1 Intro to ML

1.1 Basic types

Need ; after expression
= 4

val it = 42 : int

- 7+1;

val it = 8 : int

Can reference it

- it+2;

val it = 10 : int

- if it > 100 then "big" else "small";
val it = "small" : string

Different types for each branch. What will happen?
if it > 100 then "big" else O0;

The type checker will complain that the two branches have different types, one
is string and the other is int

If with then but no else. What will happen?
if 100 > 1 then "big";

There is not if-then in ML; must use if-then-else instead.
Mixing types. What will happen? What is this called?
10 + 2.5

In many programming languages, the int will be promoted to a float before the
addition is performed, and the result is 12.5. In ML, this type coercion (or type
promotion) does not happen. Instead, the type checker will reject this expression.

div for integers, ‘/ for reals

- 10 div 2;

val it = 5 : int

- 10.0 / 2.0;

val it = 5.0 : real

1.1.1 Booleans

val it = true : bool

val it = false : bool

Checking for equality on reals. What will happen?
1.0=1.0;

Cannot check equality of reals in ML.

Boolean connectives are a bit weird

- false andalso 10 > 1;
val it = false : bool
- false orelse 10 > 1;
val it = true : bool

1.1.2 Strings

String concatenation

"University " = "of" T " 0Oslo"

1.1.3 Unit or Singleton type

e« What does the type unit mean?

o What is it used for?

o What is its relation to the zero or bottom type?
= ©5

val it = () : unit
https://en.wikipedia.org/wiki/Unit_ type
https://en.wikipedia.org/wiki/Bottom_ type

The boolean type is inhabited by two values: true and false. The singleton
type is inhabited by a single value; for that reason, the type name and the
element name are usually the same. In terms of notation, the singleton type is
often represented in a different font from the value.

Several computer programming languages provide a unit type to specify the
result type of a function with the sole purpose of causing a side effect.

Although the analogy does not hold 100%, an example of what can be considered
a singleton type is void in C.

Singleton types are not to be confused with the bottom type. Bottom or zero
type is inhabited by no value. Bottom is used to represent the return type of
a function that does not return a value: for instance, one which loops forever,
signals an exception, or exits.

1.2 Compound types
1.2.1 Tuples

Can you explain the * below?
- (1,2,3);
val it = (1,2,3) : int * int * int

The tuple is a product type. If A and B are types, then A * B is the type
composed of any element from A followed by any element from B.

Indexing, starts with 1

- #1("apple","banana","carrot");
val it = (1,2,3) : int * int * int

1.2.2 Records

Tuples with names

Order does not matter

- {name="Theo", age=21};

val it = {age=21,name="Theo"} : {age:int, name:string}
- {name="Theo", age=21} = {age=21, name="Theo'"};

val it = true : bool

1.2.3 Lists

Can you explain the 'a 1list below?

- nil;
val it = [] : 'a list
-1 :: nil;

val it = [1] : int list

This is an example of parametric polymorphism. As opposed to having different
definition of lists, for example ListInt, ListBool etc, we have a generic List that is
polymorphic (can take different shapes) and parametric (the shape is determined
by a parameter).

Two ways of constructing lists
-1 :: 2 :: nil;

- [1,21;

-1 :: 2 :: nil;

List concatenation

val it = [1,2,3,4] : int list

1.3 Value declaration

Associates a value with a pattern

val <pattern> = <exp>;

For example:

- val x = 5;

val x = 5 : int
- x;

val x = 5 : int
- x + 2;

val it = 7 : int

A pattern can be an identifier, tuple, list, record, or a declared data-type

<pattern> ::= <id> | <tuple> | <cons> | <record> | <constr>
<constr> ::= <id>(<pattern>, ..., <pattern>)

For example:

-val 1 = [1,2,3,4];
val 1 = [1,2,3,4] : int list

So far in the examples above, the <pattern> has been <id>. Here are different
examples:

- val tup = ("apple", "banana");

val tup = ("apple",'"banana") : string * string
- val (x,y) = tup;

val x = "apple" : string

val y = "banana" : string

A variable is not allowed to occur more than once in a pattern:

- val (x,x) = tup;

1.3.1 Local declarations and the let construct

- let val x = 2+3 in x*10 end;
val it = 50 : int

1.4 Functions and pattern matching
1.4.1 Anonymous function or lambda

Below we declare a function that takes an argument x and adds 2 to it.
- fn x => x + 2;

val it = fn : int -> int

- it 3;

val it = 5 : int

Here, in one step, we create the function and call on an argument (the number
3):

- (fn x => x + 2) 3;

val it = 5 : int

1.4.2 Named functions

Here we declare an anonymous function and then bind it to the name £:
-val f = fn x => x + 2;

val £ = fn : int -> int

- f 2;

val it = 4 : int

We could do the same as the example above using fun, which is a short-hand
for named functions:

- fun f x = x + 2;

val £ = fn : int -> int

- f 2;

val it = 4 : int

1.4.3 Function as an Algebraic Data Type

o What is an Algebraic Data Type (ADT)

o Examples of Algebraic Data Types

¢ Why the name “algebraic”?

o Not to be confused with Abstract Data Type (ADT)

The function type is also called exponential type. A function from type A to
type B can map an element of A to any element of B; there are B4 possible
mappings, thus the name “exponential.”

Other algebraic types are product types (i.e. tuples) and sum types (i.e. variants
or disjoint unions).

The name “algebraic data types” comes from the fact that these types obey alge-
braic laws. For example, we can show that the type A => B -> C is isomorphic
A x B -> C.

A -> (B -> B) as (CP)A = (B4
A x B -> Cas CB*A
These two functions are isomorphic:

- fun f (x,y) = xty;

val £ = fn : int * int -> int
- fun f xy=x +y;
val £ = fn : int -> int -> int

Other identities that work on types A, B, and C are:

A+B~B+ A
AxB~BxA

(A+B)+C~A+(B+0)
(AxB)«C ~Ax(Bx(C)

Ax(B+C)~AxB+ AxC
A->(B->C)~AxB->C
(A->C)x(B->C)~(A+B)->C

These are given here simply for your own curiosity.

1.4.4 Currying and partial evaluation

Below we define a function f that takes an int x and another y and adds them.
Of course, calling £ on 2 and 3 returns 5. But what happens when we call £ on
2 only?

- fun f xy=x +y;

val £ = fn : int -> int -> int

- f 2;

val it = fn : int -> int

- it 3;

val it = 5 : int

We can interpret f as a function that takes an int and returns a function from
int to int. So, calling £ with argument 2 returns a function that takes an int
and adds 2 to it. This is called partial evaluation.

The function fun £ x y = x + y; is said to be the curry’ed version of the func-
tion fun f2 (x,y) = x + y;. Note that currying allows for partial evaluation;
partial evaluation is not possible in £2.

1.4.5 Multiple clause functions

- fun f(x,0) = x
| £(0,y) =y
| £(x,y) = x+y;

1.4.5.1 Case construct

A function d for division of ints and reals. Notice currying again.

- datatype num = I of int | R of real;
- I(10);
- R(2.0);
- fundxy =
case x of I(nl) => (case y of I(n2) => I(nl div n2))
| R(n1) => (case y of R(n2) => R(nl / n2));

- d(I(10))(I(2));
val it = I 5 : num
- d(R(10.0)) (R(2.0));
val it = R 5.0 : num

What happens if we mix them?
- d(R(10.0)) (I(2));

We can write a division function that promotes ints to reals when they get mixed
together:
- fundxy-=
case x of I(nl) => (case y of I(n2) => I(nl div n2)
| R(n2) => R((real(nl) / n2)))
| R(n1) => (case y of R(n2) => R(nl / n2)
| I(n2) => R(nl / real(m2)));

1.4.6 Recursion

We'll look at recursion after data type declarations

1.5 Data-type declaration

- datatype color = Red | Yellow | Blue;

Red Yellow and Blue are called constructors. They construct an element of
type color

- datatype color = Red | Yellow | Blue;
datatype color = Blue | Red | Yellow

- Blue;

val it = Blue : color

Constructors can take arguments

- type name = string;

- datatype school = Ui0 | NTNU;

- datatype faculty = MatNat | Engineering | Humanities;

- datatype student = BS of name | MS of name*school | PhD of namexfaculty;

Constructors don’t do anything to their arguments other than “tag” them so the
arguments can be distinguished via pattern matching.

- PhD("Daniel" ,MatNat) ;

val it = PhD ("Daniel",MatNat) : student
- val PhD(a,b) = it;

val a = "Daniel" : name

val b = MatNat : faculty

If PhD("Daniel" ,MatNat) constructs a PhD student, then we can interpret
val PhD(a,b) = PhD("Daniel",MatNat)

as “destructing” the student into a value a and a value b.

Finally, note that datatype is used to define a new type while type gives a “new
name” to a type.

- type name = string;

type name = string

1.6 Functions (continued): Recursion

(Example from The little MLer)

- datatype shish_kebab =
Skewer
| Onion of shish_kebab
| Lamb of shish_kebab
| Tomato of shish_kebab;

- Skewer;
- Onion(Skewer) ;
- Lamb(Onion(Skewer));

- fun is_vegetarian(Skewer) = true
| is_vegetarian(Onion(x)) is_vegetarian(x)
| is_vegetarian(Lamb(x)) false
| is_vegetarian(Tomato(x)) is_vegetarian(x) ;

- is_vegetarian(Onion(Tomato(Skewer)))
- is_vegetarian(Onion(Tomato(Lamb(Skewer))))

	Intro to ML
	Basic types
	Booleans
	Strings
	Unit or Singleton type

	Compound types
	Tuples
	Records
	Lists

	Value declaration
	Local declarations and the let construct

	Functions and pattern matching
	Anonymous function or lambda
	Named functions
	Function as an Algebraic Data Type
	Currying and partial evaluation
	Multiple clause functions
	Recursion

	Data-type declaration
	Functions (continued): Recursion

