
1 Functional Programming and ML [part 2]

1.1 Higher order functions (revisited)

Higher order function (also known as functional or functor) is a function
that does at least one of the following:

• takes one or more functions as arguments
• returns a function as result

map is a common example of higher order function. It applies a function to every
element of a list.

f : A -> B
l : List of A
map : (A -> B) -> List of A -> List of B

Given the built-in size function from string to int which returns the length
of a string, here is an example of application of map:
- val names = ["Oslo", "Norway", "uio"];
- size;
val it = fn : string -> int
- map size names;

Question. What do you expect as the output from the example above?

Here is an example of higher order (i.e. map) and an anonymous function:
- map (fn x => x*x) [1,2,3];

Question. What do you expect as the output from the example above?

Another common example of higher order function is filter. It applies a
predicate to every element of a list.
- fun even x = (x div 2) * 2 = x;
- fun filter p nil = nil

| filter p (x::xs) = if p(x) then x :: (filter p xs)
else filter p xs;

- filter even [1, 2, 3, 4, 5];

Exercise. Run filter even on [], [1], and [1,2,3].

• Which clause of filter will match []?
• Which clause of filter will match [1]?
• If an input matches the second clause, what part of the input matches x

and what matches xs?

1

1.2 Currying and uncurrying (revisited)

The following two functions are isomorphic:
- fun fa x y = x + y; (* curried *)
- fun fb (x,y) = x + y; (* uncurried *)

Currying is the technique of translating a function that takes multiple arguments
into a sequence of functions, each with a single argument.

Curried functions allow for partial application as shown below:
- fun f x y = x + y;
- val add1 = f 1;
- add1 3;
- f 3 1;

Informally, here is what happens when the code above runs: Calling f 1 substi-
tutes x by 1 in f (this is represented by the first step of execution ~>). Then,
the anonymous function that takes an argument y and adds 1 to it is returned
(this is represented by the second step of execution ~>).

f 1 ~> f 1 y = 1 + y ~> y => 1 + y

We can define a higher order function that transforms a curried function into
an uncurry’ed function (can also define another higher order function that does
the reverse).
- fun curry f x y = f (x, y);
val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

Question. Who can explain curry’s type?

curry is a higher order function. We can interpret the type of curry as follows:

• Say x has type 'a and y has type 'b.
• then (x,y) has type ('a * 'b).
• In the definition of curry, it applies f to (x,y) and returns something (say

of type 'c), thus f must have type 'a * 'b -> 'c.
• Since curry takes f, x, and y) as arguments, then curry has type ('a *

'b -> 'c`) -> 'a * 'b -> 'c.

Similarly, we can uncurry a function:
- fun uncurry f (x,y) = f x y;
val uncurry = fn : ('a -> 'b -> 'c) -> 'a * 'b -> 'c

2

1.3 Recursion

(Example from The little MLer)
- datatype shish_kebab =

Skewer
| Onion of shish_kebab
| Lamb of shish_kebab
| Tomato of shish_kebab;

- Skewer;
- Onion(Skewer);
- Lamb(Onion(Skewer));

- fun is_vegetarian(Skewer) = true
| is_vegetarian(Onion(x)) = is_vegetarian(x)
| is_vegetarian(Lamb(x)) = false
| is_vegetarian(Tomato(x)) = is_vegetarian(x);

- is_vegetarian(Onion(Tomato(Skewer)))
- is_vegetarian(Onion(Tomato(Lamb(Skewer))))

1.3.1 Tail recursion

Question. What are the differences between these two implementations of the
factorial function fact and fact2?
- open IntInf;

- fun fact 0 = 1
| fact n = n * fact (n-1);

fun factr (0, a) = a
| factr (n, a) = factr (n-1, n*a);

fun fact2 n = factr (n, 1);

As opposed to having factr defined at the top-level, note that we could have
folded the definition of factr inside the definition of fact2 by using the let-
construct with rec:
fun fact2 n =

let val rec factr = fn (0,a) => a
| (n,a) => factr(n-1,n*a);

in factr (n ,1) end;

3

Tail call: A call to a function f is a tail call if it returns the value returned by
f without performing any further computation.
fun g(x) = if x = 0 then f(x) else f(x) * 2

In the example above, the call to f in the then-branch is a tail call, while the
call to f on the else-branch is not.

Tail recursive function is a function that is recursive and the recursive calls
are tail calls. Tail recursion can be rewritten as iteration.

In theory, tail recursive functions are faster because the same activation record
(stack frame) can be reused for each recursive call, thus saving the time to
setup/teardown activation records (stack frames) for each call.

In practice, fact is slightly faster than fact2 when running on the SML/NJ
compiler.

Surprisingly, if we swap n*a by a*n in fact2 it runs much slower. Multiplica-
tion is not symmetric with respect to time: multiplying a small number by a
large one is faster than a large one by a small.

1.4 State in ML: cells

In functional programming, there is an effort to separate “side-effectful” from
pure expressions. In ML:

• assignment are restricted to reference cells
• cells have a different type, separation of mutable/immutable enforced by

type checker

L-value: The location of a variable (aka cell) is called its L-value. L for left.

R-value: The value stored in a variable (cell) is called its R-value. R for right.
- x := 10;

Here we create a cell with initial value of 0, note that the type of x is not int
but int ref:
- val x = ref 0;
val x = ref 0 : int ref

Question. What happens when we run the code below?
- x + 1;

The code above does not type check: we cannot add an int to an int ref.

Question. What does the code below do?

4

- !x + 1;

It “dereferences” x and adds 1 to the value of x.

Assignment: We can assign to a reference cell with :=. Assignment “doesn’t
return anything” other than unit. unit is both the type of expressions that
cause side effects as well as the value returned when those expressions run.
- x := 10;
val it = () : unit
- x := !x + 1;
val it = () : unit

Programs have no access to a reference cell’s address.
- val y = ref "Apple";
val y = ref "Apple" : string ref
- y := "Fried green tomatoes";
val it = () : unit

The storage requirement for the stringApple is less than for the string Fried
green tomatoes. When assigning Fried green tomatoes to y, the compiler
can simply make y point to the memory location of the longer string.

1.5 Abstraction

Question. What is abstraction? Why is it useful?

1. Hide details (encapsulation)

2. Tame complexity

3. Allow for code reuse

4. Communicate the relative importance of things

etc

Abstraction can be accomplished without language support; for example, by how
we think of a problem (or algorithm) at the level of diagrams or of pseudo code.

In this section we talk about language abstraction, meaning, abstractions
supported at the programming language level.

Language support for abstraction can be broken down into categories:

• Control flow abstraction
– if-then-else as opposed to goto
– functions
– continuations

5

• Data abstraction
– data types
– for example, number in binary (two’s complement, binary-coded

decimal, etc) versus integers
• Syntactic abstraction

– macro systems and meta-programming features.
– makes it easier to grow a language or to implement domain specific

languages (DSLs)

Refinement: the opposite of abstraction is refinement.

• By “opposite” we do not mean that because abstraction is “good,” refine-
ment must be “bad.”

• Refinement starts at the abstract and works towards the concrete.
• It is very useful, for example, when generating programs from specification.

Next we will look at data abstraction.

1.5.1 Data abstraction

Decouple the “usage of” from the “representation of” a data structure.

• Usage: interface
• Representation: implementation

Two main forms of data abstraction:

• Abstract data types
• Modules

Other lectures also talked about object orientation (not covered here).

1.5.1.1 Abstract Data Types (ADTs)

(Abstract Data Type or ADT, not to be confused with Algebraic Data Type which
is also ADT).

ADTs were first proposed by Barbara Liskov and Stephen N. Zilles in 1974, as
part of the development of the CLU language.

An ADT is a type plus a set of operations on its values.

• The underlying data structure(s) that support(s) the ADT are not directly
accessible.

• The ADT is manipulated with operations (ie. an interface).

Representation-independence

In ML, one early way of defining an abstract data type was with the abstype
construct.

6

The presence of abstype in ML, however, is “historic.” Its use has been sup-
planted by signatures and structures, which are part of the ML module system.

Today, ADTs are often implemented as modules.

1.5.1.2 Modules

Can use ADTs to define for example stacks, queues, trees, maps, lists, etc. Can
use a module to bundle related data types together.
stacks, queues, trees, maps, lists -> collection

Structures

• An ML structure is a module, which is a collection of type, value, and
structure declarations.

Signatures

Signatures are module interfaces.

• A module may have more than one signature and a signature may have
more than one associated module.

• If a structure satisfies the description given by a signature, the structure
“matches” the signature.

Functors

• Functors are functions from structures to structures.

Example: Signature definition (interface).
signature POINT =
sig

type point
val mk_point : real * real -> point (*constructor*)
val x_coord : point -> real (*selector*)
val y_coord : point -> real (*selector*)
val move_p : point * real * real -> point

end;

Structure definition (Implementation)
structure pt : POINT =
struct

type point = real * real
fun mk_point(x,y) = (x,y)
fun x_coord(x,y) = x
fun y_coord(x,y) = y

7

fun move_p((x,y):point,dx,dy) = (x+dx, y+dy)
end;

To be able to use the implementation:
- open pt;

- val pt = mk_point(10.0,10.0);
- y_coord(pt);
- move_p (pt, ~1.0, 2.0);
- val pt2 = mk_point(10.0,10.0);
- pt1 + pt2; (*addition not defined on points*)

See http://www.smlnj.org/doc/basis/pages/sml-std-basis.html for an overview
of the structures and signatures in The Standard ML Basis Library. Follow the
link: Top-level Environment to see which functions are available in the top level
environment, i.e. which you can use without prefixes.

8

http://www.smlnj.org/doc/basis/pages/sml-std-basis.html

	Functional Programming and ML [part 2]
	Higher order functions (revisited)
	Currying and uncurrying (revisited)
	Recursion
	Tail recursion

	State in ML: cells
	Abstraction
	Data abstraction

