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A different way of thinking

Non-functional PLs borrowing functional constructs

JavaScript, Python, Lua, PHP, C++11, C# ...
MapReduce

Debatable

I in the eye of the beholder

I problems can be easier to express given certain idioms
match the language to the problem
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The Meta Language (ML)

ML is a functional programming language with imperative features,

it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



The Meta Language (ML)

ML is a functional programming language with imperative features,
it was part of project to create an interactive theorem prover.

Logic for Computable Functions (LCF)

Project headed by Robin Milner in 1972.

notation for programs

notation for proofs (eg. proof that quicksort returns a sorted array)

write programs that search for proofs

have a program that checks a proof



tactic : formula → proof

Composition of tactics Higher-order functions

Take tactics as input and return a more complex tactic

Proof checking Expressive and sound type system

theorem abstract data type

theorems derivable only via inference rules given by theorem

calling tactic on a formula can either:

terminate and return a proof, or
diverge, which means run forever, or
raise an exception First language with type-safe exceptions
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