
IN
F 3110 –

2018

INF3110 – Repetition / Exam from 2017
Exercise 1, Runtime systems, scoping and 

types (40 %)

Eyvind W. Axelsen
eyvinda@ifi.uio.no | @eyvindwa

http://eyvinda.at.ifi.uio.no

11/24/18 1

mailto:eyvinda@ifi.uio.no
http://eyvinda.at.ifi.uio.no/


IN
F 3110 –

2018

Today

§ Part 1: Runtime systems, scoping and types
– Exam 2017 task 1, with repetition of central points in order to 

solve it
– Questions/answers

§ Part 2: SML/Prolog
– Daniel could unfortunately not make it today
– Morten to the rescue! 

11/24/18 2



IN
F 3110 –

2018

Task 1

11/24/18 3

Consider the program below, which is written in some new, hitherto unknown 
language (i.e., it is made up for this exam). The language supports interfaces 
and structs as the main units of decomposition, as well as variables and 
functions ("methods") within such structs.

Assume that the program is correct in the given language, that is, it contains
no syntax errors or type errors, and its execution does not result in a 
runtime error.

Furthermore, assume that the program starts executing the Main function, and 
that print(<expr>) will print the string representation of the expression (akin to 
toString() in Java) to the console/terminal.



IN
F 3110 –

2018
Task 1a

11/24/18 4

With a reasonable semantics, and a 
corresponding implementation of the language, 
what will be printed by the statement labeled 
"HERE!" in the program text above? Explain 
your reasoning briefly.

interface I { 

int function1();

}

struct A {    

int function1() { 

int x = 21;

int y = x + 
function2();    

return y; 

}  

int function2() {

return x ;

} }

struct B {

int thisOneGoesTo = 11;

int function1() {

return thisOneGoesTo;

}

}

void Main() {

I myI = new A();

int result = getValue(myI);

myI = new B();

result = result + getValue(myI);

printResult();

}

int getValue(I i) {

return i.function1();    

}

void printResult() {

print("The result is: ");

print(result); // HERE!        

}



IN
F 3110 –

2018
Task 1b

11/24/18 5

It is reasonable to assume that this language has some 
properties that differ a bit from most "mainstream" 
languages such as e.g. Java and C#. Discuss briefly (and 
informally) your interpretation of the semantics of the 
language, focusing on topics discussed in class.

interface I { 

int function1();

}

struct A {    

int function1() { 

int x = 21;

int y = x + 
function2();    

return y; 

}  

int function2() {

return x ;

} }

struct B {

int thisOneGoesTo = 11;

int function1() {

return thisOneGoesTo;

}

}

void Main() {

I myI = new A();

int result = getValue(myI);

myI = new B();

result = result + getValue(myI);

printResult();

}

int getValue(I i) {

return i.function1();    

}

void printResult() {

print("The result is: ");

print(result); // HERE!        

}



IN
F 3110 –

2018
Task 1c

11/24/18 6

interface I { 

int function1();

}

struct A {    

int function1() { 

int x = 21;

int y = x + 
function2();    

return y; 

}  

int function2() {

return x ;

} }

struct B {

int thisOneGoesTo = 11;

int function1() {

return thisOneGoesTo;

}

}

void Main() {

I myI = new A();

int result = getValue(myI);

myI = new B();

result = result + getValue(myI);

printResult();

}

int getValue(I i) {

return i.function1();    

}

void printResult() {

print("The result is: ");

print(result); // HERE!        

}
Draw the runtime stack at the point labeled "HERE!" 
in the program text above. That is, right after the call 
to print(result). Utilize your interpretation of the 
language's semantics from question 1b. Include 
objects and closures in the drawing as necessary.



IN
F 3110 –

2018

11/24/18 7

Lecture Runtime org. 1 - Simplified Reference Model of 
a Machine - used to understand memory management

Registers
(not in this class)

Environment 
Pointer

Program 
Counter

DataCode

Heap

Stack

Our main focus today



IN
F 3110 –

2018

11/24/18 8

Lecture Runtime org. 1 - Activation record  for 
static scope

§ Control link (dynamic link)
– Link to activation record of 

previous (calling) block
– Why is it called dynamic?

§ Access link (static link)
– Link to activation record 

corresponding to the closest 
enclosing block in program 
text

– Why is it called static?
§ Difference

– Control link depends on 
dynamic behavior of program

– Access link depends on static 
form of program text

Control link

Local variables

Intermediate results

Environment 
Pointer

Parameters

Return address

Return  result addr

Access link



IN
F 3110 –

2018

11/24/18 9

Lecture Runtime org. 1 - Static scope with
access links (C-like notation)
{ 
int x = 1;

int function g(z) { return x+z };

int function f(y) { 
int x = y+1; 
return g(y*x) 

};

main() {
f(3);

}
}

x 1

x 4
y 3

z 12

outer block

f(3)

g(12) control link
access link

control link
access link

access link
control link

main

Use access link to find global 
variable:
§ Access link is always set to 

frame of closest enclosing 
lexical block

§ For function body, this is the 
block that contains function 
declaration

g …
f …



IN
F 3110 –

2018

11/24/18 10

Example – static/dynamic scoping
{  -- block 0

int x = 0;
{ -- block 1

int x = 1;  
};
{ -- block 2

int x = 2; 

};
{ -- block 3, called

int z = x;

}
}

Control link

x 0

Control link

x 2

Control link

z ??

Control link

x 1

If block 1 executes block 3
Static scope:      z = 0
Dynamic scope: z = 1 

If block 2 executes block 3
Static scope:      z = 0
Dynamic scope: z = 2 

1 2

3

If block 0 executes block 3
Static scope:      z = 0
Dynamic scope: z = 0 

0

? ? ?



IN
F 3110 –

2018

11/24/18 11

Not strictly necessary for this
task



IN
F 3110 –

2018

Task 1d

11/24/18 12

Consider the following Java program snippet:

public class Program {
public static void main(String[] args) {

Object[] myArgs = args;

myArgs[0] = 42;
}

}

Explain why this piece of code is unsafe (there might be more than one 
reason!). Explain briefly what, from a language designer standpoint, can 
be done to amend the situation, should you be the creator of Java from 
scratch.



IN
F 3110 –

2018

11/24/18 13

Lecture OO II - Generics and subtyping
§ String subtype of Object    =>   List<String> subtype of List<Object>  ?

§ Integer subtype of Number =>   List<Integer> subtype of
List<Number> ?

List<String> ls = new ArrayList<String>(); 
List<Object> lo = ls; 
lo.add(new Object()); 
String s = ls.get(0); 

 

Number

 

Integer

 

Double

 

Object

 

String

List<Integer> ints = Arrays.asList(1,2); 
List<Number> nums = ints; 
nums.add(3.14); 

compile-time 
error

attempts to assign 
an Object to a Stringcompile-time 

error



IN
F 3110 –

2018

But look out! Arrays and subtyping

String subtype of Object è String[ ] subtype of Object[ ]?

String[] myStrings = new String [10];
myStrings[0] = "Hello";
myStrings[1] = "World!";

Object[] myObjects = myStrings;   // ???
myObjects[3] = new Object(); // !!!

11/24/18 14

Try it out in Java and/or C#!



IN
F 3110 –

2018

Task 1d

11/24/18 15

Consider the following Java program snippet:

public class Program {
public static void main(String[] args) {

Object[] myArgs = args;

myArgs[0] = 42;
}

}

Explain why this piece of code is unsafe (there might be more than one 
reason!). Explain briefly what, from a language designer standpoint, can 
be done to amend the situation, should you be the creator of Java from 
scratch.



IN
F 3110 –

2018
Task 1e

11/24/18 16

Assume now, that our made-up language should support generic function 
definitions (parametric polymorphism). Propose a syntax for this. You should do 
this by providing an EBNF notation for function signatures. (You do not need to 
include a definition of the function body.) The definition should support generic 
parameters with both covariant and contravariant constraints. Explain how this is 
solved with your suggestion. 

You can assume that standard definitions of identifiers, strings, parameter lists, etc
are provided in the grammar for you.

Use the following notational convention when writing your EBNF grammar:

<non-terminal>
“terminal”
[ optional ]
alternative1 | alternative2
( grouping )
zero-or-more-repetitions*
one-or-more-repetitions+



IN
F 3110 –

2018

11/24/18 17

Lecture OO II - Bounded polymorhpism -
Wildcards - II
public abstract class Shape { 
public abstract void draw(Canvas c);

}

public class Circle extends Shape { 
private int x, y, radius;
public void draw(Canvas c) { ... }

}

public class Rectangle extends Shape { 
private int x, y, width, height;
public void draw(Canvas c) { ... }

}

public class Canvas { 
public void draw(Shape s) { s.draw(this);}

}
Write code to draw a list of any kind of shape à



IN
F 3110 –

2018

11/24/18 18

Lecture OO II - Bounded polymorhpism -
Wildcards - III

§ List<S> subtype of List<? extends Shape > for 
every S being a subtype of the (concrete) type Shape

§ List<S> subtype of List<? extends T > for every S
being a subtype of (the generic parameter) T

// in class Canvas:
public void drawAll(List<Shape> shapes) { 
for (Shape s: shapes)

s.draw(this);
}

public void drawAll(List<? extends Shape> shapes) { 
for (Shape s: shapes)

s.draw(this);
}



IN
F 3110 –

2018
Lecture: Syntax and Semantics
Syntax: Described by BNF-grammars

11/24/18 19

e ::=  n
e ::=  e + e
e ::=  e - e
n ::=  d
n ::=  nd
d ::=  0
d ::=  1
...
d ::=  9

terminal

nonterminal

production, rule

metasymbol

terminal

meta-language

Terminals are
found in the
program text

Non-terminals 
are not



IN
F 3110 –

2018
Lecture: Syntax and Semantis
Extended BNF
§ In Extended BNF (eBNF) we can use the following

metasymbols on the righthand side:

11/24/18 20

| alternatives

[…] optionality (0 or 1 time)

* zero or more times (from regular expressions – alternatively {...})    
+ one or more times (from regular expressions)

(…) grouping symbols (sometimes {...} is used)

e ::=  n | e + e | e - e 
n ::=  d | nd
d ::=  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

Grammar from previous slide expressed
more concisely with eBNF



IN
F 3110 –

2018

Task 1e - answer
The key point here is to make a grammar that allows for extends-relations and 
super-relations on the generic parameters. 

The super-relations will be used for contravariant definitions, e.g. f<T super 
SomeStruct>(T t) { … }, and correspondingly for extends and covariant 
definitions.

function-def ::= <type-identifier> <identifier> 
[ <generic-params> ]
“(“ [ <param-list> ] “)” 
“{“ <func-body> “}”

generic-params ::= “<” <generic-param>
(“,” <generic-param> )* “>”

generic-param ::= <identifier> 
[ (“super” | “extends”) <identifier> ] 

11/24/18 21



IN
F 3110 –

2018
Task 1f

11/24/18 22

In this question, we will allow structs to be generic, and use this to define 
function parameters. We will assume that there is a predefined struct called 
Func which has two generic parameters, representing a function’s (single) 
formal parameter type (U), and return type (T), respectively. Example: 

struct Func of T and U { … }

We will in this question use this struct to define formal function parameters to 
other functions. With this in mind, consider the following program:

int f( (Func of int and int) g) {
int x = g(42);
return x;

}
int dummy(int val) { return val; }
void Main() {

f(dummy);
}

Draw the runtime stack for the program above, right before the line “return 
val” is executed in the function dummy.



IN
F 3110 –

2018

11/24/18 23

Lecture OO II - Closures

§ Function value is pair closure = áenv, code ñ
§ When a function represented by a closure is called

– Allocate activation record for call (as always)
– Set the access link in the activation record using the 

environment pointer from the closure



IN
F 3110 –

2018

11/24/18 24

{ int x = 4;
{ int f(int y){return x*y;}

{ int g(int®int h) {
int x=7;
return h(3)+x;

}
g(f);

}
}

}

Lecture OO II - Function Argument and 
Closures

x 4

access link set 
from closure 

for each 
function call

Code 
for f

f
access

Run-time stack with access links

Code 
for g

h(3)
y 3

access

g(f)
h

access

x 7

g
access



IN
F 3110 –

2018

11/24/18 25

int f( (Func of int and int) g) {
int x = g(42);
return x;

}

int dummy(int val) { return val; }

void Main() {
f(dummy);

}

Draw the runtime stack for the 
program above, right before the line 
“return val” is executed in the function 
dummy.

1f Solution



IN
F 3110 –

2018
Summing up

11/24/18 26

§ The upcoming exam: 
– November 28, 09:00 (4 hours).
– All written and printed material allowed

§ That includes the textbook and slides from the lectures, as well as your own notes
– Digital exam – check your logon to Inspera the day before!

§ Some main topics of today’s (2017) exam task
– Runtime stacks and activation records
– Dynamic vs static scope
– Generics, variance
– Functions/methods as parameters
– EBNF

§ Remember: there are more topics in this course!
– Syntax/semantics in general – don’t take specific semantics for granted!
– (Abstract) syntax/parse trees
– Scoping rules
– Object orientation, multiple inheritance, virtual classes
– And of course SML, Prolog and all the rest of Daniel’s lectures (coming up!)
– More exams on the course page – take a look at them!

§ Thank you, and GOOD LUCK! 
– Feel free to email me questions – eyvinda@ifi.uio.no

mailto:eyvinda@ifi.uio.no

