
The Meta Language (ML) and

Functional Programming

Daniel S. Fava
danielsf@ifi.uio.no

Department of informatics
University of Oslo, Norway



Motivation ML Demo



Which programming languages are functional?

Lambda calculus 1930 (a model of computation)

Lisp 1950 dynamically typed
Scheme 1970

Racket 1995

ML 1973 statically typed

Standard ML or SML
Caml 1985

OCaml 1996

Haskell 1990

Erlang 1986, Scala 2004, Clojure 2007 (multi-paradigm)



Which programming languages are functional?

Lambda calculus 1930 (a model of computation)

Lisp 1950 dynamically typed
Scheme 1970

Racket 1995

ML 1973 statically typed

Standard ML or SML
Caml 1985

OCaml 1996

Haskell 1990

Erlang 1986, Scala 2004, Clojure 2007 (multi-paradigm)



Which programming languages are functional?

Lambda calculus 1930 (a model of computation)

Lisp 1950

dynamically typed
Scheme 1970

Racket 1995

ML 1973

statically typed

Standard ML or SML
Caml 1985

OCaml 1996

Haskell 1990

Erlang 1986, Scala 2004, Clojure 2007 (multi-paradigm)



Which programming languages are functional?

Lambda calculus 1930 (a model of computation)

Lisp 1950 dynamically typed

Scheme 1970

Racket 1995

ML 1973 statically typed

Standard ML or SML
Caml 1985

OCaml 1996

Haskell 1990

Erlang 1986, Scala 2004, Clojure 2007 (multi-paradigm)



Which programming languages are functional?

Lambda calculus 1930 (a model of computation)

Lisp 1950 dynamically typed
Scheme 1970

Racket 1995

ML 1973 statically typed

Standard ML or SML
Caml 1985

OCaml 1996

Haskell 1990

Erlang 1986, Scala 2004, Clojure 2007 (multi-paradigm)



Which programming languages are functional?

Lambda calculus 1930 (a model of computation)

Lisp 1950 dynamically typed
Scheme 1970

Racket 1995

ML 1973 statically typed

Standard ML or SML
Caml 1985

OCaml 1996

Haskell 1990

Erlang 1986, Scala 2004, Clojure 2007 (multi-paradigm)



Which programming languages are functional?

Lambda calculus 1930 (a model of computation)

Lisp 1950 dynamically typed
Scheme 1970

Racket 1995

ML 1973 statically typed

Standard ML or SML
Caml 1985

OCaml 1996

Haskell 1990

Erlang 1986, Scala 2004, Clojure 2007 (multi-paradigm)



Which programming languages are functional?

Lambda calculus 1930 (a model of computation)

Lisp 1950 dynamically typed
Scheme 1970

Racket 1995

ML 1973 statically typed

Standard ML or SML
Caml 1985

OCaml 1996

Haskell 1990

Erlang 1986, Scala 2004, Clojure 2007 (multi-paradigm)



Why another programming paradigm?

A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...
MapReduce

Debatable

I in the eye of the beholder

I problems can be easier to express given certain idioms
match the language to the problem



Why another programming paradigm?

A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...
MapReduce

Debatable

I in the eye of the beholder

I problems can be easier to express given certain idioms
match the language to the problem



Why another programming paradigm?

A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...
MapReduce

Debatable

I in the eye of the beholder

I problems can be easier to express given certain idioms
match the language to the problem



Why another programming paradigm?

A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...

MapReduce

Debatable

I in the eye of the beholder

I problems can be easier to express given certain idioms
match the language to the problem



Why another programming paradigm?

A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...
MapReduce

Debatable

I in the eye of the beholder

I problems can be easier to express given certain idioms
match the language to the problem



Why another programming paradigm?

A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...
MapReduce

Debatable

I in the eye of the beholder

I problems can be easier to express given certain idioms
match the language to the problem



Why another programming paradigm?

A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...
MapReduce

Debatable

easier to reason about and to prove properties of

I in the eye of the beholder

I problems can be easier to express given certain idioms
match the language to the problem



Why another programming paradigm?

A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...
MapReduce

Debatable

easier to reason about and to prove properties of

I in the eye of the beholder

more compact, simpler code

I problems can be easier to express given certain idioms
match the language to the problem



Why another programming paradigm?

A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...
MapReduce

Debatable

◦ easier to reason about and to prove properties of

I in the eye of the beholder

more compact, simpler code

I problems can be easier to express given certain idioms
match the language to the problem



Why another programming paradigm?

A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...
MapReduce

Debatable

◦ easier to reason about and to prove properties of

I in the eye of the beholder

◦ more compact, simpler code

I problems can be easier to express given certain idioms
match the language to the problem



What is functional programming?

It is programming with:

[100]a

Currying
Closures

[100]a

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

[100]a

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

[100]a

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



What is functional programming?

It is programming with:

[100]a

Currying
Closures

[100]a

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

[100]a

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

[100]a

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



What is functional programming?

It is programming with:

first-class and higher-order functions

Currying
Closures

[100]a

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

[100]a

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

[100]a

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



What is functional programming?

It is programming with:

first-class and higher-order functions

Currying
Closures

purity

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

[100]a

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

[100]a

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



What is functional programming?

It is programming with:

first-class and higher-order functions

Currying
Closures

purity

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

pattern matching

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

[100]a

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



What is functional programming?

It is programming with:

first-class and higher-order functions

Currying
Closures

purity

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

pattern matching

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

recursion

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



What is functional programming?

It is programming with:

first-class and higher-order functions

Currying
Closures

purity

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

pattern matching

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

recursion

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



What is functional programming?

It is programming with:

first-class and higher-order functions

Currying
Closures

purity

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

pattern matching

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

recursion

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



What is functional programming?

It is programming with:

first-class and higher-order functions

Currying
Closures

purity

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

pattern matching

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

recursion

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



What is functional programming?

It is programming with:

first-class and higher-order functions

Currying
Closures

purity

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

pattern matching

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

recursion

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



What is functional programming?

It is programming with:

first-class and higher-order functions

Currying
Closures

purity

Statements versus Expressions and Declarations
Side effects versus Effect free
Immutability
Referential transparency

pattern matching

constructors and pattern matching
data structures

Nat, Lists, Trees, etc

recursion

tail recursion
termination and total functions
continuations and continuation passing style (CPS)



The Meta Language (ML)

ML is a functional programming language with imperative features,

it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



tactic : formula → proof

Composition of tactics Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception First language with type-safe exceptions



tactic : formula → proof

Composition of tactics

Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception First language with type-safe exceptions



tactic : formula → proof

Composition of tactics

Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception First language with type-safe exceptions



tactic : formula → proof

Composition of tactics

Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking

Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception First language with type-safe exceptions



tactic : formula → proof

Composition of tactics

Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking

Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception First language with type-safe exceptions



tactic : formula → proof

Composition of tactics

Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking

Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception First language with type-safe exceptions



tactic : formula → proof

Composition of tactics

Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking

Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception First language with type-safe exceptions



tactic : formula → proof

Composition of tactics

Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking

Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or

diverge, which means run forever, or
raise an exception First language with type-safe exceptions



tactic : formula → proof

Composition of tactics

Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking

Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or

raise an exception First language with type-safe exceptions



tactic : formula → proof

Composition of tactics

Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking

Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception

First language with type-safe exceptions



tactic : formula → proof

Composition of tactics Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking

Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception

First language with type-safe exceptions



tactic : formula → proof

Composition of tactics Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception

First language with type-safe exceptions



tactic : formula → proof

Composition of tactics Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception First language with type-safe exceptions



Read-Evaluate-Print Loop (REPL)

In ML, expressions are type-checked after R and before E



Read-Evaluate-Print Loop (REPL)

In ML, expressions are type-checked after R and before E


