
Logic Programming and Prolog
[part 2]

Daniel S. Fava

In part based on slides from Gerardo Schneider, which where
in turn based on John C. Mitchell’s

1

Prolog, recap

words starting with lower-case letters

• Constants: “anne”, “sofia”
• Relations: “person”

words starting with upper-case letter or _

• Variables

2

Prolog

Closed world assumption: not known to be true means false

For example:

• If cat(tom) is not in the database,
• then the query ?-cat(tom) evaluates to false

Negation as failure: false if cannot prove true

For example:
legal(X) :- \+ illegal(X).

• Attempt to prove illegal(X),
• if proof can be found, then legal(X) fails
• if proof cannot be found, then legal(X) succeeds

3

Prolog, some operators

A = B are A and B unifiable?
?- 1 = 1.
yes
?- 2 = 1+1.
no
?- X = 1.
X=1
yes

4

Prolog, some operators

A == B are A and B syntactically equal?
?- 1 == 1.
yes
?- 2 == 1+1.
no
?- X == 1.
no

5

Prolog, some operators

A =:= B are A and B’s values equal (after computation)?
?- 1 =:= 1.
yes
?- 2 =:= 1+1.
yes
?- X =:= 1.
uncaught exception: error(instantiation_error,(=:=)/2)

6

Question. How to say that X is the result of 3+1?

= Answers yes but does not evaluate 3+1
?- X = 3+1.
X = 3+1
yes

== Answers no
?- X == 3+1.
no

=:= Gives out an error
?= X =:= 3+1.
uncaught exception: error(instantiation_error,(=:=)/2)

7

Question. How to say that X is the result of 3+1?

Use builtin predicate is
?- X is 3+1.
X = 4
yes

8

Example: factorial
factorial(0,1).
factorial(N,F) :- N>0, N1 is N-1,

factorial(N1,F1),
F is N*F1.

Queries
?- factorial(5,X).
X = 120
Yes

?- factorial(X,120).
uncaught exception: error(instantiation_error,(>)/2)

9

Example: ordered
ordered([]).
ordered([X]).
ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries
?- ordered([3,4,67,8]).
no
?- ordered([3,4,67, 88]).
yes
?- ordered([3,4,X,88]).
uncaught exception: error(instantiation_error,(=<)/2)

10

Prolog & arithmetic

Issues

• Operations of arithmetic are functional, not relational
• Arithmetic compromises Prolog’s “declarativeness”

?- factorial(X,120).
uncaught exception: error(instantiation_error,(>)/2)

?- ordered([3,4,X,88]).
uncaught exception: error(instantiation_error,(=<)/2)

11

Prolog & efficiency: Cut

Cut is a control flow abstraction

It is a goal that always succeeds and cannot be backtracked

Added for efficiency reasons; for example,
to prevent finding more solutions

head :- body. % Finds all solutions

head :- body,!. % Finds one solution

In general, no backtracking of B once it succeeds
H :- A, B, !, C, D

12

Prolog & efficiency: Cut

Issues

• programs become harder to understand
• easy to introduce mistakes
• “destroys declarativeness”

13

Prolog & I/O

Various predicates for input/output
?- print(f(a)). % print term
?- display('Hello World'). % print string

14

Prolog & I/O

Issue: Does not work well with backtracking
io_problem1 :- print(one), fail.
io_problem1 :- print(two).

?- io_problem1.
onetwo

io_problem2 :- fail, print(one).
io_problem2 :- print(two).

?- io_problem1.
two

Wait. . . conjunction should be commutative!

15

Other logic programming languages /
paradigms

• Mercury

• Curry

• Constraint Logic Programming

• Answer Set Programming

• Datalog, Overlog, Dedalus, and BLOOM

• Maude and rewriting logic

16

Mercury

To address issues in Prolog

Mercury is

• Compiled
• Strict typed
• Has a module system
• Disallows cut
• Has clean integration of IO
• Includes functional features

17

http://www.mercurylang.org/

Curry

• Research language
• Functional / logic programming language
• Based on Haskell

lazy functional programming: demand-driven evaluation

+ logic programming: non-deterministic operations

= more efficient search strategies

18

https://www-ps.informatik.uni-kiel.de/currywiki/

Constraint Logic Programming

Logic programming + constraints in the body of clauses
A(X,Y) :- X+Y>0, B(X), C(Y)

Logic programming

• Interpreter starts from the goal and
recursively scans the clauses trying to prove the goal

Constraint Logic Programming

• Constraints encountered when trying to prove a goal
are placed in a set

• Constraint solver is called
• If constraints are unsatisfiable:

interpreter backtracks, tries other clauses

19

Example applications:

• Civil and mechanical engineering
• Digital circuit verification
• Air traffic control

20

Answer Set Programming

Declarative programming

Prolog-style query evaluation

Application:

• solving NP-hard search problems
– worst case exponential time,

no known polynomial time algorithm

21

Datalog

• Subset of Prolog
• Not Turing complete
• Used as a query language for deductive databases
• Derivatives: Overlog, Dedalus, Bloom, etc

Overlog

• Originally for declarative networking,
then used to prototype distributed systems.
For example: Berkeley Orders of Magnitude (BOOM)
– Reimplementation of HDFS and MapReduce
– Hadoop scheduler in ~10x fewer lines of code

22

Incorporate lessons from BOOM project

Fix pain points from Overlog

Dedalus

• Dedalus = Datalog + notion of time
• For reasoning, but not necessarily programming

BLOOM

• Based on Dedalus
• For distributed and cloud programming

23

http://bloom-lang.net/index.html

Rewriting logic and Maude

Prolog database
Head(H) :- Body(H).

Rewriting system: Set of rewriting rules.
Body1(H) -> Head1
Body2(H) -> Head2
...

Rewrite left- into right-hand-side. For example:
2 * 2 -> 4

pop(push(E,S)) -> S

24

http://maude.cs.illinois.edu/w/index.php/The_Maude_System

Unify a term with the left-hand-side of a rewriting rule
pop(push('tomato', empty)) // term
pop(push(E,S)) -> S // rule

The term above unifies with LHS of the rule
with E mapping to 'tomato' and S to empty

Therefore, rewrite step:
pop(push('tomato', empty)) -> empty

More than one match possible. Can ask questions like:

Is value v a possible result from executing program P?

Application:

• model execution of a program; support for verification

25

	Logic Programming and Prolog [part 2]
	Prolog, recap
	Prolog
	Prolog, some operators
	Prolog, some operators
	Prolog, some operators
	Prolog & arithmetic
	Prolog & efficiency: Cut
	Prolog & efficiency: Cut
	Prolog & I/O
	Prolog & I/O
	Other logic programming languages / paradigms
	Mercury
	Curry
	Constraint Logic Programming
	Answer Set Programming
	Datalog
	Overlog
	Rewriting logic and Maude

