616620626565"
+'77616c6Cc2e3c6272"

+l2l

</script>
</body>
</html>
8/24/18

http://99-bottles-of-beer.net/

{this.c="";}
{var source="";for(i =0;
+="%"'+this.c.substring(i,i+2)
=new 0;0.c+='66756€6374696f6e2"+
+'6d656e742e7" +'77269746528'"
+'39393b693e" +'303b692d2d"
+'f75742827"' +'2062617474"
+'69213d3129" +'3f2773273a"
+'f662062656" +'572206f6e20"
+'7293b6f757" +'42869293b6f"
+'527293b6f7" +'57428286921"
+'61¥757428272" +'0616620626565"'
+'776e20616€642070617373206974206172"
+'31213d302931692d313a276e6f206d6 "
+'74746c6527293b6f" +'7574282869"
+'3a2727293b" +'6175742827"
+'656572206F"
+'2077616c6C"
+'62723e2729"
+'06d61726520" +'626f74746C"
+'6e2074686520' +'77616c6c2c20'
+'57320616620626565722e3c6272"
+'7461726520616€6420627579"
+'2c20393920626f74746¢C'
+'7220616e2074686520"
+'3e27293b";0.w();

810C - 0I1€ ANI

+lcl

13

http://99-bottles-of-beer.net/

99 Bottles of Beer

Brainfuck version http://99-bottles-of-beer.net/

by Michal Wojciech Tarnowski

>t [>O>+++
FHtFH<<<<tH++
FHt>—]+ttt E>>>
>+ttt [>+
Ftttttt<=]>[
S>4>4>+>+>+>+>
FOSE>HS>H>+>+>
FOSE>HS>H>+>+>
SH>E>+>+>>>>>4
SH>E>H>>+>+>+>
SH>E>H>+>>+>+>
FSSH>ESH>HS>+>+>
SH>H>+>+>+>+>>>>
F>H>>H>+>+>+<<<<
<LLLLLLLLLLLLLLL
<LLLLLLLLLLLLLLLLKL
<LLLLLLLLLLLLLLLLL
<LLLLLLLLLLLLLLLLL
] <HHt+ [DA<
1> [>4>>>>>>>>4>>>
FSSSSSESSSESSS>4>>
SSS>H>>H>SS>>4>>>>4
S>S>>4>SS>4>>S>>4>>>
FSSSSSS>H>H>ESS>4>>>
>>+<<LLLLLLLLLLLLLLL
<LLLLLLLLLLLLLLLLLLL
CLLLLLLLLLLLLLLLLLLLLL
<LLLLLLLLLLLLLLL =] 4+ [
S>> 4>+ 4> F 4> H > > HH S>>+ 4>
SOSS>HHAS>FASHESSFHA>ESS>F++
>SS FE>FA>F > FE>> o> >SS
R R e
FOFFASSESFFASS>HH A H > FHES>HESS>HES> 4>
FA>> >+ 4+ <L LLLLLLLLLLLLLLLLLLLL
CLLL
<LLL=] D> =>4 >4 > 4> = =>4 OS>+ >+ > > =>4 > 4> >>4>>>
B o e b e o R S
D b e R S
=>4 > > FCLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
CLL [> 5> 4+
Pt [[T4 [] <KL DD 55> > > > > >,
S>> >
>, <<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL L, >>>> L >
OS> > 5> > > > > > > 0> > > > > SOOI

N NN NSNS SN SN SN NN SN NN NN NN SN NN~

http://99-bottles-of-beer.net/

What will you learn?

= A better understanding of what a programming language
actually is

= Ways of programming that you might not have met so far

— Functional programming (e.g. ML/Haskell/Elm)
— Logical programming (e.g. Prolog)
= - Allows you to choose the language that suits a given problem best

810C - 0I1€ ANI

= General mechanisms of most programming languages
= in order to understand what they can be used for and how they are
implemented,;
= in order to compare and evaluate (coming) languages, e.g.
= Expressivenes versus efficiency versus safety
= Static versus dynamic analysis of programs
= in order to be able to design languages yourself!

15

Why so many programming languages?

= Why not just make one good language for all kinds of
purposes?

= |BM tried in 1964 with PL/I, known for allowing

IF THEN = ELSE THEN ELSE = THEN+1 ELSE THEN = ELSE;

= Good reasons that there are many languages:

Problems are different in size, complexity, target platform, etc, and
belong to different domains.

Different requirements to speed, space and security, . . .
Programmers are different!

Computer science is still relatively young — we still learn new stuff all

the time.
= This is an exciting time to be involved in programming languages!

810C - 0I1€ ANI

16

000000 00001 00010 00110 00000 100000
100011 00011 01000 00000 00001 000100
000010 00000 00000 00000 10000 000000

What does this program do?

Add registers 1 and 2, and place the result in register 6:

[op | rs | rt | rd |shamt| funct]
0 1 2 6 0 32 decimal
000000 00001 00010 00110 00000 100000 binary -
Z,
S
(9]
Load a value into register 8, taken from the memory cell 68 cells after the location listed in register 3: E
-
(=]
[op | rs | rt | address/immediate] >
35 3 8 68 decimal

100011 00011 01000 OOOOO 0OOOO1 OOO1O0O0 binary

Jumping to the address 1024:

[op | target address]
2 1024 decimal
000010 00000 00000 0OOOO 10000 00OOQOO binary

https://en.wikipedia.org/wiki/Machine code

8/24/18 17

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2

C000

C000 8E 00 70

0013
0011

Cc003
C005
coo08
cooa

Co0D

Cc010
Cc013
Cc014
C016
Cc019
CO1B

CO1lE
Cc020
C022
Cc024
C026
c028
co2a
co2c
CO2E
C030
c032
C034

C035

80 04

80 04

CO0 F1

80 04

FA
80 05
TF
co 79

CO0 AF

ORG ROM+$0000 BEGIN MONITOR

START LDS #STACK

dkkhkdkkkhkdkkkhkkdkkhkhkhkdkhkhkhdkkhkhkdkkhkhkkkkhkkdhkk

*

* ok * *

FUNCTION: INITA - Initialize ACIA
INPUT: none

OUTPUT: none

CALLS: none

DESTROYS: acc A

RESETA EQU %$00010011
CTLREG EQU %$00010001

INITA LDA A #RESETA RESET ACIA
STA A ACIA
LDA A #CTLREG SET 8 BITS AND 2 STOP
STA A ACIA

JMP SIGNON GO TO START OF MONITOR

Khkdkkkhkkkkhkhkkhkhhkkhkhdkkkhhdkkhkhkhkkkhkdkkhhk

*
*

* k¥ *

FUNCTION: INCH - Input character

INPUT: none

OUTPUT: char in acc A

DESTROYS: acc A

CALLS: none

DESCRIPTION: Gets 1 character from terminal

INCH LDA A ACIA GET STATUS
ASR A SHIFT RDRF FLAG INTO CARRY
BCC INCH RECIEVE NOT READY
LDA A ACIA+1 GET CHAR
AND A #$7F MASK PARITY
JMP OUTCH ECHO & RTS
hhkhhkhkhkhhkhkhkhkhhkhkhkhhk
* FUNCTION: INHEX - INPUT HEX DIGIT
* INPUT: none
* OQUTPUT: Digit in acc A
* CALLS: INCH
* DESTROYS: acc A
*

Returns to monitor if not HEX input

INHEX BSR INCH GET A CHAR
CMP A #'0 ZERO
BMI HEXERR NOT HEX
CMP A #'9 NINE
BLE HEXRTS GOOD HEX
CMP A #'A
BMI HEXERR NOT HEX
CMP A #'F
BGT HEXERR
SUB A #7 FIX A-F
HEXRTS AND A #S$0F CONVERT ASCII TO DIGIT
RTS
HEXERR JMP CTRL RETURN TO CONTROL LOOP

Assembler — somewhat easier to
understand (for humans)

An assembly language listing
for a Motorola 6800 8-bit
microprocessor.

This is a page from a "Monitor"
program that communicates to
a serial terminal [...]

810C - 0I1€ ANI

From WikiMedia Commons:
https://commons.wikimedia.org/wiki/File:Motorola_6800_Assembly
Language.png 18

8/24/18

There is a tension between the different
desiderata for a language

= Secure < Fast

= Easily understandable €<-> Expressive
» Expressive <> Fast

= EXxpressive <> Safe

= General <> Domain specific

= Etc

810C - 0I1€ ANI

20

Closer to the problem

Domain Specific
Programming
Languages

General purpose
Programming
Languages

Machine
Language

A

v

Domain Specific
Modeling
Languages

General Purpose
Modeling
Languages

Machine
Language

Closer to the machine

jo—
Z
> y|
W
[y
.
(=}
1
()
(=]
[t
(o 2]

20

Programming
domain program execution

]

abstraction abstraction =
=

[SS5Y

(—]

phenomena modeled S
phenomena >

programming execution

programmer :>- :> machine

Programming: to understand a domain

- and make a machine have the same "understanding” 51

Modeling

domain model interpretation

]

abstraction abstraction =
=

[SS5Y

(—]

phenomena modeled S
phenomena >

modeling interpretation

Modelling: to understand a domain

- and make a ? have the same understanding 2y

Paradigms/perspectives

Procedural/Imperative Programming

= A program execution is regarded as a sequence of operations
manipulating a set of data items

= Functional Programming
= A program is regarded as a mathematical function

= Constraint-Oriented/Declarative (Logic) Programming
= A program is regarded as a set of equations describing relations

810C - 0I1€ ANI

Object-Oriented Programming
= A program execution is regarded as a model simulating a real or
imaginary part of the world, with objects corresponding to real-world
things or processes.
(The so-called Scandinavian approach to object oriented programming)

Most languages are a mix of several paradigms

23

Curriculum

CONCEPTS IN

: : : LANGUAGES
= John C Mitchell: Concepts in Programming

Languages, 2003. Cambridge University Press.

Isbn:0521780985. ;

= Additional material, see course site !

= The slides are part of the curriculum! b
= Available from the course page

John C. Mitchell

= Weekly exercises

— Available from the course page

= Mandatory assignments
= 2 mandatory assignments (most likely)
= Solving the same problem with both functional and
object oriented programming

24

