
Logic Programming and Prolog
[part 1]

Daniel S. Fava

In part based on slides from Gerardo Schneider, which where
in turn based on John C. Mitchell’s

1

Prolog

Declarative programming language

Program: relations represented as facts and rules.
cat(tom).
animal(X) :- cat(X).

Computation: a query over these relations.
?- animal(tom).
yes

Leads to a form of interactive programming

2

Example

Facts and rules in a database file, often with .pl extension

example001.pl

cat(tom).
animal(X) :- cat(X).

On the prolog prompt: import databases then make queries
?- [example001].
...
?- animal(tom).
yes

3

History

1930s, Gödel, Herbrand: Computation as deduction

• Computation: Computing f(x) and obtaining c
• Deduction: Proving that the equation f(x)=c holds

1965, Robinson: Resolution and unification

• (un)satisfiability of predicate and first-order logic

1970s, Kowalski: Logic programs with a restricted form of
resolution

4

Applications of logic programming

• Theorem proving
• Expert systems (eg. IBM’s Watson)
• Term rewriting
• Type systems
• Automated planning

– For example: strategies for autonomous robots
• Natural language processing

5

Basics

Clauses

• facts, rules

Data types

• atoms, numbers, variables, compound terms

Impure predicates

• predicates with side effects
• for example: printing a value to the screen

6

Clauses

Facts: clauses with empty bodies
cat(tom).

cat(tom) :- true.

Rules: head is true if body is true
Head :- Body.

animal(X) :- cat(X).

A rule’s body consists of calls to predicates, which are called
the rule’s goals.

7

Queries

Variables: start with Upper case letter or _

?- cat(X).
X = tom
yes

8

Unification [ML lecture 3]

We have seen unification in the context of type inference.

x → int bool → y

σ(t1) = x 7→ bool σ(t2) = y 7→ int

9

Unification, Prolog

Unification for solving queries

• instantiate a query’s variables to match facts/rules

Example
fact: child(anne,sofia)
query: child(X,sofia)
unification: X:= anne .

Note: Syntactic equality. Meaning, 1+2 and 3 do not unify

10

Composite queries

Comma is the logical and
siblings(X,Y) :- child(X,Z), child(Y,Z), X \== Y.

Semicolon is the logical or
eitherMember(X,Y,L) :- member(X,L); member(Y,L).

eitherMember(a,b,[a,b,c,d]).
eitherMember(a,b,[b,c,d]).
eitherMember(a,b,[a ,c,d]).
eitherMember(a,b,[c,d]).

11

Relations vs. Functions

In the previous example, we used a relation to represent
“X is a child of Y”:
child(X,Y)

as opposed to a function from parent to child:
child(Y) = X

Note: There are no functions in Prolog! Only relations.

A function can be turned into a relation:
f(a) = b becomes f ′(a, b)

12

Recursive rules

descendant(X,Y) :- child(X,Y).
descendant(X,Y) :- child(X,Z), descendant(Z,Y).

Note the order of rule definitions:

• Non-recursive rule first
• Recursive goal after

Example:
?- descendant(anne, X). % All ancestors
?- descendant(X, sofia). % All descendants

13

Lists

• Unification
• Membership
• Append

– append to split a list

14

Unification on lists

Question. If/How do the following terms unify?

[a,b,c] ?= [Head | Tail]

[a] ?= [H | T]

[a,b,c] ?= [a | T]

[a,b,c] ?= [b | T]

[] ?= [H|T]

[] ?= []

15

Unification on lists

Assume the following fact:
p([H | T], H, T).

Compute:
?- p([a,b,c], X, Y).

?- p([a], X, Y).

?- p([], X, Y).

16

List membership

member(X, [X|Rest]).
member(X, [H | Tail]) :- member(X, Tail).

member(2,[1,2,3]) ? -> member(2,[2,3]) ? -> yes

17

Appending two lists

?- append([1,2,3],[4,5,6],Xs).
Xs = [1,2,3,4,5,6]
yes

Can use append to split a list in all possible ways:
?- append(Xs, Ys, [first, second, third, fourth]).
Action (; for next solution,

a for all solutions,
RET to stop) ?

18

	Logic Programming and Prolog [part 1]
	Prolog
	Example
	History
	Applications of logic programming
	Basics

